
#A39 INTEGERS 18 (2018)

EFFICIENT COMPUTATION OF TERMS OF LINEAR
RECURRENCE SEQUENCES OF ANY ORDER

Dmitry I. Khomovsky
Lomonosov Moscow State University, Moscow, Russia

khomovskij@physics.msu.ru

Received: 10/21/16, Accepted: 4/15/18, Published: 4/20/18

Abstract
In this paper we give e�cient algorithms for computing second-, third-, and fourth-
order linear recurrences. We also present an algorithm scheme for computing terms
with the indices N, . . . , N+n�1 of an nth-order linear recurrence. Unlike Fiduccia’s
algorithm, our approach uses certain formulas for modular polynomial squarings.

1. Introduction

Let {Wk(a0, . . . , an�1; p0 . . . pn�1)} be an nth-order linear recurrence defined by the
relation

fk+n = p0fk+n�1 + p1fk+n�2 + . . . + pn�1fk, (1)

with the initial values Wi = ai (0 i n� 1). The characteristic polynomial is

g(x) = xn � (p0x
n�1 + p1x

n�2 + . . . + pn�1). (2)

Widely known particular cases are the Lucas sequences {Uk(P,Q)} and {Vk(P,Q)}.
They are defined recursively by

fk+2 = Pfk+1 �Qfk, (3)

with the initial values U0 = 0, U1 = 1, V0 = 2, V1 = P . The characteristic
polynomial in this case is x2 � Px + Q.

Computation of linear recurrences has been studied by many authors [5, 8, 12].
The most e↵ective algorithm was proposed by Fiduccia in 1985. To obtain the
N th term of an nth-order linear recurrence using this method, we need to compute
r(x) = xN mod g(x), where g(x) = xn �

Pn�1
i=0 pixn�1�i. Then we compute r(C),

INTEGERS: 18 (2018) 2

where C is the n⇥ n companion matrix of the linear recurrence:

C =

0
BBBBB@

0 pn�1

1 pn�2

1 pn�3

. . .
...

1 p0

1
CCCCCA

. (4)

Finally, we multiply the row vector of initial values (a0, . . . , an�1) by the first column
of r(C) and obtain the N th term. The computational complexity of this algorithm
is O(µ(n) log N + n3). Here, µ(n) is the total number of operations required to
multiply two polynomials of degree n� 1 in the polynomial ring. Fiduccia actually
manages to exploit the structure of the matrix C in order to decrease the complexity
to O(µ(n) log N), see Theorem 3.1 and Proposition 3.2 in [5].

2. Computation of Second-order Linear Recurrences

Let the second-order linear recurrence sequence {Wk} be defined by the relation1

Wk+2 = PWk+1 � QWk, with W0 = A,W1 = B. It was intensively studied by
Horadam [9, 10].

For the Lucas sequences we have the following matrix formula:✓
Uk+1 Vk+1

Uk Vk

◆
= M

✓
Uk Vk

Uk�1 Vk�1

◆
, where M =

✓
P �Q
1 0

◆
. (5)

Then ✓
Uk+1 Vk+1

Uk Vk

◆
= Mk

✓
1 P
0 2

◆
. (6)

Lemma 1. For the sequence {Wk(A,B;P,Q)} the following holds:

Wk = BUk �AQUk�1, (7)

Wk = (B �AP)Uk + AUk+1. (8)

Proof. We have:✓
Wk+1

Wk

◆
= Mk

✓
B
A

◆
= BMk

✓
1
0

◆
+ AMk

✓
0
1

◆
= B

✓
Uk+1

Uk

◆
+ AMk�1

✓
�Q
0

◆

=
✓

BUk+1 �AQUk

BUk �AQUk�1

◆
.

From this we get (7). By the definition of the Lucas sequence QUk�1 = PUk�Uk+1.
Using this, we obtain (8).

1For recurrences of order greater than 2 we will use the relation (1).

INTEGERS: 18 (2018) 3

The obtained result is known (for example, see [9]). We see that the computation
of remote terms of {Wk(A,B;P,Q)} can be done by the Lucas sequence {Uk(P,Q)}.
In a sense, {Uk} is a basis.

We note that the result given in the following theorem is known, moreover, there
is a generalization [16]. But we still give the proof, since we will use a similar
approach for higher-order linear recurrences.

Theorem 1. Let {Uk(P,Q)} be the Lucas sequence. Then
✓

Umk+1

Umk

◆
=
✓

Uk+1 �QUk

Uk Uk+1 � PUk

◆m�1✓
Uk+1

Uk

◆
. (9)

Proof. We use the notations

S =
✓

1 P
0 2

◆
, S�1 =

✓
1 �P/2
0 1/2

◆
. (10)

We have ✓
Umk+1

Umk

◆
= Mmk

✓
1
0

◆
= (MkSS�1)m�1

✓
Uk+1

Uk

◆
. (11)

By (6) and (10),

MkSS�1 =
✓

Uk+1 (�PUk+1 + Vk+1)/2
Uk (�PUk + Vk)/2

◆
. (12)

By Lemma 1 we can get the classical identity Vk = PUk � 2QUk�1, with the help
of which we eliminate Vk, Vk+1 from (12). Then

MkSS�1 =
✓

Uk+1 �QUk

Uk �QUk�1

◆
. (13)

Since �QUk�1 = Uk+1 � PUk, we get

MkSS�1 =
✓

Uk+1 �QUk

Uk Uk+1 � PUk

◆
. (14)

Finally, we can modify (11) into (9).

If m = 2 in (9), then we obtain the following identities:

U2k = Uk(2Uk+1 � PUk), (15)

U2k+1 = U2
k+1 �QU2

k . (16)

If we replace k by k + 1 in (15) and use Uk+2 = PUk+1 �QUk, then we obtain

U2k+2 = Uk+1(PUk+1 � 2QUk). (17)

INTEGERS: 18 (2018) 4

Now using (15), (16), and (17) we can present an algorithm for computing two
terms of {Uk(P,Q)} with the indices N and N + 1. We need four temporary
memories: u1, u2, U1, U2. In fact, the number of temporary memories can be reduced
by eliminating u2.

Algorithm 1 Computing the Lucas sequence {Uk(P,Q)}
Input: N =

Pm�1
i=0 bi2i, (bm�1 = 1)

P,Q
Output: UN , UN+1

1: U1 1; U2 P
2: for j from m� 2 to 0 by �1 do
3: u1 U1; u2 U2

4: if bj = 1 then
5: U1 u2

2 �Qu2
1; U2 u2(Pu2 � 2Qu1)

6: else if
7: U1 u1(2u2 � Pu1); U2 u2

2 �Qu2
1

8: end if
9: end for

11: return U1, U2

Such a computational method was discussed by Reiter in [14]. Previously [4], it was
proposed for the Fibonacci numbers.

Suppose we have computed UN , UN+1 by Algorithm 1, then with the help of (8)
we get WN . Using WN+1 = BUN+1 � AQUN we get WN+1. Thus, in the general
case, to compute the terms UN , UN+1 and WN , WN+1 we need 3m multiplications2,
where m = blog2 Nc + 1. But when Q = 1 or more generally Q = a2, we can
slightly transform Algorithm 1 so that we need only 2m multiplications. Indeed,
when Q = 1, we replace the expression u2

2 � u2
1 by (u2 � u1)(u2 + u1) at steps 5, 7.

When Q = a2, we use the formula u2
2 �Qu2

1 = (u2 � au1)(u2 + au1).

2.1. Comparison With Other Existing Algorithms

Currently, the main algorithm [11] for quick computation of the Lucas sequence
terms UN , VN uses the following properties:

V2k+1 = Vk+1Vk � PQk, V2k = V 2
k � 2Qk,

U2k+1 = Uk+1Vk �Qk, U2k = UkVk. (18)

When Q = ±1, the computation of UN and VN requires 3m multiplications in the
worst case (N is odd), and 2m in the best case (N is a power of two). When
Q 6= ±1 and without any assumption about N , this algorithm needs less than 4m
multiplications but not less than 3m. We see that Algorithm 1 is more e�cient

2We imply that P, Q are not large. So multiplications that involve them are similar to additions.

INTEGERS: 18 (2018) 5

in most cases, but there is an important case when the algorithm o↵ered in [11]
is better. This is so when we need to compute the term VN (P, 1) or VN (P,�1).
For N = 2s(2d + 1) the computation of VN (P, 1) by the algorithm in [11] requires
2blog2(2d + 1)c + s multiplications while Algorithm 1 needs 2blog2(2d + 1)c + 2s.
So in applications such as Lucas-based cryptosystem [2] and Lucas-Lehmer-Risel
primality test [15], it is preferable to use the algorithm o↵ered in [11].

Now we compare Algorithm 1 with Fiduccia’s algorithm. The characteristic
polynomial is g(x) = x2�Px + Q. To compute xN mod g(x), Fiduccia’s algorithm
uses the classical method of repeating squaring. For an arbitrary linear polynomial
h(x) = �u1x + u2, we have h2(x) mod g(x) = �u1(2u2 � Pu1)x + u2

2 �Qu2
1. As is

seen above, we can use formulas (15) and (16) for modular polynomial squarings.
Therefore, Algorithm 1, together with the formula (8), is one way of implementing
Fiduccia’s algorithm for second-order linear recurrences, where the explicit formulas
for modular polynomial squarings are used.

3. Computation of Third-order Linear Recurrences

We will follow the notation for third-order linear recurrences according to [13]. The
sequences {Xk(p, q, r)}, {Yk(p, q, r)}, and {Zk(p, q, r)} are defined recursively by

fk+3 = pfk+2 + qfk+1 + rfk, (19)

with the initial values X0 = 0, X1 = 0, X2 = 1, Y0 = 0, Y1 = 1, Y2 = 0, Z0 = 1,
Z1 = 0, Z2 = 0. Similar to (6), we have
0
@Xk+2 Yk+2 Zk+2

Xk+1 Yk+1 Zk+1

Xk Yk Zk

1
A = MkS, where M =

0
@p q r

1 0 0
0 1 0

1
A , S =

0
@1 0 0

0 1 0
0 0 1

1
A .

(20)

Lemma 2. Let the sequence {Wk(a0, a1, a2; p, q, r)} be defined by the relation

Wk+3 = pWk+2 + qWk+1 + rWk, (21)

with the initial values W0 = a0,W1 = a1,W2 = a2. Then

Wk = a2Xk + (a1q + a0r)Xk�1 + a1rXk�2, (22)

Wk = (a2 � a1p� a0q)Xk + (a1 � a0p)Xk+1 + a0Xk+2. (23)

INTEGERS: 18 (2018) 6

Proof. We have:0
@Wk+2

Wk+1

Wk

1
A = Mk

0
@a2

a1

a0

1
A = a2M

k

0
@1

0
0

1
A+ a1M

k

0
@0

1
0

1
A+ a0M

k

0
@0

0
1

1
A

= a2

0
@Xk+2

Xk+1

Xk

1
A+ a1M

k�1

0
@q

0
1

1
A+ a0M

k�1

0
@r

0
0

1
A

= a2

0
@Xk+2

Xk+1

Xk

1
A+ (a1q + a0r)

0
@Xk+1

Xk

Xk�1

1
A+ a1M

k�2

0
@r

0
0

1
A

=

0
@a2Xk+2 + (a1q + a0r)Xk+1 + a1rXk

a2Xk+1 + (a1q + a0r)Xk + a1rXk�1

a2Xk + (a1q + a0r)Xk�1 + a1rXk�2

1
A . (24)

So we obtain (22). With the help of Xk�2 = (Xk+1� pXk� qXk�1)/r and Xk�1 =
(Xk+2 � pXk+1 � qXk)/r we get (23).

By Lemma 2 we get the following:

Yk = qXk�1 + rXk�2, (25)
Zk = rXk�1, (26)

Yk = Xk+1 � pXk, (27)
Zk = Xk+2 � pXk+1 � qXk. (28)

Theorem 2. Let {Xk(p, q, r)} be the third-order linear recurrence sequence with
the initial values X0 = 0,X1 = 0,X2 = 1. Then0
@Xmk+2

Xmk+1

Xmk

1
A =

0
@Xk+2 qXk+1 + rXk rXk+1

Xk+1 Xk+2 � pXk+1 rXk

Xk Xk+1 � pXk Xk+2 � pXk+1 � qXk

1
A

m�10
@Xk+2

Xk+1

Xk

1
A .

(29)

Proof. According to (20), we have0
@Xmk+2

Xmk+1

Xmk

1
A = Mmk

0
@1

0
0

1
A =

�
Mk
�m�1

0
@Xk+2

Xk+1

Xk

1
A . (30)

Using (25)� (28) we eliminate Yk, Yk+1, Yk+2, Zk, Zk+1, Zk+2 from Mk. This may
be done in such a way that Mk will contain only Xk, Xk+1, Xk+2. We obtain

Mk =

0
@Xk+2 qXk+1 + rXk rXk+1

Xk+1 Xk+2 � pXk+1 rXk

Xk Xk+1 � pXk Xk+2 � pXk+1 � qXk

1
A . (31)

Finally, we can modify (30) into (29).

INTEGERS: 18 (2018) 7

If we put m = 2 in (29), then we get the following formulas:

X2k+2 =X2
k+2 + Xk+1(qXk+1 + 2rXk), (32)

X2k+1 =rX2
k + Xk+1(2Xk+2 � pXk+1), (33)

X2k =X2
k+1 + Xk(2Xk+2 � 2pXk+1 � qXk). (34)

Remark. It is clear that Xk+1(P,�Q, 0) = Uk(P,Q). Therefore, if we put r = 0
and q = �Q in these formulas and subtract 1 from all indices, then up to the
substitution of U for X we obtain the identities for second-order recurrences.
Remark. If we calculate the remainder

(c1x
2 + c2x + c3)2 mod x3 � px2 � qx� r, (35)

then we obtain the formulas similar to (but not the same as) (32)�(34) for squaring
of quadratic polynomials modulo g(x) = x3 � px2 � qx � r. They can be used in
Fiduccia’s algorithm for computing third-order recurrences.

To get an algorithm for computing XN , XN+1, XN+2 similar to the binary
exponentiation we need to be able to compute X2k, X2k+1, X2k+2, X2k+3 using Xk,
Xk+1, Xk+2. So we need another formula that helps us to compute X2k+3. It can be
obtained from (33) if we replace k by k +1 and use Xk+3 = pXk+2 + qXk+1 + rXk.
It is as follows:

X2k+3 = rX2
k+1 + Xk+2(pXk+2 + 2qXk+1 + 2rXk). (36)

Now we present an algorithm based on the formulas (32)� (34), (36). We need to
use six temporary memories.

Algorithm 2 Computing the third-order linear recurrence {Xk(p, q, r)}
Input: N =

Pm�1
i=0 bi2i, (bm�1 = 1)

p, q, r
Output: XN , XN+1, XN+2

1: X1 0; X2 1; X3 p
2: for j from m� 2 to 0 by �1 do
3: x1 X1; x2 X2; x3 X3

4: if bj = 1 then
5: X1 rx2

1 + x2(2x3 � px2); X2 x2
3 + x2(qx2 + 2rx1);

X3 rx2
2 + x3(px3 + 2qx2 + 2rx1)

6: else if
7: X1 x2

2 + x1(2x3 � 2px2 � qx1); X2 rx2
1 + x2(2x3 � px2);

X3 x2
3 + x2(qx2 + 2rx1)

8: end if
9: end for

11: return X1,X2,X3

INTEGERS: 18 (2018) 8

We will imply that multiplications by p, q, r can be simulated by additions. Then
algorithm 2 needs 3m multiplications and 3m squarings. At the end of this section,
we refer to some applications that use computation of remote terms of third-order
linear recurrence sequences; see [1, 3, 6, 7].

4. Computation of Fourth-order Linear Recurrences

Since this section is similar to the previous one, we give only the main formulas and
the final algorithm.

The fourth-order linear recurrence {Wk(a0, a1, a2, a3; p0, p1, p2, p3)} is defined
recursively by

fk+4 = p0fk+3 + p1fk+2 + p2fk+1 + p3fk, (37)

with the initial values W0 = a0,W1 = a1, W2 = a2, W3 = a3. Denote the sequence
{Wk(0, 0, 0, 1; p0, p1, p2, p3)} by {Xk(p0, p1, p2, p3)}. The formulas, which can be
obtained by the matrix method, are:

Wk =a3Xk + (a0p3 + a1p2 + a2p1)Xk�1 + (a1p3 + a2p2)Xk�2 + a2p3Xk�3, (38)
Wk =(a3 � a2p0 � a1p1 � a0p2)Xk + (a2 � a1p0 � a0p1)Xk+1+

(a1 � a0p0)Xk+2 + a0Xk+3. (39)

We will use Wk(a0, a1, a2, a3) instead of Wk(a0, a1, a2, a3; p0, p1, p2, p3). By (38),
(39), and (37) we obtain the following

Wk(0, 0, 1, 0) = p1Xk�1 + p2Xk�2 + p3Xk�3, (40)
Wk(0, 1, 0, 0) = p2Xk�1 + p3Xk�2, (41)
Wk(1, 0, 0, 0) = p3Xk�1, (42)
Wk(0, 0, 1, 0) = �p0Xk + Xk+1, (43)
Wk(0, 1, 0, 0) = �p1Xk � p0Xk+1 + Xk+2, (44)
Wk(1, 0, 0, 0) = �p2Xk � p1Xk+1 � p0Xk+2 + Xk+3. (45)

For convenience, we use the notation iWk for Wk(a0, a1, a2, a3) with only one
nonzero ai = 1. Then by the matrix method we get

0
BB@

Xmk+3

Xmk+2

Xmk+1

Xmk

1
CCA =

0
BB@

Xk+3
2Wk+3

1Wk+3
0Wk+3

Xk+2
2Wk+2

1Wk+2
0Wk+2

Xk+1
2Wk+1

1Wk+1
0Wk+1

Xk
2Wk

1Wk
0Wk

1
CCA

m�10
BB@

Xk+3

Xk+2

Xk+1

Xk

1
CCA . (46)

INTEGERS: 18 (2018) 9

With the help of (40)� (45) we transform the matrix in (46) and obtain0
BB@

Xk+3 p1Xk+2 + p2Xk+1 + p3Xk p2Xk+2 + p3Xk+1 p3Xk+2

Xk+2 Xk+3 � p0Xk+2 p2Xk+1 + p3Xk p3Xk+1

Xk+1 Xk+2 � p0Xk+1 Xk+3 � p0Xk+2 � p1Xk+1 p3Xk

Xk Xk+1 � p0Xk Xk+2 � p0Xk+1 � p1Xk R4,4

1
CCA .

(47)

Here, R4,4 = Xk+3� p0Xk+2� p1Xk+1� p2Xk. If we put m = 2 in (46), then after
simplification we get the following formulas:

X2k+3 =X2
k+3 + Xk+2(p1Xk+2 + 2p2Xk+1 + 2p3Xk) + p3X

2
k+1, (48)

X2k+2 =Xk+2(2Xk+3 � p0Xk+2) + Xk+1(p2Xk+1 + 2p3Xk), (49)
X2k+1 =X2

k+2 + Xk+1(2Xk+3 � 2p0Xk+2 � p1Xk+1) + p3X
2
k , (50)

X2k =Xk+1(2Xk+2 � p0Xk+1) + Xk(2Xk+3 � 2p0Xk+2 � 2p1Xk+1 � p2Xk).
(51)

We also need the formula for X2k+4. It can be obtained from (49) if we replace k
by k + 1 and use (37) for Xk+4. It is as follows:

X2k+4 = Xk+3(p0Xk+3+2p1Xk+2+2p2Xk+1+2p3Xk)+Xk+2(p2Xk+2+2p3Xk+1).
(52)

Algorithm 3 Computing the fourth-order linear recurrence {Xk(p0, p1, p2, p3)}
Input: N =

Pm�1
i=0 bi2i, (bm�1 = 1)

p0, p1, p2, p3

Output: XN , XN+1, XN+2, XN+3

1: X1 0; X2 0; X3 1; X4 p0

2: for j from m� 2 to 0 by �1 do
3: x1 X1; x2 X2; x3 X3; x4 X4

4: if bj = 1 then
5: X1 x2

3 + x2(2x4 � 2p0x3 � p1x2) + p3x2
1;

X2 x3(2x4 � p0x3) + x2(p2x2 + 2p3x1);
X3 x2

4 + x3(p1x3 + 2p2x2 + 2p3x1) + p3x2
2;

X4 x4(p0x4 + 2p1x3 + 2p2x2 + 2p3x1) + x3(p2x3 + 2p3x2)
6: else if
7: X1 x2(2x3 � p0x2) + x1(2x4 � 2p0x3 � 2p1x2 � p2x1);

X2 x2
3 + x2(2x4 � 2p0x3 � p1x2) + p3x2

1;
X3 x3(2x4 � p0x3) + x2(p2x2 + 2p3x1);
X4 x2

4 + x3(p1x3 + 2p2x2 + 2p3x1) + p3x2
2

8: end if
9: end for

11: return X1,X2,X3,X4

INTEGERS: 18 (2018) 10

As is seen from the algorithm, we need 6m multiplications and 4m squarings to
compute the terms XN , XN+1, XN+2, XN+3. Here, as in the previous section, we
count only “big” multiplications.

5. Computation of Linear Recurrence Sequences of Any Order

Let {Wk(a0, . . . , an�1; p0 . . . pn�1)} be an nth-order linear recurrence defined by the
relation fk+n =

Pn�1
i=0 pifk+n�1�i, with the initial values Wi = ai (0 i n� 1).

Let {Xk(p0, . . . , pn�1)} be the sequence that is derived from {Wk} if an�1 = 1 and
the other ai = 0. Using the matrix method as in Lemma 2 and by mathematical
induction we get the following formulas

Wk = an�1Xk +
n�1X
j=1

pj

j�1X
i=0

an�2�iXk�j+i

!
, (53)

Wk =
n�1X
j=0

an�1�j �

n�j�2X
i=0

an�j�2�ipi

!
Xk+j . (54)

If we put n = 4 in these formulas, then we obtain (38) and (39).
Repeating the arguments of the previous section we get the matrix formula

0
BBB@

X2k+n�1

...
X2k+1

X2k

1
CCCA =

0
BBB@

Xk+n�1
n�2Wk+n�1

n�3Wk+n�1 . . . 0Wk+n�1

...
...

...
. . .

...
Xk+1

n�2Wk+1
n�3Wk+1 . . . 0Wk+1

Xk
n�2Wk

n�3Wk . . . 0Wk

1
CCCA

0
BBB@

Xk+n�1

...
Xk+1

Xk

1
CCCA .

(55)

Here, as above, iWk denotes Wk(a0, . . . , an�1) with only one nonzero ai = 1. Let
R = (ri,j) be the matrix from (55). It has a special form, see (29) and (47). Note
that if we know two rows of the matrix R which have numbers of di↵erent parity,
then we can get the other rows. For example, we assume we know a formula which
relates X2k+` to Xk+i (0 i n� 1), in other words we know the (n� `)th row. If
we replace k by k + 1 and use Xk+n =

Pn�1
i=0 piXk+n�1�i, then we get the formula

for X2k+`+2 that corresponds to the (n� `� 2)th row. Repeating this procedure we
obtain all rows with numbers of the same parity as the parity of the (n� `)th row.
Thus, to get all formulas that will be used in the algorithm, we need to know
formulas for X2k, X2k+1.

For the elements of R using (53), (54) we obtain

ri,j =

(
Xk+n�1�(i�j) �

Pj�2
l=0 plXk+n�2�l�(i�j), if i � j,Pn�1

l=j�1 plXk+n�2�l�(i�j), if i < j.
(56)

INTEGERS: 18 (2018) 11

Also, from the two last rows in (55) we obtain the formulas which relate X2k, X2k+1

to Xk+i (0 i n� 1). These formulas are of the same form as (50), (51).

X2k = eX2
k+(n�1)/2+

bvcX
i=0

Xk+bvc�i

0
@2Xk+dve+1+i � p2i+eXk+bvc�i � 2

2i�1+eX
j=0

pjXk+dve+i�j

1
A ,

(57)

X2k+1 = pn�1X
2
k + (1� e)X2

k+n/2+
dve�1X
i=0

Xk+dve�i

0
@2Xk+bvc+2+i � p2i+1�eXk+dve�i � 2

2i�eX
j=0

pjXk+bvc+1+i�j

1
A .

(58)

Here, e = n mod 2 and v = n/2� 1.
The scheme for computing the terms of {Wk(a0, . . . , an�1; p0, . . . , pn�1)} is:

(i) Using Xk+n =
Pn�1

i=0 piXk+n�1�i and repeating the replacement of k by k+1 in
(57), (58) without removing brackets, we obtain the formulas for X2k+i (0 i n).
These formulas determine the rules of transition from the terms Xk+i (0 i n�1)
to X2k+i (0 i n� 1) and also to X2k+1+i (0 i n� 1).
(ii) By using these formulas we obtain an algorithm for computing {Xk} that is
similar to Algorithm 3.
(iii) To get the value WN , we need to use (54) after we have computed XN+i

(0 i n� 1) by the algorithm in (ii).
(iv) In order to obtain WN+1 we use the recurrence relation to get XN+n from
XN+i (0 i n� 1) and use (54).
Remark. To compute the N th term of an nth-order linear recurrence we need
n(n+1)/2 log2 N multiplications3. Indeed, when n is even, the formulas for X2k+2i

(0 i n/2) contain n/2 multiplications,4 and for X2k+2i+1 (0 i n/2 � 1)
contain n/2 + 1 multiplications. It is easy to see that each step of the algorithm
needs n/2 formulas of the first type and n/2 formulas of the second type. Then, to
compute X2k+i (0 i n�1) or X2k+1+i (0 i n�1) using Xk+i (0 i n�1)
we need n(n + 1)/2 multiplications. Thus, computing XN+i (0 i n� 1) needs
n(n+1)/2 log2 N multiplications. Since (54) does not contain “big” multiplications,
the above statement is proved for even n. The proof for odd n by analogous.

We implemented the above scheme in Wolfram Mathematica. An implementation
is available at http://community.wolfram.com/groups/-/m/t/940869. The main
function AnyOrderRecurrence[a, p,N] returns WN (a0, . . . , an�1; p0, . . . , pn�1),
where N is a positive integer and a, p are strings of length n.

3We use such a complexity model that multiplications involving pi are similar to additions.
4Since they were derived from (57) without removing brackets.

INTEGERS: 18 (2018) 12

Acknowledgments. The author is very grateful to A. Bostan for pointing to
the reference [5] and for the evidence that our algorithm is one particular way of
implementing Fiduccia’s algorithm, where modular polynomial squarings are hard-
coded.

References

[1] W.W. Adams, Characterizing pseudoprimes for third-order linear recurrences, Math. Comp.
48.177 (1987), 1-15.

[2] D. Bleichenbacher, W. Bosma, A.K. Lenstra, Some remarks on Lucas-based cryptosystems,
in: Annual International Cryptology Conference, Springer, Berlin, Heidelberg, 1995, 386-396.

[3] G.H. Cho, N. Koo, E. Ha, S. Kwon, New cube root algorithm based on the third order linear
recurrence relations in finite fields, Des. Codes Cryptogr. 75.3 (2015), 483-495.

[4] E.W. Dijkstra, In honour of Fibonacci, in: Program Construction. Lecture Notes in Com-
puter Science 69, ed. F.L. Bauer et al., Springer, Berlin, Heidelberg, 1979, 49-50.

[5] C.M. Fiduccia, An e�cient formula for linear recurrences, SIAM J. Comput. 14.1 (1985),
106-112.

[6] G. Gong, A. Hassan, H. Wu, and A. Yousse, An E�cient Algorithm for Exponentiation in
DH key Exchange and DSA in Cubic Extension Fields, Faculty of Mathematics, University
of Waterloo, 2002.

[7] G. Gong, and L. Harn, Public-key cryptosystems based on cubic finite field extensions, IEEE
Trans. Inform. Theory 45.7 (1999), 2601-2605.

[8] D. Gries, G. Levin, Computing Fibonacci numbers (and similarly defined functions) in log
time, Inform. Process. Lett. 11.2 (1980), 68-69.

[9] A.F. Horadam, Basic properties of a certain generalized sequence of numbers, Fibonacci
Quart. (1965) 3.3, 161-176.

[10] A.F. Horadam, Special properties of the sequence Wn(a, b; p, q), Fibonacci Quart. 5.4 (1967),
424-434.

[11] M. Joye and J.-J. Quisquater, E�cient computation of full Lucas sequences, Electronics
Letters 32.6 (1996), 537-538.

[12] J.C.P. Miller, D.S. Brown, An algorithm for evaluation of remote terms in a linear recurrence
sequence, Comput. J. 9.2 (1966), 188-190.

[13] S. Rabinowitz, Algorithmic manipulation of third-order linear recurrences, Fibonacci Quart.
34 (1996), 447-463.

[14] C.A. Reiter, Exact Horadam numbers with a Chebyshevish accent, Vector 16 (1999), 122-
131.

[15] E.L. Roettger, H.C. Williams, and R.K. Guy, Some primality tests that eluded Lucas, Des.
Codes Cryptogr. 77.2-3 (2015), 515-539.

[16] Z.H. Sun, Linear recursive sequences and the powers of matrices, Fibonacci Quart. 39.4
(2001), 339-351.

