#A31 INTEGERS 18 (2018) e

A NOTE ON FINITE SUMS OF PRODUCTS OF BERNSTEIN
BASIS POLYNOMIALS AND HYPERGEOMETRIC POLYNOMIALS

Steven P. Clark
Department of Finance, University of North Carolina at Charlotte, Charlotte,
North Carolina
spclark@uncc.edu

Received: 6/12/17, Revised: 11/30/17, Accepted: 3/21/18, Published: 8/30/18

Abstract
This note considers finite sums of products of Bernstein basis polynomials and
Gauss hypergeometric polynomials for which all three parameters are non-positive
integers. A simple formula is derived for such sums and an interesting binomial
identity is obtained as a special case.

1. Preliminaries

The kth Bernstein basis polynomial of degree n € N is defined by

n

Bt = (£t s

The set {Bjn(2)}7_, is a basis for the space of polynomials of degree at most n
with complex coefficients. Since

S Binl) = (24 (1—2)" = 1,
k=0

the Bernstein basis polynomials of degree n form a partition of unity.
For p,q € N, the generalized hypergeometric function is defined by

— (1), (@), 2"
Folag,...,apv1, % 2 :E —n —=m__ zeC 1
P Q( 1 ps V1 Yq ) (fyl>n(7q>n n! ()

n=0

where a1, ..., ap, 71,...,7¢ € C and (p),, is the Pochhammer symbol defined by

) = 1 n=20
P plp+1)---(p+n—-1) n>0.
The 5 F case is called the Gauss hypergeometric function

2Fi(a, f5732) = ) @nBan e, (2)

|
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Clearly 5 F} is symmetric in o and [3.
The series in (2) terminates if and only if either —a € N or — € N. In this case,

the series is called a hypergeometric polynomial. If —a € N, then for m = —a,
m
m (8)
O R M (IR ®
2 )

If —8 € N, first use symmetry of oF} in « and 3, then apply (3). In general, if
—v € N, the series in (2) does not converge, except in the case that the series
terminates and —y > m. (See [2] for a definition of 3 F explicitly including the case
of negative integer values of ~.)

We note that in the special case 3 = 7, the hypergeometric polynomial simplifies
as

oF1 (o, Byv;2) = 1Fo(a2) = (1 — 2) 7. (4)

In the non-terminating case, Equation (4) only holds for |z| < 1, but in the poly-
nomial case it is just a statement of the binomial theorem and thus holds for all
z e C.

In this note, we prove some simple, but non-trivial results on sums of products
of Bernstein basis polynomials and hypergeometric polynomials. More specifically,
we will establish a formula for finite sums of the form

N
Z By,n(2) 2 FA(=k, —m; —N; (2)),
k=0

for m, N € N.
We will use the contiguous relationship
YeFi(o, 8575 2) —asFi(a+ 1, 85y + 1;2) + (@ =) 2 Fi(a, 857 + 152) =0 (5)

proved in [1]. Also see [4] for an up-to-date list of known contiguous relations for
the Gauss hypergeometric function. Since (5) holds for all z € C, it also holds if we
replace z with ¢(z) for any C-valued function ¢, or branch of ¢ if it is multi-valued.

2. Main Results

Theorem 1. Let N € Nt, m € N with m < N. For ¢ a C-valued function (or a
branch of a C-valued function) and z in its domain, if

Sm(n) = Z Bk,n(z) QFI(_kv —m;—n; SO(Z))
k=0

then Sy (N) = Sy (m). Thus, if N € Nt, m € N with m < N, the sum Sy,,(N)
depends only on m.
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Proof. Note that S;,,(N) = Sp(m) + ny:mﬂ Sm(n) — Sy (n —1). We prove that
SN it Sm(n) = Spn(n — 1) = 0.
For n > m,

Sm(n) — (1 = 2)S(n—1)

n

-3 @ (1= )" ok, —mi i p(2)
k=0

n—1

—a=a 3 (" )= R (- Dip(a)

k=0

- I:O (Z) K= )Ry Py (—k, —m; —n; (2))

-> (n ; 1> (1= 2)" T Fy(—k, —m; —(n — 1);0(2))

= (1—2)"+ 2" o Fy(—n, —m; —n; p(2))

+ nf (Z) 1= 2)" T Fy(—k, —m; —ni ()

—(1—2)"— i (” ; 1) (1= )R Ry (—k, —m; —(n — 1);0(2))

k=1
= 2" oF(—n,—m;—n;0(2)) + S (1) F {(Z) 2Fi(—k, —m; —n; o(2))
k=1

_ (” ; 1) 2 Fi(—k, —m; —(n — 1);0(2))

= 2" oFy(—n,—m; —n;p(2))
# 35 = * [ (1) 2k sl
k=1

_nT_k (Z : 1) 2 Fy(—k, —m; —(n — 1);0(2)) (6)

= 2"k (—n,—m;—n;p(z))
+ ; (Z : 1) (1 —z)nh {% (n 2 Fy(—k, —m; —n; p(2))

—(n = k) 2 Fi(—k, —m; —(n — 1) 9(2)) )]

= 2" oF(—n,—m;—n;p(2))

+n§ (Z . Dzm —2)" " [% (k2Fi(=(k = 1), =mi~(n = Di0(2))) | (0
k=1
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= z 2F1( ;0(2))
( y 1) KR 2 R == i) (8)
= =z 2F1( —m; —n;p(2)) — 2" 2 Fi(—(n — 1), =m; —(n — 1);9(2))
3 ( y 1) V=2 K R s — (0= 1)5(2)
= (1 z2)"—=z2"1—2)™
+z nk_ 1) K (=) Rk —ms—(n— 1)ip(2)) (9)
k=0
= z2S,(n—1),

where (6) follows from the binomial coefficient identities

n\ nfn-1 q n—1\ n—-k(n-1

k) " k\k—1) ™ k)~ k \k—-1)
(7) uses the contiguous relationship in (5), (8) follows from the substitution & =
k —1, and (9) follows from the symmetry of 3 F; in o and 3, and an application of

(4).

This argument implies Sy, (n) = Sy, (n — 1), and the result follows. O

Corollary 1. Let N € Nt m € N with m < N. If ¢ is a C-valued function (or a
branch of a C-valued function) and z is in its domain, then

Z By n(2) 2Fy(—k, —m; =N p(2)) = (1 — zp(2))™. (10)

Proof. The result follows from Theorem 1 and the binomial theorem:

ZBkN )oF(=k,—m; —=N;p(2)) = ZBkm ) 2 Fi(—k, —m; —m; p(2))
= ZBk,m 1Fo(—k; 0(2))
=3 (M) - )
;(O i
= A TP F(1—z)mF
= Y (§)eserta-
= (1= ()™



INTEGERS: 18 (2018)
Specific identities that are special cases of Corollary 1 include,
N
(i) Z Bi.n(2) 2Fy(—=k, —m; —N; z) = (1 — 2%)™; and in particular
k=0

N
> Bin(i) 2 Fi(—k, —m; —N;i) = 2™,
k=0

N
(i) Y Bin(2)oFi(—k, —m; —=N;1 = 2) = (2> =z + 1),
k=0

0 m>0,

N 1 1 m=0
(iii) ZBk,N(Z) 2F1(—/<?,—m; —N; ;) = { "=
k=0

N

1
(iV) Bk,N(Z) 2F1(—k, —m;—N;1+ ;) = M
k=0

The following corollary establishes a binomial identity that is also an immediate

consequence of Corollary 1.

Corollary 2. Let N € N*, m € N with m < N. Then

xT

N
> Bin(@) 2 Fi—k, —m; =N 1”7‘1/) —(y—a)", yeC, zeC\{0}. (11)
k=0

A remarkable aspect of this identity is the way that monomial terms of degree
other than m in the summation in (11) combine and vanish, leaving only terms of

degree m involved in the binomial expansion. For example, in the case with m =3
and N =4,

4
ZBkA(x) 2F1(—k, —3;—4; Hii_y>
k=0
=2 —42°+ 62 —4x+1
—a2t =323y +62°+92%y — 1222 — 92y + 102+ 3y —3
+323y+ 3222 =323 —122%y — 62> + 922 + 152y + 39> -9 — 6y + 3
— 322y —ayP + 622y + 62y +9° — 322 —9xy— 3y +4x+3y—1
+ay® -3z  +3zy —x
=% — 3xy? + 322y — 23

=(y—2)".

As another application, Corollary 1 can be used to derive the generating function
for Krawtchouk polynomials. For 0 < p <1, N € N, and z € N with x < N, the
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Krawtchouk polynomials are defined for v € N with v < z by
1
Kl/(xap7 N) = 2F1(7V7 - 7N7 _)7
b

(see [3], for instance). In (10), let z = 5 and ¢(z) = %. Then

o3 (V) (wmevio (1))
’éB%N ( ) (V’ e <1it>)
~(1-(t5)3) - (- (52)) a+o

5 (%) )e = (1 (52)0) oo

v=0

._.
SRR

Thus

which is the generating function for Krawtchouk polynomials as given in [3]
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