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Abstract

For a given subset A C G of a finite abelian group (G, o), we study the problem of
finding a large packing set B for A, that is, a set B C G such that |Ao B| = |A||B].
Ruzsa’s covering lemma and the trivial bound imply the existence of such a B of
size |G|/|A|> < |G|/|Ao A71| <|B| < |G|/|A|. We show that these bounds are in
general optimal. More precisely, denote by v(A) the maximal size of an A-packing
set, then essentially any v(A) in the interval [|G|/|A|?,|G]/|A]] can appear for some
|A|. The case that G is the multiplicative group of the finite field F,, of prime order
pand A = {1,2,...,\} for some positive integer A is particularly interesting in view
of the construction of limited-magnitude error correcting codes. Here we construct
a packing set B of size | B| > p(Alogp)~! for any A < 0.9p'/2. This result is optimal
up to the logarithmic factor.

1. Introduction

Given two subsets A and B of a finite abelian group (G, o) with unit 1, the product
set of A and B is defined as

AoB:={aob:ac€ Abe B}.
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We consider the cardinality of this product set. A simple observation is that the
trivial bound
|A o B| < min{|A||B|, |G}

holds for any A, B C G.
In this paper, we seek to answer the following question: given () # A C G, what
is the size of the largest set B C G such that |A o B| = |A||B|? We call any B
with |A o B| = |A||B| an A-packing set and denote by v(A) the maximal size of an
A-packing set:
v(A) :=max{|B|: BC G,|Ao B|=|A||B|}.

Suppose that we have such a set B. Since |A||B| = |Ao B| < |G|, it must be the
case that |B| < |G|/|A| and thus

|G|J

v(A) < {— .

|A]

For some interesting sets A, it can be easily established that v(A) is close to |G|/|Al.

For example, if A C G is a subgroup with distinct cosets z; 0 A,z00 A, ...,z 0 A
where k = |G|/|A|, we can take

B ={zy,x9,...,2k} (1)
and then |A o B| = |A||B] = |G|. Thus v(A) = |B| = |G|/|4]. Conversely, if
A = {z1,29,...,2} with elements in different cosets of a subgroup B of order

|G|/k, B is an A-packing set.

The case that G is the multiplicative group Fy of the finite field ), of p elements
is particularly interesting in view of applications. More precisely, if p is prime and
A = {1,2,..., A} for some positive integer A, the authors in [9, 10, 11] used an
A-packing set B to construct codes that correct single limited-magnitude errors.
For more details see also [14, Section 6.2.2]. We denote

v(A) =v({1,2,...,A}).

Ruzsa’s Covering Lemma, see [20, Lemma 2.14] or [16], guarantees for any A C G
the existence of B C G with |[A o B| = |A||B] and G C Ao A™! o B and we get
immediately

G
A) > | T 2
U )_’VA0A1| (2)
and, since |4 o A7 < |A|?,
Gl
A > | —|. 3
vz |5 0
For the convenience of the reader we will give a very short proof of (2) in Sec-

tion 2. Equation (2) and its short proof have already known before by Buratti [4,
Proposition 2.4].
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In the above result, A o A~! denotes the set {aob~! : a,b € A}, which we call
the ratio set of A. Note that the bound (2) is tight, up to multiplicative constants?,
in the case when the ratio set satisfies the bound |4 o A=!| < |A|. This generalizes
the result given by the simple construction (1) when A is a multiplicative subgroup
to the broader class of sets A with small ratio set.

In fact, the weaker bound (3) is also optimal up to multiplicative constants
in general, as the construction described in Section 2 shows. This construction
can be modified to see that essentially any integer value v(A) in the interval
[|G|/|A|?,|G|/|A|] can be attained.

Section 3 deals with the special case when G = F; with a prime p and A =
{1,2,...,A}. In this case we use the standard notation AB for the product set,
rather than A o B as above. Since |[AA™!| > min{\? p}, (2) is only of limited
power in this case. However, we give a simple construction which proves that?

p
v(A) > Alogp

under the condition that A < 0.9p'/2.

Section 4 contains a result on the group of symmetries Sym(B) = {z € G :
x o B = B} of any A-packing set B of maximal size.

Finally in Section 5, we briefly discuss the related problem of finding a small
A-covering set B, that is, a set B C (G such that Ao B = G.

2. Proof of (2) and Proof of the Optimality of (3)

Proof of (2). Let B C G be any set with v(A) = |B|. Then, by the maximality of
B, for each z € G we have (Aox)N (Ao B) # (), that is, G C A~ o Ao B and hence
|G| <|A7to Ao B| <|Ao A7Y||B|. Thus |B| > |G|/|A0o A7L|. O

The following construction shows that (3) is (up to a multiplicative constant)
optimal.

Let H = {g,4°,...,g"} C G be any cyclic subgroup of G with |H| =k > 2. Let
d = [vk] > 2 and define

_ 2
A ={g,0% ..., d%  Ars={g% g ... gl g"}.

Define A = A; U A. Note that |A| < 2d and that Ao A=1 = H.
Now suppose that |4 o B| = |A||B] for some B C G. This is true if and only if
there are no non-trivial solutions to the equation

aloblzazobg, (al,ag,bl,bz)EAXAXBXB,

Here and throughout the paper, the notation X < Y and Y >> X indicates that there exists
an absolute constant ¢ > 0 such that X <cY. If both X < Y and Y < X, we write X & Y.
2We denote by log the natural logarithm.



INTEGERS: 18 (2018) 4

which happens if and only if
(AcA™HYNn(BoB™') ={1}.

We want to show that B cannot be too large. Since Ao A~ = H, it must be the
case that (Bo B~1)N H = {1}. But then B cannot contain more than one element
from each coset of H. Indeed, if by,by € B with by = x o hy and by = x o hy and
with hy, ho € H distinct, it follows that

bioby' =hjohyt € H\ {1} = Ao A™"\ {1}.

Therefore
|B| < 1G] < il < 16|G‘.
~ k (d—1)2 = |A)?
This shows that v(A) < |G|/|A|?>. Furthermore, one can modify this construction
by adding more elements from H to the set A in order to obtain, for any 0 < o < 1,
aset A’ with |[A’ o A’ ~ |A'|'T® and with v(A4’) < |G|/|A" o A’~1|. This gives a
broader class of sets for which the bound (2) is tight up to multiplicative constants.

3. The Case When G =Fy and A = {1,2,...,A}

In this Section, we consider the case of the multiplicative group F, of a finite prime
field and fix A to be the interval A = {1,2,...,A} C F;. Recalling the notation
from the introduction, we seek lower bounds for v(A). Inequality (2) does not
immediately give a strong result because of the following proposition.

Proposition 1. For A={1,2,...,A} CF}; we have [AA™"[ > min{\*, p}.
Proof. For the set Az = {1,2,..., A} of integers we have

AZAil = {alf1 ca,b € Az, ged(a,b) = 1}
and thus

42451 = (1) + 2(p(2) + 9(38) + ...+ p(N)) = 5 X+ O(Alog A)

by [8, Theorem 330], where ¢ is Euler’s totient function. If A < p'/? and 1 <
ai,bi,as,by < A, then the congruence albfl = agbgl mod p is equivalent to the
integer equation aj/b; = ag/by. Hence, the number of different elements of AA™!
is the same as of Az/Az. If A > p'/2, A contains the subset A’ = {0,1,..., [p'/?]}
and thus |[AA7Y > |[A/A71| > p. O
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Remark. For A > p'/?1log' ™ p we have |[AA~!| = (1 + o(1))p, see [6]. This result
was later extended to all A\ with p'/2 = o()\), see [7, Theorem 1.7]. Also in [6], it is
mentioned that AA~! = F if and only if A > 251,

With Proposition 1 in mind, (2) implies that v(\) > p/A2. An explicit construc-
tion of such a set B was given in [14, Section 6.2.2].

In fact, we can provide a simple construction of a set B which is almost as large as
possible with the property that |AB| = |A||B|. Identify F, with the set of integers
{1,2,...,p} in the obvious way and define

B::{me]Fp:)\<a:§§,xisprime}.

This set has the property that |AB| = |A||B|. Indeed, suppose for a contradiction
that we have a non-trivial solution to the equation

ab=2at, (a,d,b,b)€e Ax Ax B x B.

Since A and B are both contained in sufficiently small intervals, there are no wrap-
around issues, and so we must have a non-trivial solution to the equation

ab = a'b’, (a,a’,b, b/) € Ay x Ay, X By, X By, (4)
where
Az ={1,2,...,A\} CZ, Bz={ze€Z:A<z< g;\,a:isprime}.

However, unique prime factorisation of the integers implies that the only solutions
to (4) are trivial.
Furthermore, by the Prime Number Theorem,

P A
log(p/A)  logA”

In particular, if A < 0.9,/p, then we have |B| > #;;p' We summarize this in the
following statement:

|B| >

Theorem 1. Let A= {1,2...,A\} CF; with A <0.9,/p. Then

4
A .
v(A) > Nogp

Remarks

1. Using explicit versions of the Prime Number Theorem, see [15],

<m(z) <co

C1 < < if x>z
log z log z

we can explicitly calculate the implied constant in Theorem 1.
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2. The same approach applies to any residue class ring Z,, with composite n.

3. We may also take the larger packing set of rough numbers

B={zeF,: A<z < g,x is not divisible by a prime < A}.

We have? »
B ~
where w is Buchstab’s function and u = %, see [3] or [18, Paragraph

IV.32]. In particular, if p/3 < X < p'/2 we have 1 < u < 2 and w(u) =
1 log A

u — Tog(p/N)
to e, where v is the Euler-Mascheroni constant, see [2]. In particular, ift

X = e°(°gP) is subexponential, we get |B| > T1ogx and so v(A) > .

However, for u — oo, the Buchstab function w(u) converges

4. In some special cases one can get rid of the logarithmic factor. For example,
take A = 2 and p = +3 mod 8, that is, 2 is a quadratic non-residue modulo
p. Then the quadratic residues modulo p are a packing set of maximal size.
Similarly, if 1, 2 and 3 are in different cosets of the group B of cubic residues
modulo p (take for example p = 7 or p = 37), then B is a packing set of
maximal size. However, in general we do not know if the logarithmic factor
can be completely removed.

4. Symmetries

Let A C G be a set and B be an A-packing set. In this section we obtain a general
result about symmetries of our set of translations B (this is in spirit of paper [17]).
Surprisingly, the set of symmetries of this extremal set B does not grow after taking
the ratio Bo B~1.
Consider an arbitrary set T C G. Denote by Sym(7T') the group of symmetries of
T that is
Sym(T)={xe€G : zoT =T}.

Notice that 1 € Sym(T’), Sym(7T") = Sym™*(T") and Sym(T) C T o T~

Proposition 2. Let A C G be a set and let B be an A-packing set of mazximal size.
Then
Sym(B) = Sym(Bo B~).

3We write f(z) ~ g() if lim ) =1,
€Tr— 00
1) = ofate) s i, 1) 0
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Further
(Sym(Ao A1) N (Ao A™") = (Sym(Ao A™")\ Sym(B))| [{1}.?

Proof. The inclusion Sym(B) C Sym(B o B~1) is trivial. Suppose that there is an
element z € Sym(B o B~!) but « ¢ Sym(B). It follows that there is b € B such
that box ¢ B. As in the proof of (2) in Section 2, we get Bo Ao A~! D G and
see that box = b oaq o a;l for some a1,as € A and some b’ € B. Hence because
x € Sym(B o B™1), we get

bo(M) t=boxo(t) t=ajoay!

for some b,b' € B. But |A o B| = |A||B| and thus a; = ap, b = . It gives us
box =1 € B and this is a contradiction.
Taking x € Sym(A4 o A7)\ Sym(B) and repeating the previous arguments, we
obtain
bo (b/)71 = aj © (ZB o ag)il = C~L1 ] ((Nl2)71

and hence, b =1/, a; = a3. Thus x = a; o a;l € Ao A~! and we get
Sym(Ao A7)\ Sym(B) C Ao At

But Sym(B) € BoB~ ! and (BoB 1)N(A0A™!) = {1} thus Sym(B)N(AcA~1!) =
{1}. This completes the proof. O

If B is any A-packing set of maximal size, then the appearance of the set Sym(B
in our problem of computing v(A) is natural in view of a trivial equality v(A4 o
Sym(B)) = v(A) = |B|.

5. Covering Sets

Given A C G, we say that B C G is an A-covering set if Ao B = G. The covering
number of A, denoted cov(A), is the size of the smallest A-covering set. There is a
natural connection between covering and packing problems, and likewise with the
problems of determining the values of cov(A) and v(A). In particular, it follows
from Ruzsa’s Covering Lemma that

cov(Ao A1) < v(A).

The problem of determining cov(A) in the case G = F;, was studied in [5, 12, 13],
where A = {1,2,...,A}. A more general study of the problem can be found in

5We denote by A LI B the union of two disjoint sets.
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[1]; see Section 3 therein for background on this problem in the finite setting. In
particular, it is proved in [1, Corollary 3.2] that for any finite group G and A C G

|—j|' < cov(4) < %aogw +1). (5)
By contrast with (5), we showed in Section 2 of this paper that v(A) can essentially
take any value in between |G|/|A|? and |G|/|A|. Tt is interesting to note that the
size of cov(A) is much more restricted than that of v(A).

In the special case G = F, and A = {1,2,...,\} we have the improvement
cov(A) < 2p/X by [5, Theorem 2]. However, an interesting observation is that if we
instead take A to be the middle third interval, then the log factor is needed and
cov(A) = log|A|. In particular, this gives us a constructive example (as opposed to
random choice; see, say, [1]) of a set such that the upper bound in (5) is sharp.

Proposition 3. For a prime p > 3 let
A={zreF, : x€[p/3,2p/3]}.

Then we have
log(p — 1)
log(3)

Proof. Let T'={x € F;, : x ¢ [p/3,2p/3]}. For A € {1,...,p— 1} let inv(}\) €
{1,...,p — 1} be the unique integer with inv(A)A = 1 mod p. By the simultaneous
version of the Dirichlet Approximation Theorem, see [19], for any integer 1 < k <
log(p—1)/log(3) and Aq,..., A\, € {1,...,p— 1}, there is an integer 1 <n < p and
integers aq, ..., ay such that

< cov(A) < 3(log(p) + 1).

linv(\)n/p —a;| <1/(p—1)V* < 1/3

fori=1,..., k. Inother words, for any A1,..., Ay € Fj with 1 <k < (p—1)/log(3)
there is n € T N---NAT. Letting B = {\1,..., A}, we see that n ¢ AB and
hence AB # Iy, for any B with 1 < |B| < log(p —1)/log(3). By the definition this
means that cov(A) > log(p — 1)/log(3). The upper bound follows from (5). O
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