MODULAR HYPERBOLAS AND THE CONGRUENCE

\[ax_1x_2 \cdots x_k + bx_{k+1}x_{k+2} \cdots x_{2k} \equiv c \pmod{m} \]

Anwar Ayyad
Department of Mathematics, Al Azhar University, Gaza Strip, Palestine
anwarayyad@yahoo.com

Todd Cochrane
Department of Mathematics, Kansas State University, Manhattan, Kansas
cochrane@math.ksu.edu

Sanying Shi
School of Mathematics, Hefei University of Technology, Hefei, P.R. China
vera123.99@hotmail.com

Received: 6/12/17, Accepted: 2/20/18, Published: 4/20/18

Abstract

For any cube-free integer \(m \), and integers \(a, b, c \) with \((abc, m) = 1 \), we obtain the existence of solutions of the congruence \(x_1 \cdots x_k \equiv c \pmod{m} \), in any cube of edge length \(B \gg \varepsilon m^{\frac{1}{k(2k+1)}} \), and of the congruence \(ax_1x_2 \cdots x_k + bx_{k+1}x_{k+2} \cdots x_{2k} \equiv c \pmod{m} \), in any cube \(B \gg \varepsilon m^{\frac{1}{k(2k+1)}} \varepsilon \). Refinements are given for small \(k \), and results are also given for arbitrary \(m \in \mathbb{N} \).

1. Introduction

A \(k \)-dimensional modular hyperbola is the set of solutions of a congruence

\[x_1x_2 \cdots x_k \equiv c \pmod{m}, \]

where \((c, m) = 1 \). Shparlinski [21] has written at length on the properties and applications of modular hyperbolas. Of particular interest is obtaining solutions with coordinates restricted to intervals of short length; see [1], [2], [11], [12] and [20], in addition to [21]. The first two authors [3] studied the related congruence

\[ax_1 \cdots x_k + bx_{k+1} \cdots x_{2k} \equiv c \pmod{m}, \]

with a prime modulus and obtained a number of results on the distribution its solutions. In this work we extend the results of [1] and [3] to general moduli,
addressing modular hyperbolas in the next three sections and the latter congruence in the remaining sections. The proof of our results on the modular hyperbola is a straightforward generalization and refinement of what was done in [1] for the case of prime moduli and in [20] for the case of composite moduli with intervals of the form \([1, B]\). The main novelty of this paper is the method of proof provided for our results on the second congruence. For the case of a prime modulus, the authors in [3] made use of additive combinatorics, in particular a result of Hart and Iosevich [13] on when we have a sum-product relation \(A_1B_1 + A_2B_2 \supseteq \Z_p^2\). Here, no appeal is made to additive combinatorics, but rather a more delicate evaluation of character sums is made in order to obtain results of the same strength as the mod \(p\) results of [3] for a general modulus, for boxes in general position.

2. The Congruence \(x_1 \cdots x_k \equiv c \pmod{m}\)

For \(k, m \in \N\), and integers \(c\) with \((c, m) = 1\), we consider the congruence

\[
x_1x_2 \cdots x_k \equiv c \pmod{m},
\]

with variables restricted to a general box \(B\) with sides of length \(B_i\),

\[
B = \{(x_1, \ldots, x_k) \in \Z^k : h_i + 1 \leq x_i \leq h_i + B_i, 1 \leq i \leq k\};
\]

for convenience we take \(h_i, B_i \in \Z\), \(1 \leq i \leq k\) and assume \(1 \leq B_i < m\). If all of the \(B_i\) are equal, say \(B_i = B\), \(1 \leq i \leq k\), then we call \(B\) a cube with edge length \(B\).

Let \(\Z_m = \Z/(m)\) and \(\Z_m^*\) be the group of units in \(\Z_m\). By identifying \(\Z_m\) with an appropriate set of integer representatives we may view \(B\) as a box of points in \(\Z_m^k\). Let \(I_i\) be the interval in \(\Z_m^*\) given by

\[
I_i = [h_i + 1, h_i + B_i] \cap \Z_m^*,
\]

and

\[
B^* = I_1 \times I_2 \times \cdots \times I_k = B \cap \Z_m^{*k}.
\]

If all \(B_i = B\) we will continue calling \(B^*\) a cube with edge length \(B\), although it may be the case that the cardinalities \(|I_i|\) of the edges are not equal.

Generalizing the work of the first author [1] for prime moduli, and Shparlinski [20, Theorem 9] for composite moduli, we obtain the following result.

\textbf{Theorem 1.} Suppose that \(k \geq 4\), \(r \in \N\). Let \(c\) be an integer with \((c, m) = 1\). Then the number \(n_c\) of solutions of the congruence

\[
x_1 \cdots x_k \equiv c \pmod{m},
\]

\(2018\)
with \(x_i \in I_i, 1 \leq i \leq k \), is given by
\[
n_c = \frac{|B^*|}{\phi(m)} + O_\epsilon \left(|B^*|^{1 - \frac{1}{t} - \frac{2}{r} + \frac{4}{m} \frac{r+1}{4r+2} (k-4) + \epsilon \frac{3r-1}{4r} (k-4)} \right),
\]
where \(m_1 = \prod_{p | m} p^e \). The \(m_1 \) term may be removed for \(r = 1, 2 \) or 3.

Shparlinski proved the special case where each interval is of the form \([1, B_i] \cap \mathbb{Z}_m^*\) and \(r = 1, 2 \) or 3.

The theorem yields an asymptotic estimate for \(n_c \) provided that
\[
|B^*| \gtrsim m^{\frac{1}{2} + \frac{1}{4r} + \epsilon}, \quad \text{for } k = 4, 5, 6;
\]
\[
|B^*| \gtrsim m^{\frac{1}{2} + \frac{1}{4r} + \epsilon}, \quad \text{for } k \geq 7.
\]

Thus for a general modulus \(m \) we can only get down to a threshold of \(m^{\frac{1}{2} + \epsilon} \) for \(k \) sufficiently large. In particular, this is the best we can do for the case where \(m = m_1 \). At the other extreme, where \(m_1 = 1 \), we can reduce the exponent further to \(\frac{1}{2} + \epsilon \) for \(k \) sufficiently large. To be precise, if \(m_1 = 1 \) then choosing the optimal value of \(r \) (as shown in [1]), we obtain for \(k \geq 4 \) that \(n_c > 0 \) for any case with
\[
B \gtrsim m^{\frac{1}{2} + \epsilon} m^{\frac{1}{2} + \frac{1}{4r} + \epsilon} m^\epsilon.
\]

For a general box \(B^* \), the same holds for
\[
|B^*| \gtrsim m^{\frac{1}{2} + \frac{1}{4r} + \epsilon}.
\]

Next, let us examine the cases where \(k = 2, 3 \) or 4. For \(k = 2 \) it is well known that \(n_c > 0 \) for any \(m \) and any cube \(B^* \) of edge length \(B \), provided that
\[
B \gtrsim m^{1 + \epsilon},
\]
see for example [23], [15] or [21]. The proof makes use of the Kloosterman sum estimate. For \(k = 4 \), the \(m_1 \) term in (5) goes away altogether, and we get \(n_c > 0 \) for any \(m \) and box \(B^* \) with
\[
|B^*| \gtrsim m^{2 + \epsilon}.
\]

We deduce a result for \(k = 3 \) from our \(k = 4 \) result by applying it to a box with \(I_4 = \{1\} \). In this case the inequality in (7) yields a solution in any box with
Thus, any cube of side length B contains a solution of (1) provided that

$$B \gg \begin{cases} m^{2^{k^2}} & \text{if } k = 3; \\ m^{2^{k^2}} & \text{if } k = 4. \end{cases}$$

For $k = 3$ the same estimate was given in [1, Theorem 1] for prime moduli. A weaker result for $k = 3$ was given for composite m in [20, Theorem 8].

3. Estimating the Cardinality of an Interval in \mathbb{Z}_m^*

Before proceeding with the proof of Theorem 1, let us remind the reader of a well known estimate for the cardinality of an interval

$$I = [h + 1, h + B] \cap \mathbb{Z}_m^*, \quad (8)$$

in \mathbb{Z}_m^*. We prove a numeric lower bound for our purposes here.

Lemma 1. For $m > 30$ and any interval I of edge length B in \mathbb{Z}_m^*,

$$|I| \geq \frac{1}{3} \frac{B}{\log \log m} - m^{0.96/\log \log m}.$$

In particular, if $B > m^{i'}$ and m is sufficiently large, then $|I| \geq \frac{1}{3} \frac{B}{\log \log m}$. The result follows from the next two lemmas.

Lemma 2. For any $B, d \in \mathbb{N}$, $h \in \mathbb{Z}$, the number of multiples of d in the interval $[h + 1, h + B]$ is $\frac{B}{d} + \frac{r}{d}$, for some $r \in \mathbb{Z}$ with $|r| \leq d$.

Proof. Say $h + 1 = q_1d + r_1$, $h + B = q_2d + r_2$, with $q_1, q_2 \in \mathbb{Z}$, $0 \leq r_1, r_2 < d$. If $r_1 > 0$, there are $q_2 - q_1$ multiples of d in $[h + 1, h + B]$, and we have

$$q_2 - q_1 = \frac{B - r_2 - 1 + r_1}{d} = \frac{B}{d} + \frac{r_1 - r_2 - 1}{d},$$

with $|r_1 - r_2 - 1| \leq d$. If $r_1 = 0$, then there are $q_2 - q_1 + 1$ multiples of d in the interval, and we have

$$q_2 - q_1 + 1 = \frac{B - r_2 - 1 + r_1 + d}{d} = \frac{B}{d} + \frac{d - r_2 - 1}{d},$$

with $|d - r_2 - 1| \leq d - 1$. \hfill \square

Lemma 3. For any $m \in \mathbb{N}$, and interval I in \mathbb{Z}_m^*, we have

$$|I| = \frac{\phi(m)}{m} B + \theta^2(m),$$

for some $|\theta| \leq 1$, where $\omega(m)$ is the number of distinct prime divisors of m.
Proof.

\[
\sum_{h+1 \leq x \leq h+B \atop (x, m) = 1} 1 = \sum_{h+1 \leq x \leq h+B} \sum_{d | (x, m)} \mu(d)
\]

\[
= \sum_{d | m} \mu(d) \sum_{h+1 \leq x \leq h+B \atop d | x} 1.
\]

By the preceding lemma, the sum over \(x \) is just \(\frac{B}{d} + \delta(d) \) for some real number \(\delta(d) \) with \(|\delta(d)| \leq 1 \). Thus

\[
\sum_{h+1 \leq x \leq h+B \atop (x, m) = 1} 1 = \sum_{d | m} \mu(d) \left(\frac{B}{d} + \delta_d \right)
\]

\[
= B \sum_{d | m} \frac{\mu(d)}{d} + \sum_{d | m} \mu(d) \delta(d) = B \frac{\phi(m)}{m} + \sum_{d | m} \mu(d) \delta(d).
\]

The latter sum is bounded by the number of square-free divisors of \(m \), \(2^{\omega(m)} \).

Proof of Lemma 1. By the work of Robin [16] we have \(\omega(m) \leq 1.3841 \log m / \log \log m \) for \(m \geq 3 \), whence, \(2^{\omega(m)} < m^{0.96/\log \log m} \) for \(m \geq 3 \). Also, by the work of Rosser and Shoenfeld [19] we have \(\frac{m}{\phi(m)} < 3 \log \log m \) for \(m > 30 \). Thus for \(m > 30 \), it follows from the preceding lemma that for any interval \(I \) in \(\mathbb{Z}_m^* \),

\[
|I| > \frac{1}{3} \frac{B}{\log \log m} - m^{0.96/\log \log m},
\]

as desired.

4. Proof of Theorem 1

The theorem is an easy consequence of the following lemma. We let \(\chi_0 \) denote the principal character \(\pmod{m} \) and write \(\sum_{\chi \neq \chi_0} \) to indicate a sum over all multiplicative characters \(\pmod{m} \) with \(\chi \neq \chi_0 \).

Lemma 4. For any interval of points in \(\mathbb{Z}_m^* \) as in (8), we have

\[
\frac{1}{\phi(m)} \sum_{\chi \neq \chi_0} \left| \sum_{x \in I} \chi(x) \right|^4 \ll \epsilon |I|^2 m^\epsilon.
\]

Proof. Let \(B \) denote the length of the interval \(I \). If \(B \geq m^\epsilon/4 \), then by Lemma 1, \(B \ll \epsilon |I| \log \log m \). Using the mean value estimate

\[
\frac{1}{\phi(m)} \sum_{\chi \neq \chi_0} \left| \sum_{x=a+1}^{a+B} \chi(x) \right|^4 \ll 8^{\omega(m)} \tau(m) (\log m)^3 (\log \log m)^7 B^2,
\]
of Cochrane and Shi [8], where \(\tau(m) \) is the number of divisors of \(m \) and \(\omega(m) \) is the number of distinct prime divisors of \(m \), we obtain

\[
\frac{1}{\phi(m)} \sum_{\chi \neq \chi_0} \left| \sum_{x \in I} \chi(x) \right|^4 \ll \epsilon B^2 m^\epsilon \ll \epsilon |I|^2 m^\epsilon.
\]

If \(B < m^{\epsilon/4} \), the trivial bound implies

\[
\frac{1}{\phi(m)} \sum_{\chi \neq \chi_0} \left| \sum_{x \in I} \chi(x) \right|^4 \ll B^4 \leq m^\epsilon.
\]

\[\square \]

Lemma 5. We have for any nonprincipal character \(\chi \) (mod \(m \)),

\[
\left| \sum_{x \in I} \chi(x) \right| \ll \epsilon |I|^{1 - \frac{1}{r} - \frac{1}{2} + \frac{1}{2} \sum_{p \mid m, p > 2} \frac{1}{\varphi(p)}} m_{1}^{\frac{3}{4} - 1},
\]

where \(m_{1} = \prod_{p \mid m, p > 2} p^{\epsilon} \).

Proof. The proof is similar to the preceding lemma. If \(B \geq m^\epsilon \), the upper bound of Burgess [4], [5] for a general \(m \) (see for example [14, equation (12.56)] or [17, Theorem 1.6]),

\[
\left| \sum_{x = a+1}^{a+B} \chi(x) \right| \ll \epsilon B^{1 - \frac{1}{r} - \frac{1}{2} + \frac{1}{2} \sum_{p \mid m, p > 2} \frac{1}{\varphi(p)}} m_{1}^{\frac{3}{4} - 1},
\]

yields the result. If \(B < m^\epsilon \), the trivial bound gives the result. \[\square \]

Lemma 6. For any positive integers \(k, m, r \), with \(k \geq 4 \), and intervals \(I_{i} \) as above,

\[
\frac{1}{\phi(m)} \sum_{\chi \neq \chi_0} \prod_{i=1}^{k} \sum_{x \in I_{i}} \chi(x) \ll_{\epsilon,k} |B|^{\epsilon} |I_{i}|^{1 - \frac{1}{r} - \frac{1}{4} + \frac{1}{2} \sum_{p \mid m, p > 2} \frac{1}{\varphi(p)}} m_{1}^{\frac{3}{4} - 1} (k-4).
\]

Proof. By the preceding two lemmas, we have for any interval \(I_{i} \),

\[
\frac{1}{\phi(m)} \sum_{\chi \neq \chi_0} \left| \sum_{x \in I_{i}} \chi(x) \right|^{k} \leq \max_{\chi \neq \chi_0} \left| \sum_{x \in I_{i}} \chi(x) \right|^{k-4} \frac{1}{\phi(m)} \sum_{\chi \neq \chi_0} \left| \sum_{x \in I_{i}} \chi(x) \right|^{4} \ll_{\epsilon,k} |I_{i}|^{2} m^{\epsilon} \max_{\chi \neq \chi_0} \left| \sum_{x \in I_{i}} \chi(x) \right|^{k-4} \ll_{\epsilon,k} |I_{i}|^{k \left(1 - \frac{1}{r} - \frac{1}{4} + \frac{1}{2} \sum_{p \mid m, p > 2} \frac{1}{\varphi(p)}\right) + \frac{3}{4} - 1} m_{1}^{\frac{3}{4} - 1} (k-4).
\]

\[\square \]
By Hölder’s inequality,

$$\sum_{\chi \neq \chi_0} \prod_{i=1}^{k} \left| \sum_{x_i \in I_i} \chi(x_i) \right| \leq \prod_{i=1}^{k} \left(\sum_{\chi \neq \chi_0} \left| \sum_{x_i \in I_i} \chi(x_i) \right|^k \right)^{1/k}. $$

Inserting the upper bound in (11) completes the proof. \(\square\)

Proof of Theorem 1. The number of solutions of (4) with \(x_i \in I_i, 1 \leq i \leq k\), is given by

$$n_c = \frac{1}{\phi(m)} \sum_{x_i \in I_i} \chi(c^{-1} x_1 \cdots x_k)$$

(12)

$$= \prod_{i=1}^{k} \frac{|I_i|}{\phi(m)} + \frac{1}{\phi(m)} \sum_{\chi \neq \chi_0} c^{-1} \prod_{i=1}^{k} \sum_{x_i \in I_i} \chi(x_i).$$

(13)

The result follows from the preceding lemma. \(\square\)

5. The Congruence \(ax_1 \cdots x_k + by_1 \cdots y_k \equiv c \pmod{m}\)

We turn now to the congruence

$$ax_1 x_2 \cdots x_k + by_1 y_2 \cdots y_k \equiv c \pmod{m}. $$

(14)

Let \(I_i, J_i\) be intervals in \(\mathbb{Z}_m^*\) given by

$$I_i = [h_i + 1, h_i + B_i] \cap \mathbb{Z}_m^*, \quad J_i = [h_{k+i} + 1, h_{k+i} + B_{k+i}] \cap \mathbb{Z}_m^*, $$

(15)

for some \(h_i, B_i \in \mathbb{Z}\), with \(1 \leq B_i \leq m, 1 \leq i \leq k\).

Theorem 2. Suppose that \(k, m, r \in \mathbb{N}\) with \(k \geq 4, r \geq 2\), and that \(a, b, c \in \mathbb{Z}\) with \((abc, m) = 1\). The number \(N^*\) of solutions of (14) with \(x_i \in I_i, y_i \in J_i, 1 \leq i \leq k\), is given by

$$N^* = \prod_{i=1}^{k} \frac{|I_i||J_i|}{\phi(m)} \prod_{p|\phi(m)} \frac{p-2}{p-1} + O \left(\sqrt{m} \left(\prod_{i=1}^{k} |I_i||J_i| \right)^{(1-\frac{1}{2})} + \frac{1}{\sqrt{m}} \frac{r+1}{r+2} (k-4) + \frac{1}{m} \frac{1}{m} (k-4) \right)$$

$$+ O \left(\prod_{i=1}^{k} \frac{|I_i|}{\phi(m)} \prod_{i=1}^{k} |J_i| (1-\frac{1}{2}) + \frac{r+1}{r+2} (k-4) + \frac{1}{m} \frac{1}{m} (k-4) \right)$$

$$+ O \left(\prod_{i=1}^{k} \frac{|I_i|}{\phi(m)} \prod_{i=1}^{k} |J_i| (1-\frac{1}{2}) + \frac{r+1}{r+2} (k-4) + \frac{1}{m} \frac{1}{m} (k-4) \right) .$$

For \(r = 2\) or \(3\), the \(m_1\) term may be dropped from the error terms.
We note that if $2|m$ the main term of the theorem vanishes. Indeed, in this case it is plain that $N^* = 0$, since for any odd integers x_i, the left-hand side of (14) is even while the right-hand side is odd. Aside from this case, the theorem yields an asymptotic formula for N^* provided that the following three inequalities hold,

\[
\prod_{i=1}^{k} |I_i| \gg m^{\frac{k}{2} + \frac{k(r^2 + k - 4)}{2(rk - 4r) + 2\epsilon}} m_{1}^{\frac{3k(k-4)}{2(rk - 4r) + 2\epsilon}}, \quad (16)
\]

\[
\prod_{i=1}^{k} |I_i| \gg m^{\frac{k(k-4)(r+1)}{2(rk - 4r) + 2\epsilon}} m_{1}^{\frac{3k(k-4)}{2(rk - 4r) + 2\epsilon}}, \quad (17)
\]

and

\[
\prod_{i=1}^{k} |I_i| \gg m^{\frac{k(k-4)(r+1)}{2(rk - 4r) + 2\epsilon}} m_{1}^{\frac{3k(k-4)}{2(rk - 4r) + 2\epsilon}}. \quad (18)
\]

The m_1 term may be dropped if $r = 2$ or 3. The result obtained here generalizes the result of [3] for prime moduli. Using $r = 3$ we obtain for $k \geq 4$ and any positive integer m, that $N^* > 0$ provided that

\[
\prod_{i=1}^{k} |I_i| \gg m^{\frac{2k}{2(rk - 4r) + 2\epsilon}}, \quad \prod_{i=1}^{k} |I_i| \gg m^{\frac{k}{2(rk - 4r) + 2\epsilon} + \epsilon}, \quad \prod_{i=1}^{k} |I_i| \gg m^{\frac{k}{2(rk - 4r) + 2\epsilon} + \epsilon}. \quad (19)
\]

(There is no advantage in using $r = 2$ for any value of k.) For a general modulus this is the best we can do.

For a cube, it is easy to verify that the condition in (16) implies the conditions in (17) and (18). In particular, taking $r = 3$, we see that for $k \geq 4$ and arbitrary m, any cube with edge length

\[
B \gg m^{\frac{k}{2} + \frac{1}{2(rk - 4r)} + \epsilon}, \quad (20)
\]

contains a solution of (14). Suppose now that $m_1 = 1$, $k \geq 5$. Then the optimal choice of r is an integer satisfying

\[
\frac{r^2 + k - 4}{2r^2 + rk - 4r} < \frac{2}{\sqrt{k} + 1.95},
\]

as shown in [3, Lemma 4.2]. For this choice of r we see that any cube with edge length

\[
B \gg m^{\frac{k}{2} + \frac{1}{2(rk - 4r) + 2\epsilon} + \epsilon},
\]

contains a solution of (14).

Although Theorem 2 requires $k \geq 4$, we can deduce a result for $k = 3$ by applying it with $k = 4$ and $I_4 = J_4 = \{1\}$. In this manner we obtain from (19) that $N^* > 0$ for $k = 3$ and any cube with

\[
B \gg m^{\frac{k}{2} + \epsilon}.
\]
6. Using Multiplicative Characters to Estimate N^*

We may assume that $a = 1$ and write (14),

$$x_1 \cdots x_k \equiv c - by_1 \cdots y_k \pmod{m}.$$

Let I_i, J_i be intervals as in (15). For any $A \in \mathbb{Z}_m^*$, let n_A denote the number of solutions of

$$y_1 \cdots y_k \equiv A \pmod{m},$$

with $y_i \in J_i$, $1 \leq i \leq k$, and n_{c-bA} the number of solutions of

$$x_1 \cdots x_k \equiv c - bA \pmod{m},$$

with $x_i \in I_i$, $1 \leq i \leq k$. Using the formula in (12) for n_A and n_{c-bA}, we have

$$N^* = \sum_{A \in \mathbb{Z}_m^* \atop (c-bA,m) = 1} n_{c-bA} n_A$$

$$= \sum_{A \in \mathbb{Z}_m^* \atop (c-bA,m) = 1} \frac{1}{\phi(m)} \sum_{x_i \in I_i} x \chi((c-bA)^{-1} x_1 \cdots x_k) \frac{1}{\phi(m)} \sum_{y_i \in J_i} \psi(A^{-1} y_1 \cdots y_k)$$

$$= \frac{1}{\phi(m)^2} \prod_{i=1}^{k} |I_i||J_i| \sum_{A \in \mathbb{Z}_m^* \atop (c-bA,m) = 1} 1 + E_1 + E_2 + E_3, \quad (21)$$

say, where the three error terms are given by

$$E_1 := \frac{1}{\phi(m)^2} \sum_{\chi \neq \chi_0} \left(\sum_{A \in \mathbb{Z}_m^* \atop (c-bA,m) = 1} \chi((c-bA)^{-1}) \right) \sum_{x_i \in I_i} \chi(x_1 \cdots x_k) \sum_{y_i \in J_i} 1, \quad (22)$$

$$E_2 := \frac{1}{\phi(m)^2} \sum_{\psi \neq \chi_0} \left(\sum_{A \in \mathbb{Z}_m^* \atop (c-bA,m) = 1} \psi(A^{-1}) \right) \sum_{x_i \in I_i} 1 \sum_{y_i \in J_i} \psi(y_1 \cdots y_k), \quad (23)$$

$$E_3 := \frac{1}{\phi(m)^2} \sum_{\chi \neq \chi_0} \sum_{\psi \neq \chi_0} \left(\sum_{A \in \mathbb{Z}_m^* \atop (c-bA,m) = 1} \chi((c-bA)^{-1}) \psi(A^{-1}) \right) \sum_{x_i \in I_i} \chi(x_1 \cdots x_k) \sum_{y_i \in J_i} \psi(y_1 \cdots y_k), \quad (24)$$

say.

6.1. Estimation of the Main Term

To estimate the main term we need,
Lemma 7. For any integers b, c with $(bc, m) = 1$,
\[
\sum_{\substack{A \in \mathbb{Z}_m^* \\ (c-A, A, m) = 1}} 1 = \phi(m) \prod_{p | m} \frac{p - 2}{p - 1}.
\] (26)

Proof. This is actually a special case of Lemma 10 below applied to the principal character, but let’s give a quick proof here. The sum is plainly multiplicative in m, and for a prime power $m = p^e$, the sum just counts the number of $A \in \mathbb{Z}_m$ with $A \neq 0, cb^{-1} (\text{mod} \ p)$, which equals $p^{e-1}(p - 2) = \phi(p^e) \frac{p - 2}{p - 1}$.

Thus the main term in (21) is just
\[
\prod_{i=1}^{\sum |I_j| |J_i|} \frac{\phi(m)}{\prod_{p | m} \frac{p - 2}{p - 1}}.
\] (27)

6.2. Estimation of E_1 and E_2

Let us first recall a couple of notions about multiplicative characters. For any multiplicative character $\chi \pmod{m}$ and divisor d of m, we say that χ is induced by a character \pmod{d} (or simply χ is a character \pmod{d}) if whenever $x \equiv y \pmod{d}$, then $\chi(x) = \chi(y)$. Viewed as a character \pmod{d} there is a slight difference in the definition of χ on values of x with $(x, d) = 1$ but $(x, m) \neq 1$. As a character \pmod{m}, $\chi(x) = 0$, but as a character \pmod{d}, $\chi(x) \neq 0$. This distinction is not a concern in what follows, for we will always restrict our attention to values of x with $(x, m) = 1$. There is a unique minimal divisor d such that χ is a character \pmod{d}, called the conductor of χ, written $\text{cond}(\chi)$. For this d, χ is a primitive character \pmod{d}. For the principal character χ_0 we have $\text{cond}(\chi_0) = 1$.

Lemma 8. If $d | m$ and χ is a character \pmod{m} that is not a character \pmod{d}, then there exists $u \equiv 1 \pmod{d}$, with $(u, m) = 1$ and $\chi(u) \neq 1$.

Proof. Say m has prime power factorization $m = p_1^{e_1} p_2^{e_2} \cdots p_\ell^{e_\ell}$, for distinct primes p_i and exponents $e_i \geq 1$, $1 \leq i \leq \ell$. Then χ can be expressed $\chi = \chi_1 \chi_2 \cdots \chi_\ell$ for some characters χ_i (mod $p_\ell^{e_\ell}$). Say $d = p_1^{f_1} p_2^{f_2} \cdots p_\ell^{f_\ell}$ with $f_i \leq e_i$, $1 \leq i \leq \ell$. Since χ is not a character \pmod{d}, there exists an $i \leq \ell$ such that χ_i is not a character $\pmod{p_\ell^{f_\ell}}$. Let a_i be a primitive root $\pmod{p_i^{e_i}}$, and let j_i be the unique integer with $0 < j_i \leq p_i^{e_i-1}(p_i - 1)$ and
\[
\chi_i(a_i) = e^{\frac{2\pi i j_i}{p_i^{e_i}}}. \\
\] Since χ_i is not a character $\pmod{p_i^{f_i}}$, then $p_i^{e_i-f_i} \mid j_i$. Setting $u_0 = a_i^{\phi(p_i^{f_i})}$, we have $u_0 \equiv 1 \pmod{p_i^{f_i}}$ and
\[
\chi_i(u_0) = \chi_i(a_i^{\phi(p_i^{f_i})}) = e^{\frac{2\pi i j_i}{\phi(p_i^{f_i})}} = e^{\frac{2\pi i j_i}{p_i^{e_i-f_i}}} \neq 1,
\]
since \(p_i^{e_i} \mid j_i \). By the Chinese Remainder Theorem, there exists an integer \(u \) with
\[
\begin{cases}
 u \equiv u_0 \pmod{p_i^{e_i}}, \\
 1 \pmod{p_j^{e_j}},
\end{cases}
\]
for \(j \neq i \).
Then \((u, m) = 1\), \(u \equiv 1 \pmod{d} \) and \(\chi(u) \neq 1 \).

Lemma 9. For any character \(\chi \pmod{m} \), integer \(c \) with \((c, m) = 1\) and divisor \(d \) of \(m \) we have
\[
\sum_{t=0}^{\frac{m}{d} - 1} \chi(c + td) = \sum_{t=0}^{\frac{m}{d} - 1} \chi(u(c + td)) = \chi(u) \sum_{t=0}^{\frac{m}{d} - 1} \chi(c + td),
\]
and so the sum must be zero.

Proof. If \(\chi \) is a character \pmod{d} the claim is immediate, since there are \(\phi(m)/\phi(d) \) choices for \(t \) such that \((c + td, m) = 1\). If \(\chi \) is not a character \pmod{d}, then there exists \(u \equiv 1 \pmod{d} \), with \((u, m) = 1\) and \(\chi(u) \neq 1 \) by the preceding lemma. Then
\[
\sum_{t=0}^{\frac{m}{d} - 1} \chi(c + td) = \sum_{t=0}^{\frac{m}{d} - 1} \chi(u(c + td)) = \chi(u) \sum_{t=0}^{\frac{m}{d} - 1} \chi(c + td),
\]
and so the sum must be zero.

Lemma 10. For any multiplicative character \(\chi \pmod{m} \) of conductor \(e \) and integer \(c \) with \((c, m) = 1\), we have
\[
\frac{m}{e}
\sum_{A \in \mathbb{Z}_m^*} \chi(A) = \phi(m)\chi(c)\frac{\mu(e)}{\phi(e)} \prod_{p \mid m} \frac{p - 2}{p - 1}.
\]

Proof. Now,
\[
\sum_{A \in \mathbb{Z}_m^*} \chi(A) = \sum_{A \in \mathbb{Z}_m^*} \chi(A) \sum_{d \mid (c - A, m)} \mu(d)
\]
\[
= \sum_{d \mid m} \mu(d) \sum_{A \equiv c \pmod{d}} \chi(A)
\]
\[
= \sum_{d \mid m} \mu(d) \sum_{t=0}^{\frac{m}{d} - 1} \chi(c + td).
\]
Thus letting \(e \) denote the conductor of \(\chi \), we get from the preceding lemma,
\[
\sum_{A \in \mathbb{Z}_m^*} \chi(A) = \phi(m)\chi(c)\sum_{d \mid m} \frac{\mu(d)}{\phi(d)}
\]
\[
= \phi(m)\chi(c)\sum_{d \mid m} \frac{\mu(ef)}{\phi(ef)}.
\]
Now, the only contribution to the sum over \(f \) comes from square-free values of \(ef \). Thus if \((e, f) > 1 \) there is no contribution, and so we may assume \((e, f) = 1 \), whence

\[
\mu(ef) = \mu(e)\mu(f) \quad \text{and} \quad \phi(ef) = \phi(e)\phi(f).
\]

Thus

\[
\sum_{A \in \mathbb{Z}_m} \chi(A) = \phi(m)\chi(c) \frac{\mu(e)}{\phi(e)} \sum_{j \mid m} \frac{\mu(j)}{\phi(j)} \sum_{f \mid m} \frac{\mu(f)}{\phi(f)} = \phi(m)\chi(c) \frac{\mu(e)}{\phi(e)} \prod_{p \mid e} \frac{p - 2}{p - 1}.
\]

\[\square\]

Next we have to obtain character sum bounds over intervals with restricted variables. Again let \(I \) be an interval of points in \(\mathbb{Z}_m^* \), \(I = [a + 1, a + B] \cap \mathbb{Z}_m^* \). First we obtain the following Burgess-type estimate.

Lemma 11. For any \(c \mid m \), positive integers \(B, r \) and non-principal character \(\chi \) (mod \(e \)), we have

\[
\left| \sum_{x = a + 1}^{a + B} \chi(x) \right| \ll_r |I|^{1 - \frac{3}{r}} m^e \frac{e^{\frac{B}{r} + 1}}{e^{\frac{3}{2} + \frac{B}{r}}} e_1^{\frac{3}{2}},
\]

where \(e_1 \) is the product of the prime-power divisors of \(e \) of multiplicity at least 3.

Proof. We have

\[
\sum_{x = a + 1}^{a + B} \chi(x) = \sum_{x = a + 1}^{a + B} \chi(x) \sum_{\lambda \mid (x, m)} \mu(\lambda)
\]

\[
= \sum_{\lambda \mid m} \mu(\lambda) \sum_{x = a + 1}^{a + B} \chi(x)
\]

\[
= \sum_{\lambda \mid m} \mu(\lambda)\chi(\lambda) \sum_{(a + 1)/\lambda \leq t \leq (a + B)/\lambda} \chi(t).
\]

(28)

Then by the Burgess bound in (10),

\[
\left| \sum_{x = a + 1}^{a + B} \chi(x) \right| \leq \sum_{\lambda \mid m} \left| \sum_{(a + 1)/\lambda \leq t \leq (a + B)/\lambda} \chi(t) \right|
\]

\[
\ll \sum_{\lambda \mid m} (B/\lambda + 1)^{1 - \frac{3}{r}} \frac{e^{\frac{B}{r} + 1}}{e^{\frac{3}{2} + \frac{B}{r}}} e_1^{\frac{3}{2}}
\]

\[
\ll \tau(m) B^{1 - \frac{3}{r}} \frac{e^{\frac{B}{r} + 1}}{e^{\frac{3}{2} + \frac{B}{r}}} e_1^{\frac{3}{2}}.
\]

Replacing \(B \) with \(|I| \) in the statement of the lemma now follows as in the proof of Lemma 4. \[\square\]
Generalizing the result of Cochrane and Shi [8], we have

Lemma 12. For any \(e|m\), integer \(a\) and positive integer \(B\) we have

\[
\frac{1}{\phi(e)} \sum_{\chi \not\equiv 0 \mod e} \prod_{x=0}^{\phi(e)} \left| \sum_{x=x+1}^{a+B} \chi(x) \right|^4 \ll \epsilon |I|^2 m^e.
\]

Proof. By (28), Hölder’s inequality and then employing the upper bound in (4), we get

\[
\frac{1}{\phi(e)} \sum_{\chi \not\equiv 0 \mod e} \prod_{x=0}^{\phi(e)} \left| \sum_{x=x+1}^{a+B} \chi(x) \right|^4 \leq \frac{1}{\phi(e)} \sum_{\chi \not\equiv 0 \mod e} \left(\sum_{x=x+1}^{\phi(e)} \chi(t) \right)^4
\]

\[
\leq \tau(m)^3 \sum_{\lambda|m} \left(\frac{1}{\phi(e)} \sum_{\chi \not\equiv 0 \mod e} \left| \sum_{x=x+1}^{\phi(e)} \chi(t) \right|^4 \right)
\]

\[
\leq \tau(m)^3 \sum_{\lambda|m} 8^{\omega(m)} \tau(e)(\log e)^3(\log \log e)^7(B/\lambda + 1)^2
\]

\[
\ll \tau(m)^4 8^{\omega(m)} \tau(m)(\log m)^3(\log \log m)^7 B^2 \ll \epsilon B^2 m^e.
\]

\[\square\]

Lemma 13. Suppose that \(k \geq 4\). For any \(e|m\), integer \(a\) and positive integers \(r, B\) we have

\[
\frac{1}{\phi(e)} \sum_{\chi \not\equiv 0 \mod e} \prod_{x=0}^{\phi(e)} \left| \sum_{x=x+1}^{a+B} \chi(x) \right|^k \ll \epsilon |I|^{k(1-\frac{1}{r})-2+\frac{4}{k}+\frac{2}{e} \frac{r+4}{e^2} (k-4) e \frac{3}{e} (k-4)} m^e.
\]

Proof. From the preceding two lemmas we have

\[
\frac{1}{\phi(e)} \sum_{\chi \not\equiv 0 \mod e} \prod_{x=0}^{\phi(e)} \left| \sum_{x=x+1}^{a+B} \chi(x) \right|^k \leq \max_{\chi \not\equiv 0 \mod e} \prod_{x=0}^{\phi(e)} \left| \sum_{x=x+1}^{a+B} \chi(x) \right|^{k-4} \frac{1}{\phi(e)} \sum_{\chi \not\equiv 0 \mod e} \prod_{x=0}^{\phi(e)} \left| \sum_{x=x+1}^{a+B} \chi(x) \right|^4
\]

\[
\ll \epsilon |I|^{k(1-\frac{1}{r})-2+\frac{4}{k}+\frac{2}{e} \frac{r+4}{e^2} (k-4) e \frac{3}{e} (k-4)} m^e.
\]

Again, replacing \(B\) with \(|I|\) in the statement of the lemma follows as before. \[\square\]

Turning to \(E_1\) we have by Lemma 10, letting \(e_\chi\) denote the conductor of \(\chi\),
\[
E_1 := \frac{1}{\phi(m)^2} \sum_{\chi \neq \chi_0} \left(\sum_{(c-bA) \mod m=1} \chi((c-bA)^{-1}) \right) \sum_{x_i \in I_i} \chi(x_1 \cdots x_k) \sum_{y_i \in J_i} 1
\]
\[
= \frac{1}{\phi(m)^2} \sum_{\chi \neq \chi_0} \phi(m) \chi(c^{-1}) \frac{\mu(e_{\chi})}{\phi(e_{\chi})} \prod_{p^{\nu} \mid \chi} \frac{p-2}{p-1} \sum_{x_i \in I_i} \chi(x_1 \cdots x_k) \sum_{y_i \in J_i} 1
\]
\[
= \prod_{i=1}^k |J_i| \sum_{e \mid m \atop e \geq 1} \prod_{p \mid e} \frac{p-2}{p-1} \prod_{i=1}^k |I_i| \chi(c^{-1}) \sum_{x_i \in I_i} \chi(x_1 \cdots x_k).
\]

Thus, by Holder’s inequality and the preceding lemma,
\[
|E_1| \ll \prod_{i=1}^k |J_i| \sum_{e \mid m \atop e \geq 1} \prod_{p \mid e} \frac{p-2}{p-1} \prod_{i=1}^k |I_i| \bigg| \chi(c^{-1}) \sum_{x_i \in I_i} \chi(x_1 \cdots x_k) \bigg|^\frac{e}{2} e^{\frac{e+1}{4} (k-4)} e^{\frac{e}{4} (k-4)}
\]
\[
\ll \prod_{i=1}^k |J_i| \prod_{i=1}^k |I_i| \left| \chi(c^{-1}) \sum_{x_i \in I_i} \chi(x_1 \cdots x_k) \right|^{\frac{e}{2}} e^{\frac{e+1}{4} (k-4)} e^{\frac{e}{4} (k-4)}.
\]

In a similar manner we obtain the following upper bound for \(|E_2|\),
\[
|E_2| \ll \prod_{i=1}^k |J_i| \prod_{i=1}^k |I_i| \left| \chi(c^{-1}) \sum_{x_i \in I_i} \chi(x_1 \cdots x_k) \right|^{\frac{e}{2}} e^{\frac{e+1}{4} (k-4)} e^{\frac{e}{4} (k-4)}.
\]

6.3. Estimation of \(E_3\)

Lemma 14. For any multiplicative characters \(\chi, \psi \mod m\) and integers \(c, A\) with \((c, m) = 1\) we have,
\[
\left| \sum_{A \in \mathbb{Z}_m} \chi(A) \psi((c-A)^{-1}) \right| \leq \frac{m}{\sqrt{\text{cond}(\chi), \text{cond}(\psi)}},
\]
where \([\text{cond}(\chi), \text{cond}(\psi)]\) denotes the least common multiple of the conductors of \(\chi\) and \(\psi\).

Proof. We first consider the case of a prime power \(m = p^e\). Let \(a\) be a primitive root \((\mod p^e)\) and \(\alpha\) be the generator of the character group defined by
\[
\alpha(a^j) = e^{2\pi i j / p^e}.
\]
For any rational function $q = q(x) = f(x)/g(x)$ with integer coefficients, we define the character sum

$$S_{p^e}(q) = \sum_{x=1}^{p^e} \alpha(q(x)),$$

where it is understood that $1/g(x)$ means the multiplicative inverse of $g(x)$ (mod p^e). Following the method of critical points developed in [9], [10] and [6], we define t to be the maximum power of p dividing all of the coefficients of $g(x)f'(x) - g'(x)f(x)$, and the critical point congruence to be the congruence

$$p^{-t}(g(x)f'(x) - g'(x)f(x)) \equiv 0 \pmod{p}.$$ \hspace{2cm} (31)

The critical points are the solutions x of the congruence (31) with $p \nmid f(x)g(x)$. By [6, Theorem 1.1], if $e \geq t + 2$ and (31) has a unique critical point of multiplicity 1 then $|S_{p^e}(q)| = p^{e+t}$. If $e \geq t + 2$ and there is no critical point, then $S_{p^e}(q) = 0$. We claim that one of these two options always occurs for the case at hand.

Let χ, ψ be characters (mod p^e) and say $\chi = \alpha^u, \psi = \alpha^v$, for some positive integers $u, v \leq \phi(p^e)$. Then

$$\chi(x)\psi((c-x)^{-1}) = \alpha \left(\frac{x^u}{(c-x)^v} \right).$$

With $q(x) = \frac{x^u}{(c-x)^v}$ we have

$$g(x)f'(x) - g'(x)f(x) = ux^{u-1}(c-x)^v + vx^u(c-x)^{v-1}$$

$$= x^{u-1}(c-x)^{v-1}(uc + (v-u)x),$$

and so $p^e \mid (u, v)$, and so there is either no critical point or a single critical point of multiplicity one. Thus, if $t \leq e - 2$ then

$$\left| \sum_{x=1}^{p^e} \chi(x)\psi((c-x)^{-1}) \right| = |S_{p^e}(q)| \leq p^{e+t}.$$

Otherwise, $t = e - 1$. In this case, both χ and ψ are characters (mod p) and we have by the Weil bound [22] for character sums over finite fields (see eg. [7]) that

$$\left| \sum_{x \in (c-x)} \chi(x)\psi((c-x)^{-1}) \right| \leq p^{e-1} \left| \sum_{x \in (c-x)} \alpha \left(\frac{x^u}{(c-x)^v} \right) \right| \leq p^{e-1} \sqrt{p} = p^{e+t}.$$

Suppose that $p^{t1} \mid u$, $p^{t2} \mid v$. Then $\text{cond}(\chi) = p^{e-t1}$ while $\text{cond}(\psi) = p^{e-t2}$, and we see that

$$[\text{cond}(\chi), \text{cond}(\psi)] = p^{e-\min(t1, t2)} = p^{e-t},$$
and
\[p^{e+1} = \frac{p^e}{\sqrt{p^{e-1}}} = \frac{p^e}{\sqrt{\text{cond}(\chi), \text{cond}(\psi)}}. \]

For general \(m \) we write \(m = p_1^{\epsilon_1} p_2^{\epsilon_2} \cdots p_\ell^{\epsilon_\ell} \) with the \(p_i \) distinct primes,
\[\chi = \chi_1 \chi_2 \cdots \chi_\ell, \quad \psi = \psi_1 \psi_2 \cdots \psi_\ell, \]
with \(\chi_i, \psi_i \) characters (mod \(p_i^{\epsilon_i} \)), and
\[S_m(q) = \prod_{i=1}^\ell S_{p_i^{\epsilon_i}}(A, q), \]
for appropriate integers \(A \) with \((A, p_i) = 1 \). Then
\[|S_m(q)| \leq \prod_{i=1}^\ell \frac{p_i^{\epsilon_i}}{\sqrt{\text{cond}(\chi_i), \text{cond}(\psi_i)}} = \frac{m}{\sqrt{\text{cond}(\chi), \text{cond}(\psi)}}. \]

From the preceding lemma we have,
\[E_3 = \frac{1}{\phi(m)^2} \sum_{\chi, \psi \neq \chi_0 \psi \neq \chi_0} \left(\sum_{\substack{d \in \mathbb{N} \\ (c - b A)^{-1} \psi(A^{-1}) \neq 0}} \chi((c - b A)^{-1}) \psi(A^{-1}) \right) \times \sum_{x_i \in I_i} \chi(x_1 \cdots x_k) \sum_{y_i \in J_i} \psi(y_1 \cdots y_k). \]

Thus,
\[|E_3| \leq \frac{1}{\phi(m)^2} \sum_{\substack{d \mid m \\ d > 1}} \sum_{\psi \neq \psi_0} \frac{m}{\sqrt{\text{cond}(\chi) \text{cond}(\psi)}} \left| \sum_{x_i \in I_i} \chi(x_1 \cdots x_k) \psi(y_1 \cdots y_k) \right| \]
\[\leq \frac{m}{\phi(m)^2} \sum_{\substack{d \mid m \\ d > 1}} \frac{\phi(d) \phi(e)}{\sqrt{\text{cond}(\chi) \text{cond}(\psi)}} \left| \sum_{x_i \in I_i} \chi(x_1 \cdots x_k) \psi(y_1 \cdots y_k) \right| \]
\[\leq \frac{m}{\phi(m)^2} \sum_{\substack{d \mid m \\ d > 1}} \frac{\phi(d) \phi(e)}{\sqrt{\text{cond}(\chi) \text{cond}(\psi)}} \left| \sum_{x_i \in I_i} \chi(x_1 \cdots x_k) \psi(y_1 \cdots y_k) \right| \]
Letting $L = [d, c]$ and applying Lemma 13 we obtain

$$|E_3| \ll \frac{m}{\phi(m)^2} \prod_{i=1}^n |I_i||J_i|^{(1-\frac{1}{2})-\frac{2}{\pi} + \frac{1}{\pi} \sum_{L | m} \frac{1}{\sqrt{L}} \left(\sum_{d | L} \phi(d)d \frac{1}{2\pi^2}(k-4) d^2 \frac{1}{4\pi^2}(k-4) \right)^2} m^\varepsilon \ll \sqrt{m} \prod_{i=1}^n |I_i||J_i|^{(1-\frac{1}{2})-\frac{2}{\pi} + \frac{1}{\pi} m \frac{1}{2\pi^2}(k-4) + \varepsilon \frac{1}{m_1^\frac{1}{2}}(k-4)}.$$

6.4. Proof of Theorem 2

From equation (21), the value for the main term in (27) and the estimates for the error terms E_1, E_2 and E_3 in the preceding sections we see that

$$N^* = \prod_{i=1}^n |I_i||J_i| \prod_{p | m} \frac{p-2}{p-1} + O \left(\sqrt{m} \prod_{i=1}^n |I_i||J_i|^{(1-\frac{1}{2})-\frac{2}{\pi} + \frac{1}{\pi} m \frac{1}{2\pi^2}(k-4) + \varepsilon \frac{1}{m_1^\frac{1}{2}}(k-4)} \right)$$

$$+ O \left(\prod_{i=1}^n |I_i| \prod_{p | m} \frac{k}{\phi(m)} |J_i|^{(1-\frac{1}{2})-\frac{2}{\pi} + \frac{1}{\pi} m \frac{1}{2\pi^2}(k-4) + \varepsilon \frac{1}{m_1^\frac{1}{2}}(k-4)} \right)$$

$$+ O \left(\prod_{i=1}^n |I_i| \prod_{p | m} \frac{k}{\phi(m)} |J_i|^{(1-\frac{1}{2})-\frac{2}{\pi} + \frac{1}{\pi} m \frac{1}{2\pi^2}(k-4) + \varepsilon \frac{1}{m_1^\frac{1}{2}}(k-4)} \right).$$

References

[3] A. Ayyad and T. Cochrane, The congruence $ax_1x_2 \cdots x_k + bx_{k+1}x_{k+2} \cdots x_{2k} \equiv c \pmod{p}$, *Proc. Amer. Math. Soc.* 145 (2017), no. 2, 467-477.

[8] T. Cochrane and S. Shi, The congruence $x_1x_2 \equiv x_3x_4 \pmod{m}$ and mean values of character sums, *J. Number Theory* 130 no. 3 (2010), 767-785.

