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Abstract
We study sums of the form

Pn
k=1 F 3

mk,
Pn

k=1(�1)kF 3
mk,

Pn
k=1 L3

mk andPn
k=1(�1)kL3

mk where m is an odd integer. For each class of sums we obtain
new closed-form expressions. Our findings complement the results of Clary and
Hemenway, and Adegoke.

1. Introduction

Let Fn and Ln (n � 0) denote the Fibonacci and Lucas numbers, respectively.
Their Binet forms equal

Fn =
↵n � �n

↵� �
, Ln = ↵n + �n, (1.1)

where ↵ and � are roots of the quadratic equation x2 � x� 1 = 0.
Clary and Hemenway [2] were the first who obtained remarkable summation

formulas for all sums of the form
Pn

k=1 F 3
mk, where m is an integer. Two examples

of their discoveries are

nX
k=1

F 3
k =

8>>>>><
>>>>>:

1
10Fv(L5v+2 + L3v+2 � Lv � Lv�5) if n ⌘ 0 mod 4
1
10Lv�1LvFv+1(L3v�1 � 2Lv�2) if n ⌘ 1 mod 4
1
10Lv(F5v+2 + F3v+2 � Fv � Fv�5) if n ⌘ 2 mod 4
1
2Fv�1FvLv+1(F3v�1 � 2Fv�2) if n ⌘ 3 mod 4,

(1.2)

where v is the smallest integer greater than or equal to n/2 and

nX
k=1

F 3
2k =

(
1
4F 2

nL2
n+1Fn�1Ln+2 if n is even

1
4L2

nF 2
n+1Ln�1Fn+2 if n is odd.

(1.3)

1Statements and conclusions made in this article are entirely those of the author. They do not
necessarily reflect the views of LBBW.
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If m is an even integer, these sums have been studied further in the two recent
papers [1] and [3]. For instance, Adegoke obtained the following generalizations in
[1]: if m is even, then

F3m

nX
k=1

F 3
2mk = F 2

mnF 2
m(n+1)(LmnLm(n+1) + Lm), (1.4)

and if m is odd, then

L3m

nX
k=1

F 3
2mk =

(
F 2

mnL2
m(n+1)(LmnFm(n+1) + Fm) if n is even

L2
mnF 2

m(n+1)(FmnLm(n+1) + Fm) if n is odd.
(1.5)

He also discovered formulas for the corresponding Lucas sums. Frontczak [3] in turn
has also derived expressions for the alternating variants. For instance, he showed
that

nX
k=1

(�1)kF 3
2mk =

(�1)n

5F6m

h
F 2

3m(n+1)�F 2
3mn

i
�3

5
(�1)n

F2m

h
F 2

m(n+1)�F 2
mn

i
� F3m

5L3m
+

3Fm

5Lm
.

(1.6)
For m being odd the situation turns out to be more nebulous. As Clary and

Hemenway mention, the generalization of the formula (1.2) results in another four-
part expression. The research community seems not to have analyzed these sums
further and, as a matter of fact, no other sum identities are reported. In this note
we attempt to fill this gap. We establish simple expressions for the cubic sums
when m is odd. We study both the nonalternating and alternating versions. We
also present corresponding evaluations for the Lucas cubic sums.

2. Preliminary Results

In what follows we will require the following standard facts about Fibonacci and
Lucas numbers:

F�n = (�1)n+1Fn, (2.1)
F 2

n = Fn�1Fn+1 � (�1)n, (2.2)
L2

n = Ln�1Ln+1 + 5(�1)n, (2.3)
Lm+n = Lm+1Fn + LmFn�1, (2.4)

F3n = F 3
n+1 + F 3

n � F 3
n�1, (2.5)

F3n = 5F 3
n + 3(�1)nFn, (2.6)

5L3n = L3
n+1 + L3

n � L3
n�1. (2.7)
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These facts are well-known to the Fibonacci community (see, for instance, [4]).
Furthermore, we will require the following results, each of which we state as a
separate lemma.

Lemma 1. For every integer n � 1, it holds that

5L3n = 2L3
n + 3Ln�1LnLn+1. (2.8)

Proof. Since

2L2
n + 3Ln�1Ln+1 = 2

�
L2

n + Ln�1Ln+1

�
+ Ln�1Ln+1

= 5
�
Ln�1Ln+1 + 2(�1)n

�
,

we must show that
L3n = Ln

�
Ln�1Ln+1 + 2(�1)n

�
. (2.9)

Keeping in mind that ↵� = �1,↵ + � = 1,↵2 = 1 + ↵ and �2 = 1 + �, the last
identity follows from the Binet form for Lucas numbers:

Ln

�
Ln�1Ln+1 + 2(�1)n

�
= (↵n + �n)

�
(↵n�1 + �n�1)(↵n+1 + �n+1) + 2(↵�)n

�
= (↵n + �n)

�
↵2n + �2n + ↵n�n(↵�1� + ↵��1) + 2(↵�)n

�
= (↵n + �n)

�
↵2n + �2n � ↵n�n(↵ + �)

�
= L3n.

Lemma 2. Let m be an odd integer. Then

nX
k=1

Fmk =
Fm(n+1) + Fmn � Fm

Lm
, (2.10)

nX
k=1

(�1)kFmk =
(�1)nFm(n+1) + (�1)n+1Fmn � Fm

Lm
, (2.11)

nX
k=1

Lmk =
Lm(n+1) + Lmn � Lm � 2

Lm
, (2.12)

and
nX

k=1

(�1)kLmk =
(�1)nLm(n+1) + (�1)n+1Lmn � Lm + 2

Lm
. (2.13)

Proof. The results follow from more general identities from [5].
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Lemma 3. Let k and m be integers. Then

F 3
k+m + (�1)mF 3

k�m = Lm

�
F 2

mF3k + (�1)mF 3
k

�
, (2.14)

and
L3

k+m + (�1)mL3
k�m = Lm

�
5F 2

mL3k + (�1)mL3
k

�
. (2.15)

Proof. The first identity is stated as Problem H-95 and solved in [6]. Therefore we
only give a proof for the second identity. We start with

Lk+m = Lk+1Fm + LkFm�1,

and
Lk�m = (�1)m(LkFm+1 � Lk+1Fm).

Hence,

L3
k+m + (�1)mL3

k�m = L3
k+m + (�1)3mL3

k�m

=
�
Lk+1Fm + LkFm�1

�3 +
�
LkFm+1 � Lk+1Fm

�3

=
�
Lk+1Fm + LkFm�1

�3 �
�
Lk+1Fm � LkFm+1

�3

= L3
k

�
F 3

m+1 + F 3
m�1

�
+3Lk+1FmLkFm�1

�
Lk+1Fm + LkFm�1

�
�3Lk+1FmLkFm+1

�
LkFm+1 � Lk+1Fm

�
= L3

k

�
Fm+1 + Fm�1

��
F 2

m+1 + F 2
m�1 � Fm�1Fm+1

�
�3Lk+1FmL2

k

�
F 2

m+1 � F 2
m�1

�
+3L2

k+1F
2
mLk

�
Fm+1 + Fm�1

�
= L3

kLm

��
Fm+1 � Fm�1

�2 + Fm�1Fm+1

�
�3Lk+1FmL2

k

�
Fm+1 + Fm�1

��
Fm+1 � Fm�1

�
+3L2

k+1F
2
mLkLm

= L3
kLm

�
F 2

m + Fm�1Fm+1

�
� 3Lk+1F

2
mL2

kLm

+3L2
k+1F

2
mLkLm

= L3
kLm

�
2F 2

m + (�1)m
�

+ 3Lk+1LkLmF 2
m

�
Lk+1 � Lk

�
= LmF 2

m

�
2L3

k + 3Lk�1LkLk+1

�
+ (�1)mLmL3

k.

The statement follows from Lemma 1.

3. Main Results

Our main results for the Fibonacci numbers are contained in the next theorem.
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Theorem 1. Let m be an odd integer. Then for each n � 1
nX

k=1

F 3
mk =

F 2
m

L3m

⇣
F3m(n+1) + F3mn � F3m

⌘
� 1

Lm

⇣
F 3

m(n+1) + F 3
mn � F 3

m

⌘
, (3.1)

and
nX

k=1

(�1)kF 3
mk =

F 2
m

L3m

⇣
(�1)nF3m(n+1) + (�1)n+1F3mn � F3m

⌘

� 1
Lm

⇣
(�1)nF 3

m(n+1) + (�1)n+1F 3
mn � F 3

m

⌘
. (3.2)

Proof. The key ingredients in our proofs are the following telescoping sum relations:
Let f(k) be a real sequence and m,n and j be positive integers. Then

nX
k=1

h
f(m(k + j))� f(m(k � j))

i
=

n+jX
k=n+1�j

f(mk)�
jX

k=1�j

f(mk), (3.3)

and
nX

k=1

(�1)k�1
h
f(m(k + j))� f(m(k � j))

i
=

n+jX
k=n+1�j

(�1)k+j�1f(mk)

�
jX

k=1�j

(�1)k+j�1f(mk). (3.4)

These sum relations may be proved straightforwardly by shifting the summation
index and are also utilized in [3].

To prove Theorem 1 we start with Equation (2.14). We replace k by mk and use
the fact that m is odd to get

F 3
m(k+1) � F 3

m(k�1) = LmF 2
mF3mk � LmF 3

mk. (3.5)

Set f(k) = F 3
k and j = 1 in (3.3) to obtain

F 3
m(n+1) + F 3

mn � F 3
m = LmF 2

m

nX
k=1

F3mk � Lm

nX
k=1

F 3
mk. (3.6)

The first identity follows from (2.10) upon replacing m by 3m and rearranging
terms. The second identity follows from (3.4) and (2.11):

(�1)nF 3
m(n+1) + (�1)n+1F 3

mn � F 3
m = LmF 2

m

nX
k=1

(�1)kF3mk � Lm

nX
k=1

(�1)kF 3
mk.

(3.7)
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Equivalent versions of our discoveries are presented in the next two Propositions:

Proposition 1. Let m be an odd integer. Then

nX
k=1

F 3
mk =

F 3
m(n+1) + F 3

mn + 2F 3
m + 3(�1)n+1F 2

m

�
Fm(n+1) � Fmn

�
Lm

�
5F 2

m � 1
� , (3.8)

and
nX

k=1

(�1)kF 3
mk =

(�1)n
�
F 3

m(n+1) � F 3
mn

�
+ 2F 3

m � 3F 2
m

�
Fm(n+1) + Fmn

�
Lm

�
5F 2

m � 1
� . (3.9)

Proof. Using (2.5) we can write (3.6) as

F 3
m(n+1) + F 3

mn � F 3
m = LmF 2

m

nX
k=1

⇣
F 3

mk+1 � F 3
mk�1

⌘
+

⇣
LmF 2

m � Lm

⌘ nX
k=1

F 3
mk.

(3.10)
Now,

F 3
mk+1 =

⇣
Fmk + Fmk�1

⌘3

= F 3
mk + F 3

mk�1 + 3FmkFmk�1Fmk+1

= F 3
mk + F 3

mk�1 + 3Fmk

⇣
F 2

mk + (�1)mk
⌘

= 4F 3
mk + F 3

mk�1 + 3(�1)kFmk,

and the first formula follows from (2.11). The second statement is proved similarly:

(�1)nF 3
m(n+1) + (�1)n+1F 3

mn � F 3
m = LmF 2

m

nX
k=1

(�1)k
⇣
F 3

mk+1 � F 3
mk�1

⌘

+
⇣
LmF 2

m � Lm

⌘ nX
k=1

(�1)kF 3
mk.

The result follows essentially from (2.10).

Proposition 2. Let m be an odd integer. Then

nX
k=1

F 3
mk =

F3m(n+1) + F3mn + 10F 3
m

5Lm

�
5F 2

m � 1
� +

3(�1)n+1

5Lm

�
Fm(n+1) � Fmn

�
, (3.11)

and
nX

k=1

(�1)kF 3
mk =

(�1)n
�
F3m(n+1) � F3mn

�
+ 10F 3

m

5Lm

�
5F 2

m � 1
� � 3

5Lm

�
Fm(n+1)+Fmn

�
. (3.12)
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Proof. Since m is odd we immediately get from (2.6)

F 3
m(n+1) =

1
5
�
F3m(n+1) � 3(�1)n+1Fm(n+1)

�
,

and
F 3

mn =
1
5
�
F3mn � 3(�1)nFmn

�
.

Inserting these relations into the above equation and simplifying gives the statement.
The alternating sum is proved in the same manner.

We conclude this section with two explicit examples for m = 1 and m = 3 using
the results from the last Proposition:

nX
k=1

F 3
k =

1
20

�
F3n+3 + F3n + 10

�
+

3(�1)n+1

5
Fn�1, (3.13)

nX
k=1

F 3
3k =

1
380

�
F9n+9 + F9n + 80

�
+

3(�1)n+1

20
�
F3n+3 � F3n

�
, (3.14)

nX
k=1

(�1)kF 3
k =

1
20

�
(�1)n

�
F3n+3 � F3n

�
+ 10

�
� 3

5
Fn+2, (3.15)

nX
k=1

(�1)kF 3
3k =

1
380

�
(�1)n

�
F9n+9 � F9n

�
+ 80

�
� 3

20
�
F3n+3 + F3n

�
. (3.16)

4. Analogue Results for Lucas Numbers

Next we state the analogue discoveries for the Lucas sequence. Since the proofs are
very similar to that ones given in the last section, we only sketch them.

Theorem 2. Let m be an odd integer. Then for each n � 1

nX
k=1

L3
mk =

5F 2
m

L3m

⇣
L3m(n+1)+L3mn�L3m�2

⌘
� 1

Lm

⇣
L3

m(n+1)+L3
mn�L3

m�8
⌘
, (4.1)

and
nX

k=1

(�1)kL3
mk =

5F 2
m

L3m

⇣
(�1)nL3m(n+1) + (�1)n+1L3mn � L3m + 2

⌘

� 1
Lm

⇣
(�1)nL3

m(n+1) + (�1)n+1L3
mn � L3

m + 8
⌘
. (4.2)
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Proof. Use (2.15) in combination with (3.3) and (3.4) with f(k) = L3
k. The first-

order sums are evaluated according to (2.12) and (2.13).

Proposition 3. Let m be an odd integer. Then
nX

k=1

L3
mk =

L3
m(n+1) + L3

mn + 15F 2
m(�1)n

�
Lm(n+1) � Lmn

�
� 15F 2

m(Lm � 2)� L3
m � 8

Lm

�
5F 2

m � 1
� ,

(4.3)
and

nX
k=1

(�1)kL3
mk =

(�1)n
�
L3

m(n+1) � L3
mn

�
+ 15F 2

m

�
Lm(n+1) + Lmn

�
� 15F 2

m(Lm + 2)� L3
m + 8

Lm
�
5F 2

m � 1
� .

(4.4)

Proof. Use (2.7) and

L3
mk+1 = 4L3

mk + L3
mk�1 � 15(�1)kLmk. (4.5)

The remaining first-order sums are evaluated again according to (2.12) and (2.13).

Proposition 4. Let m be an odd integer. Then

nX
k=1

L3
mk =

L3m(n+1) + L3mn �
�
L3m + 2

�
Lm

�
5F 2

m � 1
� +

3
Lm

�
(�1)n

�
Lm(n+1)�Lmn

�
�Lm +2

�
,

(4.6)
and

nX
k=1

(�1)kL3
mk =

(�1)n
�
L3m(n+1) � L3mn

�
�

�
L3m � 2

�
Lm

�
5F 2

m � 1
� +

3
Lm

�
Lm(n+1) + Lmn�Lm� 2

�
.

(4.7)

Proof. The formulas are a consequence of further modifications of (4.3) and (4.4)
using the identity L3n = L3

n � 3(�1)nLn, which can be derived from (2.3) and
(2.8).

For m = 1 and m = 3 the explicit examples are:

nX
k=1

L3
k =

1
4
�
L3n+3 + L3n � 6

�
+ 3

�
(�1)nLn�1 + 1

�
, (4.8)

nX
k=1

L3
3k =

1
76

�
L9n+9 + L9n � 78

�
+

3
4
�
(�1)n

�
L3n+3 � L3n

�
� 2

�
, (4.9)
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nX
k=1

(�1)kL3
k =

1
4
�
(�1)n

�
L3n+3 � L3n

�
� 2

�
+ 3

�
Ln+2 � 3

�
, (4.10)

and
nX

k=1

(�1)kL3
3k =

1
76

�
(�1)n

�
L9n+9 � L9n

�
� 74

�
+

3
4
�
L3n+3 + L3n � 6

�
. (4.11)
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