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Abstract
Let v(a, b) denote the Lucas sequence of the second kind defined by the second-
order recursion relation vn+2 = avn+1 + bvn with initial terms v0 = 2 and v1 = a,
where a and b are integers. The positive integer m is said to be nondefective if
v(a, b) contains a complete system of residues modulo m. All possibilities for m to
be nondefective are found when b = ±1. This paper generalizes results of Avila and
Chen for the Lucas sequence {Ln} = v(1, 1).

1. Introduction

Consider the sequence w = w(a, b) satisfying the second-order linear recursion re-
lation

wn+2 = awn+1 + bwn (1)

with discriminant D = a2 + 4b, where the parameters a and b and the initial terms
w0 and w1 are all integers and gcd(a, b) = 1. We specify two special recurrences, the
Lucas sequence of the first kind (LSFK) u = u(a, b) with initial terms u0 = 0 and
u1 = 1, and the Lucas sequence of the second kind (LSSK) v = v(a, b) with initial
terms v0 = 2 and v1 = a. Given the recurrence w(a, b) and the positive integer m,
we let zw(m), called the rank of appearance of m in w, or simply the rank of m
in w, denote the least positive integer r, if it exists, such that wr ⌘ 0 (mod m).
Throughout this paper, p will denote a prime and m will denote a positive integer.

The positive integer m is said to be defective with respect to w(a, b), or simply
defective if the recurrence w(a, b) is given, if w(a, b) contains an incomplete system
of residues modulo m. Otherwise, m is said to be nondefective with respect to
w(a, b). Shah [12] proved that the prime p is defective with respect to the Fibonacci
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sequence {Fn} = u(1, 1) if p ⌘ ±1 (mod 10) or p ⌘ 13 or 17 (mod 20), while 2, 3, 5,
and 7 are nondefective with respect to the Fibonacci sequence. Bruckner [2] proved
the remaining cases that p is defective with respect to {Fn} if p > 7 with p ⌘ 3
or 7 (mod 20). Somer [13] partially generalized the results of Shah and Bruckner
by showing that p is defective with respect to u(a, 1) if p > 7, p - D = a2 + 4, and
p 6⌘ 1 or 9 (mod 20). Schinzel [11] completely generalized the results of Shah and
Bruckner by proving Theorem 1.1 below.

Theorem 1.1. Consider the LSFK u(a, 1). Then p is defective if p > 7 and
p - D = a2 + 4.

Li [8] also proved Theorem 1.1 by extending the methods of Somer [13].
Somer [13] also obtained similar results to those in Theorem 1.1 by considering

the LSFK u(a,�1).

Theorem 1.2. Consider the LSFK u(a,�1). Then p is defective if p � 5 and
p - D = a2 � 4.

In [4], Burr found all nondefective integers m with respect to the Fibonacci
sequence. This result will be given in Theorem 2.1. In [16], we generalized Burr’s
result by finding all nondefective integers m with respect to the LSFK u(a,±1).
These results are given in Theorems 2.3 and 2.4. In [1], Avila and Chen analogously
determined all nondefective integers with respect to the Lucas sequence {Ln} =
v(1, 1). This result is presented in Theorem 2.2. In this paper, we will extend Avila
and Chen’s result by finding all nondefective integers m with respect to the LSSK
v(a,±1). These results are given in Theorems 2.5 and 2.7.

Associated with the recurrence w(a, b) is the characteristic polynomial

f(x) = x2 � ax� b (2)

with characteristic roots ↵ and � and discriminant D = a2 +4b = (↵��)2 6= 0. By
the Binet formulas, if D 6= 0, then

un =
↵n � �n

↵� �
, vn = ↵n + �n, (3)

while if D = 0, then
un = n↵n�1, vn = 2↵n. (4)

It was shown in [6, pp. 344–345] that w(a, b) is purely periodic modulo m if
gcd(b,m) = 1. We will usually take b to be equal to ±1, so that w(a, b) will
then automatically be purely periodic modulo m. Since u0 = 0, we see that
zu(m) exists for all m such that gcd(m, b) = 1. From here on, we assume that
gcd(p, b) = gcd(m, b) = 1. The period of w(a, b) modulo m, denoted by �w(m),
where gcd(m, b) = 1, is the least positive integer c such that un+c ⌘ un (mod m)
for all n � 0.
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Given the recurrence w, we let Aw(d,m) denote the number of times that the
residue d appears in a full period of w modulo m. Clearly, m is nondefective with
respect to w if Aw(d,m) � 1 for all residues d modulo m. We define Sw(m) to be
the set of all residues i 2 {0, 1, . . . ,m� 1} such that Aw(i,m) � 1.

The following results will be useful for our future work.

Theorem 1.3. Consider the recurrence w(a, b). Suppose that m is defective. Then
every positive multiple of m is also defective.

This is proved in Theorem 2 of [12] for the Fibonacci sequence. The proof is
completely similar for the recurrence w(a, b).

Theorem 1.4. Consider the recurrence w(a, b). If m is nondefective with respect
to w(a, b), then m is nondefective with respect to u(a, b).

Proof. Suppose that m is nondefective with respect to w(a, b). Since w(a, b) is purely
periodic modulo m and Aw(0,m) � 1, we can assume without loss of generality that
w0 ⌘ 0 (mod m). If d = gcd(w1,m) > 1, then by the recursion relation (1) defining
w(a, b), d | wn for all n � 0 and Aw(1,m) = 0, contrary to assumption. Thus,
w1 ⌘ c (mod m), where c is invertible modulo m. Then by the recursion relation
defining u(a, b),

un(a, b) ⌘ c�1wn(a, b) (mod m)

for all n � 0, and m is also nondefective with respect to u(a, b).

The proof of Theorem 1.4 is a direct adaptation of the second part of the proof
of Lemma 2 of [1].

Theorem 1.5. Consider the LSFK u(a, b) and the LSSK v(a, b) and let p be an
odd prime such that p - b. Then 0 2 Sv(p) if and only if zu(p) is even.

This follows from results in [5, pp. 42, 47]. See also Theorem 1.10 of [7].

Remark 1.6. As a consequence of Theorem 1.4, the set of nondefective integers m
with respect to v(a, b) is a subset of the set of nondefective integers with respect to
u(a, b). It further follows from Theorems 1.5 and 1.3 that the integer m is defective
with respect to v(a, b) if m has an odd prime divisor p for which p - b and zu(p) is
odd.

Theorem 1.7. Consider the LSFK u(a, b) with discriminant D. Let gcd(a, b) = 1
and let p be a fixed odd prime such that p - b and let m be a fixed positive integer
such that gcd(m, b) = 1. Let z = zu(p) and � = �u(p).

(i) If r | s, then ur | us.

(ii) If d = gcd(r, s), then gcd(ur, us) = |ud|.

(iii) z > 1 and z | p� (D/p), where (D/p) denotes the Legendre symbol.



INTEGERS: 18 (2018) 4

(iv) If p | D, then z = p.

(v) un ⌘ 0 (mod m) if and only if zu(m) | n.

(vi) If zu(p2) 6= zu(p), then zu(pe) = pe�1zu(p) for e � 2.

(vii) If n � 1 is such that gcd(m,n) = 1, then zu(mn) = lcm(zu(m), zu(n)).

(viii) If (D/p) = 1, then � | p� 1.

Proof. We note that z > 1, since u0 = 0 and u1 = 1. Part (i) follows from the
Binet formulas in (3) and (4). Part (ii) is proved in Theorem VI of [5]. Parts (iii)
and (viii) are proved in [5, pp. 44–45] and [9, pp. 290, 296, 297]. Part (iv) is proved
in [7, p. 424]. Part (v) follows from part (ii). Part (vi) is proved in [5, p. 42]. Part
(vii) follows from part (i) and (v).

Consider the LSFK u(a, b) and let p be a fixed prime. By our earlier assumption,
p - b and thus u(a, b) is purely periodic modulo p. Since u0 = 0, u1 = 1, we see
that �u(p) is the least positive integer r such that ur ⌘ 0, ur+1 ⌘ 1 (mod p).
Hence, zu(p) | �u(p) by Theorem 1.7 (v). Let z = zu(p). Since uz ⌘ 0 ⌘ uz+1 · u0,
uz+1 ⌘ uz+1 · u1 (mod p), it follows by induction and the second-order recursion
relation defining u(a, b) that

uz+n ⌘ uz+1 · un (mod p) (5)

for all n � 0. Thus by (5),

uzi+1 ⌘ (uz+1)iu1 ⌘ (uz+1)i (mod p). (6)

We note that gcd(uz+1, p) = 1. If gcd(uz+1, p) = d, then d | un for all n � 0,
since it is assumed that gcd(b, p) = 1. However, u1 = 1, which implies that d = 1.
Let

Eu(p) =
�u(p)
zu(p)

.

It follows from the discussion in [6, pp. 354–355] that

Eu(p) = ordpuz+1, (7)

where ordpm denoted the multiplicative order of m modulo p.
We have the following proposition.

Proposition 1.8. Consider the LSFK u(a, b) and let p be a prime such that p - b.
If Eu(p) = p� 1, then p is nondefective with respect to u(a, b).
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Proof. Let z = zu(p). Since Eu(p) = p � 1, it follows from (7) that uz+1 is a
primitive root modulo p. Noting that u0 = 0, we see by (6) that

{u0} [
�
uzi+1

 p�2

i=0

is a complete system of residues modulo p. Thus, p is nondefective with respect to
u(a, b).

Lemma 1.9. Consider the LSFK u(a, b), where gcd(a, b) = 1. Assume that m1 | m2,
where m2 > m1 and zu(m1) = zu(m2). Then m1 62 Su(m2) and m2 is defective.
In particular, if a is even and zu(m1) is even, then zu(m1) = zu(2m1) and 2m1 is
defective.

This is proved in Corollary 1.6 of [16].
The recurrence w(a, b) is said to be uniformly distributed (u.d.) modulo m if

Aw(d1,m) = Aw(d2,m) for all pairs (d1, d2) of residues modulo m such that 0 
d1 < d2  m � 1. It is clear that m is nondefective with respect to w if w is u.d.
modulo m. Then m is said to be purely nondefective with respect to w if w is u.d.
modulo m, while the nondefective integer m is said to be impurely nondefective
with respect to w otherwise. In particular, 1 is always considered to be purely
nondefective with respect to w. Theorem 1.10 due to Bumby [3] and Webb and
Long [17] completely determines all purely nondefective integers m with respect to
the recurrence w(a, b) with discriminant D. In particular, it is shown that if m
is purely nondefective with respect to w(a, b), then p | D for each prime divisor p
of m.

Theorem 1.10. Consider the recurrence w(a, b) with discriminant D. Then

(i) w(a, b) is uniformly distributed modulo m if and only if it is u.d. modulo all
prime power factors of m. Moreover, w(a, b) is u.d. modulo m if and only if
w(a, b) is u.d. modulo m1 for each divisor m1 of m.

(ii) Suppose that p is odd. Then w(a, b) is u.d. modulo p if and only if p | D and
p - a(2w1 � aw0).

(iii) Suppose that p = 2. Then w(a, b) is u.d. modulo 2 if and only if 2 | a and
2 - w0 + w1.

(iv) If p � 5, then w(a, b) is u.d. modulo pe for e � 2 if and only if w(a, b) is u.d.
modulo p.

(v) If p = 2, then w(a, b) is u.d. modulo 2e for e � 2 if and only if a ⌘ 2 (mod 4)
and b ⌘ 3 (mod 4).

(vi) If p = 3, then w(a, b) is u.d. modulo 3e for e � 2 if and only if a ⌘ ±1
(mod 3) and b ⌘ �1 (mod 3), but a2 6⌘ �b (mod 9).
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(vii) If b = 1 and w(a, b) is u.d. modulo p, then p = 2 or p ⌘ 1 (mod 4).

Proof. Parts (i)–(vi) follow from the results in [3] and [17]. We now prove part
(vii). Suppose that w(a, 1) is u.d. modulo p. By parts (ii) and (iii), D = a2 +4 ⌘ 0
(mod p), which implies that either p = 2 or

��4
p

�
=
��1

p

�
= 1 if p is odd. By Euler’s

criterion, p ⌘ 1 (mod 4) if p is odd.

Corollary 1.11. Consider the LSFK u(a, b) and the LSSK v(a, b) with discrimi-
nant D.

(i) u(a, b) is u.d. modulo p if and only if p | D.

(ii) If m > 1, then m is not purely nondefective with respect to v(a, b).

Proof. Part (i) follows from Theorem 1.10 (ii) and (iii). Part (ii) follows from
Theorem 1.10 (i)–(iii).

Corollary 1.12. Suppose that the LSFK u(a, b) is uniformly distributed modulo m.
Then zu(m) = m.

Proof. Suppose that pi || m, where i � 1. Then by Theorem 1.10(i), u(a, b) is u.d.
modulo pj for j 2 {1, . . . , i}. We now see by Theorem 1.10 (ii) and (iii) that p | D.
Then by Theorem 1.7 (iv), z(p) = p. If i > 1, then zu(p2) 6= zu(p) by Lemma 1.9. It
now follows from parts (iv) and (vi) of Theorem 1.7 that zu(pi) = pi. By Theorem
1.7 (vii), we now find that zu(m) = m.

In the paper [16], we searched for all positive integers that are nondefective with
respect to the LSFK u(a,±1), while in this paper, we look for all integers that are
nondefective with respect to the LSSK v(a,±1). We now discuss why we chose to
investigate the LSFK u(a, b) and the LSSK v(a, b) in these papers, rather than the
more general recurrences w(a, b), and why we limited our cases to the ones in which
b = ±1. First of all, if m is nondefective with respect to the recurrence w(a, b), then
0 2 Sw(p) for each prime divisor p of m by Theorem 1.3. For the LSFK u(a, b) and
the LSSK v(a, b), it is easy to determine when 0 2 Su(p) or 0 2 Sv(p). For the LSFK
u(a, b), this is trivial, since u0 = 0. Clearly, 0 2 Sv(2), since v0 = 2. Theorem 1.5
gives an easy and e�cient criterion to determine when 0 2 Sv(p). However, for the
general recurrence w(a, b), there is no known e�cient criterion to ascertain when
0 2 Sw(p) in all cases.

We now address the issue concerning why we only consider the cases in which
b = ±1. By Theorem 1.4, if m is nondefective with respect to w(a, b), then m is
nondefective with respect to u(a, b). Thus, one need only consider the LSFK u(a, b)
when looking for all possible nondefective integers with respect to the recurrence
w(a, b). By Theorem 1.3, if m is nondefective with respect to u(a, b), then each
prime divisor p of m is nondefective with respect to u(a, b). When b = ±1, we saw
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by Theorems 1.1 and 1.2 that the search for all nondefective integers with respect
to u(a, b) was rendered tractable, since only finitely many primes p could be non-
defective with respect to u(a, b) when D 6= 0, and in particular, these nondefective
primes p are small when p - D. In particular, by Theorem 1.1., if p is nondefective
with respect to u(a, 1), then p  7 or p | D = a2 + 4, while by Theorem 1.2, if p is
nondefective with respect to u(a,�1), then p  3 or p | D = a2 � 4.

The situation appears to be quite di↵erent when b is a fixed integer such that b 62
{�1, 0, 1}. In this case, it is highly plausible that there exist infinitely many primes
p for which p is nondefective with respect to u(a, b) for some integer a. This would
tend to make the problem of determining all nondefective integers with respect to
u(a, b) unmanageable. We need only consider the case in which (D/p) = �1. When
(D/p) = 1, then �u(p) | p� 1 by Theorem 1.7 (viii), and p must be defective in this
case. If (D/p) = 0 and D 6= 0, then there are only finitely many primes p such that
p | D. We exclude the case in which D = 0, because we are considering LSSK’s
v(a, b) in this paper. If D = a2 +4b = 0, then a is even, ↵ = � = a/2, and it follows
from (4), that vn(a, b) = 2(a/2)n. Then p is defective with respect to v(a, b) for all
primes p. This follows since 1 62 Sv(p) if p | a, while 0 62 Sv(p) if p - a.

We now suppose that (D/p) = �1. We have the following theorem, which follows
from Theorem 7 of [15].

Theorem 1.13. Let p be a fixed odd prime and let b be a fixed integer such that
p - b. Let g = ordp(�b). Let

e = gcd((p� 1)/g, p + 1).

Then there exists a LSFK u(a, b) for which (D/p) = �1 and

Eu(p) = eg.

In particular, eg = p� 1 when g = (p� 1)/2 or g = p� 1.

We note by Proposition 1.8 that if Eu(p) = p � 1, then p is nondefective with
respect to u(a, b). We recall that p is a Sophie Germain prime if q = 2p + 1 is
also a prime. It is conjectured that there exist infinitely many Sophie Germain
primes (see [10, p. 330]). Let b 62 {�1, 0, 1} be a fixed integer and let p be a Sophie
Germain prime such that q = 2p + 1 � |b| + 2. Since the only positive divisors of
q� 1 are 1, 2, p, and 2p, and since b 62 {�1, 0, 1}, we see that ordq(�b) = (q� 1)/2
when (�b/q) = 1 and ordq(�b) = q � 1 when (�b/q) = �1. It then follows from
Theorem 1.13 that q is nondefective with respect to u(a, b) for some integer a.
Hence, if there exist infinitely many Sophie Germain primes p, then there would
exist infinitely many primes q = 2p + 1 for which there exist an integer a such that
q is nondefective with respect to u(a, b).
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2. The Main Theorems

Theorem 2.1 due to Burr [4] completely determines all nondefective integers m with
respect to the Fibonacci sequence.

Theorem 2.1. Consider the Fibonacci sequence {Fn}. Then m is nondefective if
and only if m has one of the following forms:

5k, 2 · 5k, 4 · 5k, 3j · 5k, 6 · 5k, 7 · 5k, 14 · 5k, (8)

where k � 0 and j � 1. Moreover, m is purely nondefective if and only if m is of
the form 5k.

Theorem 2.2 due to Avila and Chen [1] complements Theorem 2.1 by finding all
nondefective integers m for the Lucas sequence {Ln} = v(1, 1).

Theorem 2.2. Consider the Lucas sequence {Ln}. Then m is nondefective if and
only if m is equal to one of the following numbers:

1, 2, 4, 6, 7, 14, 3k,

where k � 1.

Theorems 2.3 and 2.4 below generalize Burr’s result for the LSFK’s u(a, 1) and
u(a,�1) and can be extracted from results appearing in [16].

Theorem 2.3. Consider the LSFK u(a, 1) with discriminant D = a2 +4. Let L be
the set of integers ` � 1 such that each prime divisor of ` also divides a2 + 4 and
4 - `. If m is nondefective with respect to u(a, 1), then m is in L or m is of the form

2`, 3k`, 4`, 6`, 7`, 14`, (9)

or possibly, if 5 - D, of the form 5k`, with ` odd in L, and k � 0. Moreover the
following holds:

(i) ` is nondefective for each integer ` 2 L. Moreover, a is even if 2 | `.

(ii) 2` (` odd) is nondefective if and only if a is odd.

(iii) 3` is nondefective if and only if ` is odd and a ⌘ ±1 (mod 3).

(iv) 3k` is nondefective for k � 2 if and only if ` is odd, and a ⌘ ±1 or ±2
(mod 9).

(v) 4` is nondefective if and only if ` is odd and a ⌘ ±1 (mod 4).

(vi) If 5 - a2 + 4, then 5` is nondefective if and only if ` is odd and a ⌘ ±2
(mod 5).
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(vii) If 5 - a2 + 4, then 5k` is nondefective for k � 2 if and only if ` is odd, a ⌘ ±2
(mod 5), but a 6⌘ ±7 (mod 25).

(viii) 6` is nondefective if and only if ` is odd and a ⌘ ±1 (mod 6).

(ix) 7` is nondefective if and only if ` is odd, and a ⌘ ±1 or ±3 (mod 7).

(x) 14` is nondefective if and only if ` is odd, and a ⌘ ±1 or ±3 (mod 14).

Theorem 2.4. Consider the LSFK u(a,�1) with discriminant D = a2 � 4. Let L0

be the set of odd integers `0 � 1 such that each prime divisor of `0 divides a2 � 4
and is greater than or equal to 5. If m is nondefective, then m is of the form

2i3j`0, (10)

where i � 0, j � 0, and `0 2 L0. Moreover, m is nondefective if and only if one of
the following cases holds:

(i) m = `0, 2`0, or 3`0,

(ii) m = 6`0 and a ⌘ 2, 3, or 4 (mod 6).

(iii) m = 2i`0, i � 2, and a ⌘ 2 (mod 4).

(iv) m = 3j`0, j � 2, and a ⌘ ±2 or ±4 (mod 9),

(v) m = 3 · 2i, i � 2, and a ⌘ ±2 (mod 12),

(vi) m = 2 · 3j, j � 2, and a ⌘ ±2 or ±4 (mod 18).

(vii) m = 2i3j, i � 2, j � 2, and a ⌘ ±2 or ±14 (mod 36).

The principal results in this paper, given in Theorems 2.5 and 2.7, extend Theo-
rem 2.2 to all LSSK’s u(a,±1) in an analogous manner to the way in which Theorems
2.3 and 2.4 generalized Theorem 2.1 to all LSFK’s u(a,±1).

Theorem 2.5. Consider the LSSK v(a, 1). If m is nondefective, then m is one of
the following numbers:

1, 2, 4, 6, 7, 14, 3k, (11)

where k � 1. Moreover, the following holds:

(i) 2 is nondefective if and only if 4 is nondefective if and only if a is odd.

(ii) 3 is nondefective if and only if a ⌘ ±1 (mod 3).

(iii) 3k is nondefective for k � 2 if and only if a ⌘ ±1 or ±2 (mod 9).

(iv) 6 is nondefective if and only if a ⌘ ±1 (mod 6).
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(v) 7 is nondefective if and only if a ⌘ ±1 or ±3 (mod 7).

(vi) 14 is nondefective if and only if a ⌘ ±1 or ±3 (mod 14).

Moreover no m > 1 is purely nondefective.

Theorem 2.5 will be proved in Section 4.

Corollary 2.6. Consider the LSSK v(a, 1). Then there exists a nondefective integer
m satisfying each of the possible cases in Theorem 2.5 if and only if

a ⌘ 1, 11, 17, 25, 29, 43, 53, 55, 71, 73, 83, 97, 101, 109, 115 or 125 (mod 126).

Proof. This follows from Theorem 2.5 and the Chinese Remainder Theorem.

Theorem 2.7. Consider the LSSK v(a,�1). If m is nondefective, then m is one
of the following numbers

1, 2, 3, 6. (12)

Moreover, the following holds:

(i) 2 is nondefective if and only if a is odd.

(ii) 3 is nondefective if and only if a ⌘ 0 (mod 3).

(ii) 6 is nondefective if and only if a ⌘ 3 (mod 6).

Moreover, no m > 1 is purely nondefective.

Theorem 2.7 will be proved in Section 4.

Corollary 2.8. Consider the LSSK v(a,�1). Then there exists a nondefective
integer m satisfying each of the possible cases in Theorem 2.7 if and only if

a ⌘ 3 (mod 6).

Proof. This follows from Theorem 2.7 and the Chinese Remainder Theorem.

3. Auxiliary Lemmas

The following results will be needed for the proofs of our main theorems, Theorem
2.5 and Theorem 2.7.

Lemma 3.1. Consider the LSFK u(a, b) and the LSSK v(a, b). Then gcd(un, vn) | 2
for all n � 0.
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This is proved in Theorem II of [5].

Lemma 3.2. Consider the LSFK u(a, b) and LSSK v(a, b), where a and b are both
odd. Then un and vn are both even or both odd according as n is or is not a multiple
of 3.

This is proved in Theorem III of [5].

Lemma 3.3. Consider the LSSK v(a, b) with discriminant D = a2 + 4b. If
gcd(m,D) > 1, then m is defective.

Proof. Let u = u(a, b). Suppose that gcd(m,D) > 1 and let p | gcd(m,D). If p is
odd, then zu(p) = p by Theorem 1.7 (iv). Hence, 0 62 Sv(p) by Theorem 1.5, and
m is defective by Theorem 1.3.

Now suppose that p = 2. Then 2 | D, which implies that a is even. Then vn

is even for all n � 0 and 2 is defective. This again implies that m is defective by
Theorem 1.3.

Lemma 3.4. Consider the LSFK u(a, b) and the LSSK v(a, b). Suppose that m is
nondefective with respect to u(a, b).

(i) If m is odd, then m is nondefective with respect to v(a, b) if and only if 0 2
Sv(m).

(ii) If m is even, then m is nondefective with respect to v(a, b) if and only if both
a is odd and 0 2 Sv(m).

Proof. We note that if m is nondefective with respect to v(a, b), then 0 2 Sv(m).
Suppose that vr ⌘ 0 (mod m) for some nonnegative integer r. Let c = vr+1.

We will show that gcd(c,m) = 1 when either condition (i) or (ii) is satisfied. If
gcd(c,m) = 1, then it follows by the recursion relation (1) defining both u(a, b) and
v(a, b) and the fact that u0 = 0, u1 = 1, that

vn+r ⌘ cun (mod m)

for all n � 0. Since gcd(c,m) = 1, we see that m is nondefective with respect to
v(a, b) when m is nondefective with respect to u(a, b).

We now demonstrate that indeed gcd(c,m) = 1. First suppose that m is odd,
vr ⌘ 0 (mod m), and gcd(vr+1,m) = d > 1. Noting that gcd(b,m) = 1, we observe
by induction and the recursion relation defining v(a, b) that d | vn for all n � 0. In
particular, d | v0 = 2. This is impossible, since m is odd and d | m.

Now suppose that m is even, a is odd and vr ⌘ 0 (mod m). Let d = gcd(vr+1,m).
Arguing as above, we find that d | vn for all n � 0. In particular, d | gcd(v0, v1) =
gcd(2, a) = 1. Hence d = 1 and the result follows.

Finally suppose that m and a are even. Then D = a2 +4b is even. It now follows
from Lemma 3.3 that m is defective.
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The idea of the proof above is a direct adaptation of Lemma 2 of [1].

Lemma 3.5. Consider the LSFK u(a, b) and the LSSK v(a, b) and let p be a fixed
odd prime.

(i) Let r = zu(pi), where i � 1, and suppose that r is even. Then pi | vr/2.

(ii) Suppose that a is odd and let s = zu(2pi), where i � 1. Suppose that s is even.
Then 2pi | vs/2.

Proof. (i) It follows from the Binet formulas (3) that ur = ur/2vr/2. Then ur/2 6⌘
0 (mod pi) by the definition of zu(pi). By Lemma 3.1, gcd(ur/2, vr/2) | 2. Thus,
vr/2 ⌘ 0 (mod pi).

(ii) Similarly to the proof of part (i), we have that us = us/2vs/2 and us/2 6⌘
0 (mod 2pi). Since 2 | us, we see by Lemma 3.2 that 3 | s. Thus 3 | s

2 . Hence,
by Lemma 3.2, 2 | us/2 and 2 | vs/2. Since gcd(us/2, vs/2) | 2, it follows that
2pi | vs/2.

Lemma 3.6. Consider the LSSK v(a, 1), where a is odd. Then v3 ⌘ 0 (mod 4).

Proof. By inspection, we see that v3 = a(a2 + 3) ⌘ a(1 + 3) ⌘ 0 (mod 4).

4. Proofs of the Main Theorems

We prove Theorems 2.5 and 2.7 together.

Proof of Theorems 2.5 and 2.7. Let b = ±1. It follows from Corollary 1.11 (ii)
that if m > 1, then m is not purely nondefective with respect to v(a,±1). We
note that the rank of 5 in u(a, 1) is 3 when a ⌘ ±2 (mod 5). It now follows from
Theorems 2.3 and 2.4, Remark 1.6, Theorem 1.7 (iv), and Lemma 3.3, that if m is
nondefective with respect to v(a, b), then m is one of the numbers given in (11) or
(12) according as b = 1 or b = �1.

Part (i) of Theorem 2.5 and part (i) of Theorem 2.7 follow from Lemmas 3.2, 3.3,
3.4, and 3.6 and the fact that 2 | D = a2 + 4b if a is even. We note by inspection
that for the LSFK u(a, 1), the rank of 3 is 4 when a ⌘ ±1 (mod 3), the rank of 6
is 12 when a ⌘ ±1 (mod 6), the rank of 7 is 8 when a ⌘ ±1 of ±3 (mod 7), and
the rank of 14 is 24 when a ⌘ ±1 or ±3 (mod 14). It now follows from Theorem
1.7 (vi) and inspection that for the LSFK u(a, 1), the rank of 3k is 4 · 3k�1 when
k � 2. Moreover, we find that for the LSFK u(a,�1), the rank of 3 is 2 when a ⌘ 0
(mod 3) and the rank of 6 is 6 when a ⌘ ±1 (mod 6).

The remainder of Theorem 2.5 and Theorem 2.7 now follows from Lemma 3.4
and Lemma 3.5. ⇤
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