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Abstract

An old problem of De Morgan leads to the observation that the number 2184 is 3
less than a power of 3 and 13 less than a power of 13. Such a number is called
“doubly absurd.” Doubly absurd numbers relate in subtle ways to the Ramanujan-
Nagell equation, Catalan’s equation and Pillai’s equation. The author conjectures
that there are only seven other doubly absurd numbers, and that 2184 is the only
one where both powers are cubes or higher exponents. Some partial progress is
made toward proving the conjecture.

1. Introduction

Augustus De Morgan, the nineteenth century’s closest analogue to Martin Gardner,
once posed this puzzle: “At one point in my life, the square of my age was the
same as the year.” What year was he born in? It seems as if there is not enough
information, until you realize that he wrote this in 1864. The only year he could
have been born in (given a normal life span) was 432 — 43 = 1806, so he was 43 in
the year 1849.

The next birth years that could solve De Morgan’s puzzle (allowing higher powers
as well as squares) are 1892, 1980, 2046, 2070, 2162, 2184, 2184, ... . Notice that the
year 2184 appears twice! People born in the year 2184 will first be able to celebrate
in 2187, when their age will be the seventh root of the year. And in case they miss
this great occasion, they will get another chance ten years later: in 2197, their age
will be the cube root of the year. (See [1] and [8] for popular expositions based on
this idea.)

Is there some explanation for this curious fact? Is 2184 the only number that
appears twice? These are the questions we will explore, and partially answer, in
this paper.

First we need some terminology. If a number n can be written in the form
n = x% —x, we will call the number absurd (literally, “without the surd”) because it
is equal to an integer ® minus a perfect root, or surd, of that integer. Likewise, if n
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can be written as n = z®+x, we will call it an adsurd number. If ¢ > 3 in the above
definitions, we will say that n is strictly absurd or strictly adsurd, respectively.
Furthermore, if a number n is absurd in two different ways, i.e.,

n:xa—x:yb—y, (1)

we will call it doubly absurd. We can define doubly strictly absurd, doubly adsurd
and doubly strictly adsurd numbers analogously. We are now prepared to say what
is (probably) unique about the number 2184.

Conjecture 1. (2184 Conjecture.) The only doubly strictly absurd number is 2184.
Likewise, it appears that there is only one doubly strictly adsurd number.
Conjecture 2. (130 Conjecture.) The only doubly strictly adsurd number is 130.

The author has not found a previous occurrence of the 130 Conjecture in the
literature. However, the question of finding doubly absurd numbers has come up
several times. The 2184 Conjecture is in fact a special case of the following more
general conjecture, which is apparently due to Mike Bennett ([2], also see [9]).

Conjecture 3. (Bennett) The eight numbers listed below are the only doubly
absurd numbers.

(i) 6=2%-2=32-3

(i) 30=25-2=62-6

(iii) 210 = 6% — 6 = 152 — 15

(iv) 240 =3% -3 =162 — 16

(v) 2184 =37 -3 =13%-13

(vi) 8190 = 213 —2 =912 — 91

(vii) 78120 = 57 — 5 = 280% — 280

(viii) 24299970 = 30° — 30 = 4930% — 4930.

We will call these “Bennett’s eight solutions” and refer to them by number, so
2184 is Bennett’s solution (v). Note that we will always write solutions to (1)
with the smaller variable first, so throughout the paper we will assume = < y and
a>b>2.
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2. History and Heuristics

Considering that equation (1) and Conjectures 1 and 3 are not “famous,” it is sur-
prising to see what a rich history they have. In fact, there are at least three plausible
routes leading to the problem: the Moret-Blanc-Mordell thread, the Ramanujan-

Nagell-Skinner thread, and the Catalan-Pillai-Bennett-Mihailescu thread.

2.1. The Moret-Blanc Thread

Is there an integer n that can be expressed both as a product of two consecutive
numbers and as a product of three consecutive numbers? If we let the two numbers
be y — 1 and y, and the three numbers be x — 1,z, and z + 1, then we arrive at
equation (1) in the special case where a = 3 and b = 2.

The earliest reference to this problem that we have found is [3] from 1881. Eugene
Lionnet posed the above problem and Claude Seraphin Moret-Blanc, a high-school
teacher in Le Havre, derived the two solutions, n = 6 and n = 210 (Bennett solutions
(i) and (iii)).

Moret-Blanc’s proof was not complete; he makes an assumption of convenience
that lets him get the two stated solutions. A complete proof that 6 and 210 are the
only solutions can be found in Mordell [4]. The proof is not elementary, as it uses
the fact that a certain cubic number field has unique factorization. Thus the case
a = 3,b = 2 of equation (1) has been completely solved, the only substantive case
that has.

2.2. The Ramanujan Thread

In 1913, Srinivasa Ramanujan conjectured that there are only five integer solutions

to the equation
20%2 _ 7= 2 (2)

This equation is easily reduced to a special case of (1). Clearly z must be odd,
so we can write it as z = 2y — 1. Substituting this into (2) and dividing by 4, we
get 2% — 2 = y% — y, which is equation (1) with z = 2 and b = 2. Two of the five
solutions, (a,y) = (1,1) and (2,2), are trivial, but the other three are not and they
lead to Bennett’s solutions (i), (ii) and (vi).

In 1948, Trygve Nagell proved Ramanujan’s conjecture. In 1988, Chris Skinner
(who at that time was a high-school student) replaced 2 with an arbitrary prime ¢
and thus considered the equation 4¢* — 4¢ + 1 = 22. In a remarkable paper for a
teenager, or indeed a mathematician of any age, Skinner [5] showed there are only
two other solutions. Combining Nagell’s and Skinner’s results, we conclude that
Bennett’s (i), (ii), (iv), (vi) and (vii) are the complete list of solutions to (1) where
x is prime and b = 2.
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The main result of this paper (Theorem 1) is quite analogous to Skinner’s Theo-
rem. We will show that Bennett’s (v) is the complete list of solutions to (1) where
y is prime and b = 3. (In addition, we will have to assume a is odd).

2.3. The Catalan Thread

In 1842, Eugene Catalan conjectured that the only consecutive numbers that are
perfect powers are 8 (= 23) and 9 (= 32). That is, Catalan’s equation @ — y* = 1
has only one positive integer solution. This was finally proved by Preda Mihailescu
[6] in 2002, and is one of the landmark results in number theory so far this century.

Meanwhile, in the 1930s and 1940s, S.S. Pillai framed a generalization of Cata-
lan’s conjecture: for any constant c there are only finitely many solutions to the
equation 3* — 2% = c. His conjecture remains open. Bennett’s paper [2] proves the
much more modest statement that for any two fized values of x and y there are at
most two solutions to Pillai’s equation. Note that he allows exponents of 1, so one
possibility is that the two solutions are

Y-t =y—a=c (3)

which is simply another version of equation (1). In this way he arrived at his
conjectured list of eight solutions to (1).

For any readers who might wish to compare this paper with Bennett’s, it is
somewhat tricky. Although the problems we consider are very similar, the point of
view is quite different. In Bennett’s paper, x and y are thought of as parameters
and written as b and a (respectively), while @ and b are thought of as wvariables
and written as y and x (respectively). Also, note that his target of interest is ¢
(in equation (3)), while ours is n (in equation (1)). For example, his Theorem 1.4
appears at first glance to say that ¢ cannot be too small compared to 3°. In fact,
though, it says that ¢ cannot be too small compared to the smaller of y° or y, which
is y. Specifically, his result implies that y < 6001c = 6001(y — ), or in other words
y/x > 6001,/6000.

Bennett’s results are excellent in their context, but virtually orthogonal to the
problems treated in this paper. Nevertheless, the Catalan thread is extremely im-
portant for our approach to equation (1). The fundamental idea is to reduce (1)
to Catalan’s equation. As we shall see, for b > 3 this reduction is not always com-
pletely successful, and it will be very convenient to call on the extensive computer
work that has been done [7] to find “small” solutions of Pillai’s equation.

By contrast, we have not been able to find any prior literature on Conjecture 2,
doubly adsurd numbers, or the equation analogous to (1) with the minuses replaced
by pluses. We will merely point out here that the only two doubly adsurd numbers
less than 2 billion are 30 = 52 + 5 = 3% 4+ 3 and 130 = 5% + 5 = 27 + 2. We hope
that some readers will be motivated to pursue this problem further.

The main purpose of this article is to demonstrate the following theorem.
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Theorem 1. The only solution to n = x* —x = y3 — y for which x is a positive
integer, y is a prime, a > 3, and a is odd, is n = 2184.

In fact, we will prove a generalization of Theorem 1 to all b < 14 (Theorem
2). The generalization, however, requires additional assumptions on a and y, so
equation (1) is far from being completely solved even for these small exponents.

Although the proof of Theorem 1 looks technical, the main idea is quite simple.
Suppose we are looking for solutions to the equation

ol —z =y’ —y, (4)
i.e., equation (1) with @ = 7 and b = 3. We start by multiplying by z? to get
22(y® —y) = 2% — 23 = m® — m, where we have defined a new variable m = x3.

Because m is “small” compared to m? and ¥ is “small” compared to y, we conclude
heuristically that z2y® ~ m3. On the other hand, if we define j to be the integer
closest to m/y, so that jy ~ m, then m® ~ j3y3. Comparing these two approximate
equations, we conclude that 22 ~ j3.

But what does “approximately equal” mean when the variables in question are
integers? Ideally, it means the two integers differ by at most one. That is, 22 — 5> =
+1. But this is exactly Catalan’s equation! By Mihailescu’s theorem, it has the
unique solution z = 3,j = 2. Since jy ~ m = 2% = 27, it’s easily seen that y must
equal 13, and thus equation (4) has the unique solution z = 3,y = 13.

The proofs of Theorems 1 and 2 simply formalize the above argument and gen-
eralize it to other exponents a and b. The argument does not work at all if b = 2,
because m is not sufficiently small compared to m?. It works extremely well if b = 3.
If b > 4 the argument works pretty well but with some complications that force us
to look at Pillai’s equation rather than Catalan’s.

In Section 3 we will collect all the inequalities we need; this section does not
involve any number theory. In Section 4 we move to the context of integers and
prove Theorem 1 and its generalizations. Section 5 will offer some directions for
future research.

3. Through the Eye of the Needle

The main new tool involved in the proof of Theorem 1 is the following set of in-
equalities, which for the most part do not require z, y, a, and b to be integers. Only
when we get to Lemma 3 will we assume that b (but not the others) is an integer;
otherwise, all the variables in this section are merely assumed to be real numbers.

Lemma 1. Given that 2* — 2 = y®* —y, o > 1, y > 1, and a > b > 3. Let
t=(a—"b)/(b—1) and let m = z***. Finally, let j = m/y. Then

1z >zt —j°>0. (5)
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Proof. Multiply both sides of equation (1) by z¢, to obtain
2ty —y) = 2% — 2 =mb —m. (6)

Equation (6) will be the starting point for all of our Lemmas as well as Theorem
1 and its generalizations. We start by establishing a few basic inequalities. First,
because ! > 1, we have m® — m > y® —y. Because f(x) = x®
function on [1,00), it follows that m > y.

Likewise, note that y® —y = (29/°)® — 2 > (2%/*)® — 2/, By the same argument
as above, y > x%/?,

Next, we point out an important dichotomy. If 5> > a, then

— z is an increasing

zt <yt = y(ab_bz)/(ab_a) <y. (7)

If on the other hand b?> < a, then y > 2%/® > z®. These are the possibilities
referred to as Case 1 (i.e., b > a and 2! < y) and Case 2 (i.e., b* < a and 2° < y)
in Lemma 4, and I will continue to refer to them by those names throughout the
paper. Notice that in either case, we can say from the first part of equation (7) that
2t < b/ =),

Finally, note that (6) can be rewritten as follows: y® —y = x(m®~! — 1). Conse-
quently, we get the following inequality that will be used in Lemmas 3 and 4:

b—1

(y° —y) <am’t <y’ (8)

With the preliminaries finished, we turn to the proof of (5). We plug m = jy
into equation (6) to obtain

t b

(x —jb)y = (xt—j)y:xty—mzxty—xl"’t =z'(y—z) > 0.

This proves the right-hand side of (5). For the left-hand side, in Case 1 we have
(af = 7"’ <ty <y’
Thus
ot — < 1/yP7r < 1/2"% < 1/x.

In Case 2 we have 2° < y and zt < y?/(—1 < 43/2 since b > 3. Proceeding as
above we conclude that ! — j° < 1/y'/2 < 1/2%2 < 1/x. O

Remark. Lemma 1 formalizes the idea, stated in section 1, that z! ~ j°. Here we
had to assume that m = jy. Lemmas 2 and 3 relax this assumption to m =~ jy (in
the specific sense of ~ that was mentioned earlier).

Lemma 2. Given z, y, a, b, t, and m as defined in Lemma 1, let j' = (m — 1) /y.
Then
(b+1)/z >zt — () >0. (9)
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In fact, the right-hand side of (9) can be strengthened to:

o) )

Proof. By Lemma 1, if j = m/y then 0 < z* — j* < 1/z. We note that j' = j —1/y.
Obviously, 0 < j% — (j/)°. From the Mean Value Theorem, applied to the function
f(z) = 2 with endpoints j and j’, we have j° — (j/)° < bm®~1/y* < b/x (using
(8)). Adding these inequalities, we get (9).

To improve on the lower bound, note that (j — 1/y)%(j + 1/y)® < j2°, so

b 7> 3’ 7°
j—1 < — < < .
U GRS G e < W)
We combine this with the left-hand side of (8) and do a little bit of algebra (left to
the reader) to obtain inequality (10). O

Lemma 3. Given x, y, a, b, t, and m as defined in Lemma 1, let j” = (m+1)/y.
Furthermore, assume that b is an integer. Then the following inequalities hold:
(a) If b > 4 and a < b* (we will call this “Case 17), then

i b+(7rb)1/42% >(j”)b—xt>b;1. (11)
(b) Ifb> 4 and a > b? (we will call this “Case 27), then
b+1)/z> (G —at > (b—1)/a. (12)
(c) Ifb=3 and m > 4, then
4/x > (j")° -zt > 0. (13)

Proof. We note that j” = j + 1/y, where j = m/y. As in the proof of Lemma 2,
we can apply the Mean Value Theorem, with f(z) = 2* and endpoints j and j”, to
show the right-hand side of inequality (11), (12) or (13).

To get the left-hand side, we note that

b
Z bkl/y

k=1

(Here is where we use the assumption that b is an integer.) In many cases the
leading term is the largest, so we separate it out and try to bound the rest.

bbl

Gy =t %ki ) (o )“. (14)

2
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By Schwarz’s Lemma, the sum in equation (14) is bounded above by

() (B (0 - ()

By a well-known inequality (which follows from Stirling’s formula), (?) < 4°/+/7b,
and the left-hand side of inequality (11) follows.

In Case 2, 2° < 2® < y < v/m? — 1, so inequality (12) follows. Finally, if b = 3,
then (14) reduces to (j)® — 53 = (3 + 3/m + 1/m?)j%/y, and the expression in
parentheses is less than 4 when m > 4. Part (c) follows. O

Remark. While all three of these lemmas say that, in some sense, z* — j® ~ 0, they
actually provide very narrow windows or “eyes of the needle” that z* — j® must lie
in. We put this information to good use in the next section.

4. From Reals to Integers

In this section we will assume that z, y, a and b are all integers and start investi-
gating the consequences of the “eye of the needle” inequalities. We begin with the
proof of Theorem 1, in which we are assuming that y is prime and that b = 3.

Proof. First note that £ = 2 cannot be a solution because 2% — x = 2 (mod 4) but
y3> —y = 0 (mod 4). Thus we can assume z > 3. We define the integers ¢ and
m as in Lemma 1 (noticing that ¢ is an integer because a is odd and b — 1 = 2).
By equation (6) we see that y|(m® — m), and therefore either y|m, y|(m + 1), or
yl(m —1). We will take the three cases in that order.

Suppose then that m = jy for some integer j > 1. Then from Lemma 1,

1>1/z >z — 53 >0.

Because z, t, and j are integers, this case leads to a contradiction.

Next, suppose that m = j'y + 1 for some integer j'. By Lemma 2,

4/x > ' — (§)* > 0.

Because all quantities in the equation are integers, this forces z = 3 and 2! — (5')® =
1. If ¢t > 1, Mihailescu’s theorem says that there is only one solution: z = 3, t = 2,
and j' = 2. Then we have a =3b—2 =7, m =27 =27 and y = (m — 1)/2 = 13,
and we recover the solution to equation (1), 3" —3 = 133 — 13. If ¢t = 1, then we
have z = (') + 1 and = = 3, which is a contradiction.

Finally, suppose that m = j”y — 1 for some integer j” > 1. Because x > 2 and
y > x, we have y > 3 and therefore m > 5. Thus by Lemma 3,

4/x > (") =zt > 0.
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This is only solvable in integers if z = 3 and (j”)3 — 2! = 1. But by Mihailescu’s
theorem the second equation has no solution if ¢ > 1. If ¢ = 1 then x = 3 and
x = (j")® — 1, a contradiction.

Thus we conclude that y = 13, x = 3, a = 7 is the only integral solution to

equation (1) under the conditions of Theorem 1. O

It is natural to wonder whether we can use the same approach to solve equation
(1), or rule out solutions, for other values of b. The answer is yes. First, we start
with a strengthening of Lemma 2 that holds in the integer case. The basic idea of
the proof, like everything in this section, is that the discreteness of the integers lets
us turn inequalities into equalities.

Lemma 4. Suppose that z, y, a, b, t, m and j' are defined as in Lemma 2, and
are all integers. Assume b >4 and j' > 2. Let ¢ = x' — (j')°. Then cx =b.

Proof. We already know from Lemma 2 that cx < b+ 1. Therefore it remains only
to show that cx > b — 1. Assume, for the sake of deriving a contradiction, that
cr <b-1.

Lemma 2 also says that

(1+b/m)cx > (1—1/y""H)b> (1 —1/3""1)b.

(The latter inequality holds because y > x and x > 2.) We substitute cx < b —1
and conclude that 3*~1(1 4+ b/m)(b—1) > (3°~! — 1)b. This simplifies to

b=1p(p—1
<3 ( )

SR s

from which it easily follows that m < 2. Because m = x'* it follows that z¢ < b2.
Then ¢ = z* — (j/)® < b? — 2% < 0, where the first inequality uses the assumption
that j/ > 2 and the second uses the assumption that b > 4. This contradicts the
fact proven in Lemma 3 that ¢ > 0. O

Theorem 2. There are no integer solutions of x* —x = y® — y such that a > b, y
is prime, (b—1)|(a—1), (y—1,b—1) <2, and 4 < b < 14.

For example, if b = 5, Theorem 2 says that there are no solutions with y prime,
y =3 (mod 4), and a =1 (mod 4).

Proof. Suppose, for the sake of deriving a contradiction, that all the conditions
in Theorem 2 are true. Define t and m as in Lemma 1. Just as in Theorem 1,
y|(m® —m) and m is not a multiple of . Therefore o(m)|(b— 1) (where o(m) is the
order of m (mod y)). But also o(m)|(y — 1) by Fermat’s little theorem. Because
(b—1,y—1) < 2, it follows that o(m) = 1 or 2. Because y is prime, the only residues
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with order 1 or 2 are £1. Thus m = 1 (mod y) or m = —1 (mod y). Also, note
that if b is even then (b— 1,y — 1) = 1, so in that case o(m) =1 and m = 1.

Accordingly we consider two cases, first where m = 1 (mod y). In this case, there
is an integer 5/ > 1 such that m = j'y+1. If ' =1, theny =m —1 = z'** — 1. By
hypothesis, y is prime, and this is only possible if x = 2. By Lemma 2, 2¢ = cz <
b+ 1 <15, s0 ¢ <7. In addition, 2! — 1 = ¢, from which we conclude that ¢ must
equal 1, 3, or 7. Then (a —b)/(b—1) =t = 1,2, or 4. Thus, equation (1) reduces
to one of the following three possibilities: 22°=1 —2 =3v -3, 232 _2 =70 _ 7 or
250=4 _ 2 — 31%> —31. We leave it to the reader to show that none of these equations
has an integer solution b > 4.

Thus we can assume henceforth that j° > 2, and apply Lemma 4. As in that
lemma, let ¢ = x* — (§/)*. Then, by Lemma 5, cx = b, so we get the remarkable
equation

ot = (j) = c (15)

Ift =1, then 14 > b>x =c+ (5)° > 1+ 2% = 17, a contradiction. Thus we may
assume that ¢t > 1. In that case, by Mihailescu’s theorem, ¢ = zt — j®* > 1. Thus
2 <c,z < 7. It is easy to show that ¢ and x are relatively prime, so there are only
eight possibilities: (x,c¢) = (2,3),(3,2),(2,5), (5,2),(2,7),(7,2),(3,4) or (4,3).

Although we could go through the eight cases one by one, it is more interesting
to give an approach with greater generality.

Suppose = p and ¢ = 2, where p is an odd prime. Then (/)% = —2 (mod
p?). Thus 2P~ = (=2)P~1 = (j)?®=1) =1 (mod p?), where the last step follows
because the order of the multiplicative group (mod p?) is p(p—1). This means that
p is a Wieferich prime! Only two such primes are known: p = 1093 and p = 3511,
and any further Wieferich primes are at least 4.9 x 10'7. Of course, for our proof it
is sufficient to note that 3, 5, and 7 are not Wieferich primes.

Similarly, suppose £ = 2 and ¢ = p, where p is an odd prime. If ¢ is even, the
left side of equation (15) factors, and we easily get a contradiction. Thus ¢ must
be odd. Then, reducing (15) modulo p and using Fermat’s little theorem, we have
()% = (j')?» = 2' (mod p). Thus 2! is a quadratic residue (mod p); hence 2 is a
quadratic residue (mod p), and by the Quadratic Reciprocity Theorem, p =1 or 7
(mod 8). In particular, p cannot be equal to 3 or 5.

If x = 2 and ¢ = 7, the above congruence argument does not help. However, we
have a delightful surprise: equation (15) reduces to 2¢ — [(5')7]?> = 7. This is just
the Ramanujan-Nagell equation, discussed in section 1! In particular, we conclude
that (5/)7 = 1,3,5,11, or 181, the five solutions to the Ramanujan-Nagell equation.
The possibility 5/ = 1 was ruled out earlier, and the other four possibilities are not
seventh powers. Thus we have a contradiction.

The cases © = 4,¢c = 3 and = = 3,¢ = 4 lead to contradictions by similar con-
gruence arguments (with no need to call upon advanced theorems). This completes
the proof of Theorem 2 in the case where m =1 (mod y).
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Now we consider the other possibility, which is that m = —1 (mod y). In this
case, there is an integer j” > 1 such that m = j”y — 1. Recall from the first
paragraph of the proof that b must be odd.

Here we can apply Lemma 3. First, if a > b?, we set as usual

c=(j") —a' (16)

and note that b+ 1 > cx > b — 1. Thus cx = b < 14. By Mihailescu’s theorem
¢ > 1. Thus b is an odd composite number less than 14, which means that b = 9
and ¢ = z = 3. But then (5”)® = 3! 4+ 3, which is impossible because the right-hand
side is divisible only once by 3.

Hence we can assume that a < b%, and we note that this also means that ¢ < b.
It is easy to rule out ¢ = b because we can factor the right-hand side of (16) (details
again left to the reader). Thus we can assume that t < b — 1.

At this point, the argument gets a little bit messy because we have to use the
upper bound in Lemma 3(a), which is much worse than the one in Lemma 3(b).
However, we also have the benefit of massive computer calculations that have been
done to identify small solutions (in ¢) to the equation (j”)®—2* = ¢, Pillai’s equation.
Specifically, sequence A076427 in the Online Encyclopedia of Integer Sequences, and
the linked table at [7], lists all of the solutions to this equation for which ¢ < 100
and for which the two powers, (j”)? and x!, are less than 10'®. As it turns out, the
table is sufficient to solve our problem for b < 13.

We will leave the easier cases, b = 5, 7, and 9, to the reader and give the proof
in the two most difficult cases, b =11 and 13.

Suppose that b = 11. Note that = 2 can never be a solution to (1) when b is
odd, by a congruence argument (mod 4). Thus z > 3 and y > 5 (remembering that
y is a prime greater than x). We also know that m > 2y —1 > 9. Applying equation
(11), we conclude that (j”)° — 2* = ¢, where cx < 105.5. Because z > 3, we have
¢ < 35, which puts it within the range of table [7]. Also because ¢ > 2, we have
r <52, 50 2t < 5210 < 1.4 x 10'7, so z* and (5”)" are also within the range of the
table. Thus equation (16) must appear among the 274 known solutions of Pillai’s
equation in table [7]. But none of those solutions involves an eleventh power, so we
have a contradiction.

The case b = 13 requires a little extra work. First, we can rule out x = 3 by
reducing equation (1) modulo 9, and we can rule out z = 4 by reducing equation
(1) modulo 8. Hence any solution to (1) must have z > 5, y > 7 and m > 13. Now
Lemma 3 says that cx < 263.1. Because x > 5, ¢ < 52, which puts ¢ within the
range of table [7]. Also, if x < 31, then z* < 3112 < 10'®, which puts 2! and (j")°
within the required range as well.

Now if x > 32, then y is a prime greater than z, so y > 37 and m > 73. We can
recompute the upper bound (9) with the new value of m and we find that cz < 44.4.
This is already a contradiction, because ¢ > 2 and = > 32.
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Thus z < 31 and so ¢, x, and j” must appear among the 274 known solutions of
Pillai’s equation in table [7]. However, none of those solutions involve a thirteenth
power, and so we arrive at our final contradiction. O

While the last part of the proof of Theorem 2 is inelegant, the main point is that,
when m = —1 (mod p), we were able to place an upper bound on ¢, depending on
b. Thus the search for solutions was reduced to a finite, albeit large, calculation.
Fortunately, that calculation was already done for us!

5. Ideas for Future Study

In this final section, we will leave the reader with two unsolved problems.

1) Prove Conjecture 2. That is almost certainly too hard, but it would be in-
teresting to see if analogues of Theorems 1 and 2 can be proven for doubly adsurd
numbers.

2) Prove Theorem 1 without the assumption that a is odd, or prove Theorem 2
without the extra assumptions that (b—1)|(a—1) and (y—1,b0—1) < 2. As it turns
out, when b = 3 the first two even cases are quite easy, but the arguments do not
seem to generalize to even numbers a > 8.

Theorem 3. If a = 4 or 6, then the equation x* — x = y> — y has no integer
solutions for which x > 1 and y is a prime.

In fact, the proof given below works just as well with the weaker hypothesis that
x and y are relatively prime.

Proof. If 25 —x = y3 — y and z,y > 1, note that f(y) = > — y is increasing, with
f(2?) < 25—z and f(22+1) > 2% — 2. Hence 22 < y < 22 + 1, which is impossible
if y is an integer.

The proof for a = 4 starts in the same way. Suppose that z* — 2 = 3% — y, where
y is prime. As above, it is easy to verify that 2*/3 < y < 2%/3 4 1. Also notice that

(y—o)* +ay+a® 1) =y’ -2’ —y+a=a" -2’
from which we conclude z3|(y — x)(y?* + 2y + 22 — 1). Because x < y and y is
3 is relatively prime to
(y — ). Tt follows that x3|(y* + 2y + 2% — 1). Now suppose, for the sake of deriving
a contradiction, that z > 8, so that z~1/3 < 1/2. Then, because y < /3 41,

prime, it follows that x is relatively prime to y, and hence x

1

—3(3/2 +ay+a2’-1)< oV 2B g 28 2 < 1

x

It is impossible for (y? + xy + 22 — 1) to be a multiple of 23 and yet be less than
23, So, by contradiction, we conclude that z < 8. But it is easy to verify that
y? —y = x* — 2 has no integer solution if x = 2,3,4,5,6, or 7. U
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