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Abstract
This note considers finite sums of products of Bernstein basis polynomials and
Gauss hypergeometric polynomials for which all three parameters are non-positive
integers. A simple formula is derived for such sums and an interesting binomial
identity is obtained as a special case.

1. Preliminaries

The kth Bernstein basis polynomial of degree n 2 N is defined by

Bk,n(z) =
✓

n

k

◆
zk(1� z)n�k, z 2 C.

The set {Bk,n(z)}n
k=0 is a basis for the space of polynomials of degree at most n

with complex coe�cients. Since
nX

k=0

Bk,n(z) = (z + (1� z))n = 1,

the Bernstein basis polynomials of degree n form a partition of unity.
For p, q 2 N, the generalized hypergeometric function is defined by

pFq(↵1, . . . ,↵p; �1, . . . , �q; z) =
1X

n=0

(↵1)n · · · (↵p)n

(�1)n · · · (�q)n

zn

n!
, z 2 C (1)

where ↵1, . . . ,↵p, �1, . . . , �q 2 C and (⇢)n is the Pochhammer symbol defined by

(⇢)n =

(
1 n = 0
⇢(⇢ + 1) · · · (⇢ + n� 1) n > 0.

The 2F1 case is called the Gauss hypergeometric function

2F1(↵,�; �; z) =
1X

n=0

(↵)n (�)n

(�)n n!
zn, z 2 C. (2)
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Clearly 2F1 is symmetric in ↵ and �.
The series in (2) terminates if and only if either �↵ 2 N or �� 2 N. In this case,

the series is called a hypergeometric polynomial. If �↵ 2 N, then for m = �↵,

2F1(↵,�; �; z) =
mX

n=0

✓
m

n

◆
(�1)n (�)n

(�)n

zn. (3)

If �� 2 N, first use symmetry of 2F1 in ↵ and �, then apply (3). In general, if
�� 2 N, the series in (2) does not converge, except in the case that the series
terminates and �� > m. (See [2] for a definition of 2F1 explicitly including the case
of negative integer values of �.)

We note that in the special case � = �, the hypergeometric polynomial simplifies
as

2F1(↵,�; �; z) = 1F0(↵; z) = (1� z)�↵. (4)

In the non-terminating case, Equation (4) only holds for |z| < 1, but in the poly-
nomial case it is just a statement of the binomial theorem and thus holds for all
z 2 C.

In this note, we prove some simple, but non-trivial results on sums of products
of Bernstein basis polynomials and hypergeometric polynomials. More specifically,
we will establish a formula for finite sums of the form

NX
k=0

Bk,N (z) 2F1(�k,�m;�N ;'(z)),

for m,N 2 N.
We will use the contiguous relationship

� 2F1(↵,�; �; z)� ↵ 2F1(↵ + 1,�; � + 1; z) + (↵� �) 2F1(↵,�; � + 1; z) = 0 (5)

proved in [1]. Also see [4] for an up-to-date list of known contiguous relations for
the Gauss hypergeometric function. Since (5) holds for all z 2 C, it also holds if we
replace z with '(z) for any C-valued function ', or branch of ' if it is multi-valued.

2. Main Results

Theorem 1. Let N 2 N+, m 2 N with m  N . For ' a C-valued function (or a
branch of a C-valued function) and z in its domain, if

Sm(n) =
nX

k=0

Bk,n(z) 2F1(�k,�m;�n;'(z))

then Sm(N) = Sm(m). Thus, if N 2 N+, m 2 N with m  N , the sum Sm(N)
depends only on m.



INTEGERS: 18 (2018) 3

Proof. Note that Sm(N) = Sm(m) +
PN

n=m+1 Sm(n)� Sm(n� 1). We prove thatPN
n=m+1 Sm(n)� Sm(n� 1) = 0.
For n > m,

Sm(n)� (1� z)Sm(n� 1)

=
nX

k=0

✓
n

k

◆
zk(1� z)n�k

2F1(�k,�m;�n;'(z))

�(1� z)
n�1X
k=0

✓
n� 1

k

◆
zk(1� z)n�1�k

2F1(�k,�m;�(n� 1);'(z))

=
nX

k=0

✓
n

k

◆
zk(1� z)n�k

2F1(�k,�m;�n;'(z))

�
n�1X
k=0

✓
n� 1

k

◆
zk(1� z)n�k

2F1(�k,�m;�(n� 1);'(z))

= (1� z)n + zn
2F1(�n,�m;�n;'(z))

+
n�1X
k=1

✓
n

k

◆
zk(1� z)n�k

2F1(�k,�m;�n;'(z))

�(1� z)n �
n�1X
k=1

✓
n� 1

k

◆
zk(1� z)n�k

2F1(�k,�m;�(n� 1);'(z))

= zn
2F1(�n,�m;�n;'(z)) +

n�1X
k=1

zk(1� z)n�k
h✓n

k

◆
2F1(�k,�m;�n;'(z))

�
✓

n� 1
k

◆
2F1(�k,�m;�(n� 1);'(z))

i

= zn
2F1(�n,�m;�n;'(z))

+
n�1X
k=1

zk(1� z)n�k
hn

k

✓
n� 1
k � 1

◆
2F1(�k,�m;�n;'(z))

�n� k

k

✓
n� 1
k � 1

◆
2F1(�k,�m;�(n� 1);'(z))

i
(6)

= zn
2F1(�n,�m;�n;'(z))

+
n�1X
k=1

✓
n� 1
k � 1

◆
zk(1� z)n�k

h1
k

⇣
n 2F1(�k,�m;�n;'(z))

�(n� k) 2F1(�k,�m;�(n� 1);'(z))
⌘i

= zn
2F1(�n,�m;�n;'(z))

+
n�1X
k=1

✓
n� 1
k � 1

◆
zk(1� z)n�k

h1
k

⇣
k 2F1(�(k � 1),�m;�(n� 1);'(z))

⌘i
(7)
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= zn
2F1(�n,�m;�n;'(z))

+
n�2X
k0=0

✓
n� 1

k0

◆
zk

0
+1(1� z)n�k

0�1
2F1(�k

0
,�m;�(n� 1);'(z)) (8)

= zn
2F1(�n,�m;�n;'(z))� zn

2F1(�(n� 1),�m;�(n� 1);'(z))

+
n�1X
k0=0

✓
n� 1

k0

◆
zk

0
+1(1� z)n�k

0�1
2F1(�k

0
,�m;�(n� 1);'(z))

= zn(1� z)m � zn(1� z)m

+z
n�1X
k0=0

✓
n� 1

k0

◆
zk

0
(1� z)n�1�k

0

2F1(�k
0
,�m;�(n� 1);'(z)) (9)

= zSm(n� 1),

where (6) follows from the binomial coe�cient identities✓
n

k

◆
=

n

k

✓
n� 1
k � 1

◆
and

✓
n� 1

k

◆
=

n� k

k

✓
n� 1
k � 1

◆
,

(7) uses the contiguous relationship in (5), (8) follows from the substitution k
0

=
k � 1, and (9) follows from the symmetry of 2F1 in ↵ and �, and an application of
(4).

This argument implies Sm(n) = Sm(n� 1), and the result follows.

Corollary 1. Let N 2 N+, m 2 N with m  N . If ' is a C-valued function (or a
branch of a C-valued function) and z is in its domain, then

NX
k=0

Bk,N (z) 2F1(�k,�m;�N ;'(z)) = (1� z'(z))m. (10)

Proof. The result follows from Theorem 1 and the binomial theorem:
NX

k=0

Bk,N (z) 2F1(�k,�m;�N ;'(z)) =
mX

k=0

Bk,m(z) 2F1(�k,�m;�m;'(z))

=
mX

k=0

Bk,m(z) 1F0(�k;'(z))

=
mX

k=0

✓
m

k

◆
zk(1� z)m�k(1� '(z))k

=
mX

k=0

✓
m

k

◆
(z � z'(z))k(1� z)m�k

= (1� z'(z))m.
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Specific identities that are special cases of Corollary 1 include,

(i)
NX

k=0

Bk,N (z) 2F1(�k,�m;�N ; z) = (1� z2)m; and in particular

NX
k=0

Bk,N (i) 2F1(�k,�m;�N ; i) = 2m,

(ii)
NX

k=0

Bk,N (z) 2F1(�k,�m;�N ; 1� z) = (z2 � z + 1)m,

(iii)
NX

k=0

Bk,N (z) 2F1

⇣
�k,�m;�N ;

1
z

⌘
=

(
1 m = 0
0 m > 0,

(iv)
NX

k=0

Bk,N (z) 2F1

⇣
�k,�m;�N ; 1 +

1
z

⌘
= zm.

The following corollary establishes a binomial identity that is also an immediate
consequence of Corollary 1.

Corollary 2. Let N 2 N+, m 2 N with m  N . Then

NX
k=0

Bk,N (x) 2F1

⇣
�k,�m;�N ;

1 + x� y

x

⌘
= (y � x)m, y 2 C, x 2 C \ {0}. (11)

A remarkable aspect of this identity is the way that monomial terms of degree
other than m in the summation in (11) combine and vanish, leaving only terms of
degree m involved in the binomial expansion. For example, in the case with m = 3
and N = 4,

4X
k=0

Bk,4(x) 2F1

⇣
�k,�3;�4;

1 + x� y

x

⌘

= x4 � 4x3 + 6x2 � 4x + 1
� x4 � 3x3y + 6x3 + 9x2y � 12x2 � 9xy + 10x + 3 y � 3
+ 3x3y + 3x2y2 � 3x3 � 12x2y � 6xy2 + 9x2 + 15xy + 3 y2 � 9x� 6 y + 3
� 3x2y2 � xy3 + 6x2y + 6xy2 + y3 � 3x2 � 9xy � 3 y2 + 4x + 3 y � 1
+ xy3 � 3xy2 + 3xy � x

= y3 � 3xy2 + 3x2y � x3

= (y � x)3.

As another application, Corollary 1 can be used to derive the generating function
for Krawtchouk polynomials. For 0 < p < 1, N 2 N, and x 2 N with x  N , the
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Krawtchouk polynomials are defined for ⌫ 2 N with ⌫  x by

K⌫(x, p,N) = 2F1

⇣
�⌫,�x;�N ;

1
p

⌘
,

(see [3], for instance). In (10), let z = t
1+t and '(z) = 1

p . Then

(1 + t)�N
NX

⌫=0

✓
N

⌫

◆
2F1

✓
�⌫,�x;�N ;'

✓
t

1 + t

◆◆
t⌫

=
NX

n=0

B⌫,N

✓
t

1 + t

◆
2F1

✓
�⌫,�x;�N ;'

✓
t

1 + t

◆◆

=
✓

1�
✓

t

1 + t

◆
1
p

◆x

=
✓

1�
✓

1� p

p

◆
t

◆x

(1 + t)�x.

Thus

NX
⌫=0

✓
N

⌫

◆
2F1

⇣
�⌫,�x;�N ;

1
p

⌘
t⌫ =

✓
1�

✓
1� p

p

◆
t

◆x

(1 + t)N�x,

which is the generating function for Krawtchouk polynomials as given in [3]
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