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Abstract

For a finite abelian group the Lind measure of an integer polynomial is a finite
analogue of the usual Mahler measure. The determination of the minimal non-trivial
measure, the Lind-Lehmer constant for the group, is the counterpart of the famous
Lehmer Problem. This corresponds to the minimal non-trivial value taken by the
group determinant for integer variables. We establish the Lind-Lehmer constant for
some infinite classes of abelian 3-groups, including G = H x Z3: when H is a 3-group
of order at most 81 (and H contains at least one component Zs or t is sufficiently
large). We give many cases where the minimal non-trivial measure equals the trivial
bound |G| — 1, for example Z% X Zz: when r > 5 and ¢ < 3-2", Z% X Zzt X Zzs when
t<s< (2" —1)t+1, and Z3 x Z}, x Zgs when t < s < (2" —r)t+1. Although we
have restricted ourselves to 3-groups, these results may be helpful in understanding
the general p-group. The unpredictability of the (p — 1)st roots of unity mod p* for
p > 5 makes obtaining these kinds of results in the general case much more difficult.

1. Introduction
For a polynomial F' in Z[z], its (logarithmic) Mahler measure m(F') = log M (F) is
defined by
1
log M(F) = / log|F' (€™} dt. (1)
0

Lehmer’s problem [5] famously asks if there exists a positive constant ¢ > 1 with
the property that if F' € Z[z] then M(F) =1 or M(F') > ¢. This problem remains
open.

1This was a summer undergraduate research project for the first author



INTEGERS: 18 (2018) 2

In 2005 Doug Lind [6] viewed the integral over [0,1) as the Haar measure on the
group G =R/Z, and F (62““) as a linear sum of characters on G. This enabled him
to generalize the concept of Mahler measure to an arbitrary compact abelian group
G with a suitably normalized Haar measure (see also the group generalization of
Dasbach and Lalin [1]). For example, for a finite group

G="2%Zy, X XL,

the integral becomes the average of a log|f| over the elements (x1,...,z,) of G,
where f is a linear sum

f(xla"-axr> = Z a/tl,...,trth,A..,tr(xh~-',x’r)7
(tl,‘“,tr)EG

of the characters on G

T

_ 2mix ity /n;
Xt1,..., tT($1,...,:L'T)—He iti/mg
j=1

Here we write Z,, for Z/nZ, the cyclic group of order n. That is, for an

F(zy,...,z,) = Z gy gttt
(t1,...,tr)EG
in Z[z1,...,x,], modulo the ideal generated by x7* —1,...,zI"" — 1, we can define
1
ma(F) = @ log| M (F)],

where Mg (F) is the integer

ny Ny
Mg(F) = H H F(e2mis/m | e2mijr/nry, (2)

Jj1=1 Jjr=1

As in Lehmer’s problem, for each finite group G one may ask for the smallest non-
trivial value of Mg (F)

ANG) = min{|Mg(F)| : F € Zzy,...,x,], Mg(F) #0,+1}.

In his thesis, Vipismakul [10] showed the relationship between M¢(F') and the
group determinant, that is, the |G| x |G| determinant

D(G) = |det (zgn-1) , el

with the variables x, corresponding to the coefficients of F. Thus A(G) is the
smallest integer value greater than 1 taken by the group determinant when the
variables x4 are all in Z.
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The cyclic case G = Z,, was considered in [6], [4] and [8], and A(Z,) has been
determined for all n not divisible by 892,371,480 =2%-3-5-7-11-13-17-19-23.
In particular, if p is prime and k is a positive integer, then it is known that

3 ifp=2,
NZp) = {2 if p> 3

the extreme values here are achieved by using F(x) = 22 +x +1 and x + 1, respec-
tively.
The case of p-groups

G =T X+ X Ly, k1 <o < ky, (3)

has also received much attention, see [3], [2] and [9]. For example, when p is odd
and all the k; = 1 it was shown in [3] that

NZy) = B (p),
where By (p) is the smallest non-trivial (p — 1)st root of unity mod p*
By (p) := min{apkf1 mod p* : 1<a<p—1}.

Here we take the least positive residue mod p*. Additional p-groups were considered
in [2]. For example, it was shown that

2P, if p=3orh,

ANZy X Z2) =
(Zp x Zy2) {Bg(p), if7<p<107, p#127,

along with many other cases of |H| = p*, k < 6, where
\Z, x H) = min{A(H)?, By1(p)}. (4)

The determination of By (p) was crucial in these computations. For most p the value
By(p) can be difficult to predict, but when p = 3 the value is very well-behaved:

Bi(3) =3F -1,

and so we might hope to make extra progress in the special case p = 3. For example
it was observed in [3] that
ANZ5) =3" -1,

and in [7] that
MNZs x Zge) = 2%, t>1, (5)

and shown in [2] that

29 ift >4
2 _ ’ - &
AZs x Za) = {3t+2 1, if1<t<3. ©)
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Here we are interested in other examples of 3-groups
G =Zaky X -+ X Lk, k1 < - < ky, (7)

where we can determine A(G). We note that for any G of the form (7) we have the
upper bound

A(G) < min {|G\ —1, 2‘Gl/3“} . (8)

To see this observe that

T xdka 71
((J—) = m|G| £ 1 9)

Me | £1

“ m H Tj — 1)
j=1

and, since Mz, (1 +z) = 2,

g1tk

Mg(1+z,) =2 (10)

In fact, in all previously determined cases of 3-groups and in all the cases that we
will resolve in this paper, (8) is sharp and it is tempting to ask:

Question 1. Do we have equality in (8) for all 3-groups?

We do know that this is true when k. is large relative to the other k;; in particular
for a 3-group H it was shown in [2, Theorem 2.4] that

3L >4 1 implies A(H x Zg:) = 2171, (11)
For a general p-group (3) with p > 3, corresponding to (8) we have
A(G) < min {Bk(p), 2|G|/pk"} S k=ki 4tk (12)

Again, all known cases have equality in (12), for example when k, is particularly
large compared to the other k;. Since By (p)pl > Bt1(p), always having equality in
this bound would be equivalent to always having equality in the bound

AZyr x H) < min{By(p), NH)""'}, p* = |Zyw, x H|.

2. The Product of a Small 3-group With a Zgz:

In this section we consider groups of the form G = H x Zgz: where H is a 3-group
of order at most 81. These are the groups H = Zs of order 3, Z3, Zg of order 9,
Zg,Zg X Zg, Z27 of order 27, and Zé, Zg X Z27, Z% X Zg, Zg X Zg, Zgl of order
81. With H = Zs3 or Z3 dealt with in (5) and (6), the first case to consider is
H = Zg. We know from (11) that \(G) = 2° for ¢ > 11. Although unable to obtain
a complete determination we can at least improve this down to ¢ > 5, a result that
we shall need later.
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Theorem 1. Fort > 5
MNZg x Zgt) = 2°.

We suspect the same is true for t = 4, but for ¢ < 4 our congruences cannot
eliminate values that are =1 mod 3'*!, and the most that we can say is

NZgy x Zg) = 26,28,53,55 or 80,

MZg x Za7) = 80, 82,161,163 or 242, (13)
MZg x Zg1) = 242,244, 485, 487 or 512.

In line with Question 1 we ask:

Question 2. Is

29, ift =4,
/\(ZQXZ3t){3t+2_1’ 1f2§t§37

When |H| = 27 we know from (11) that A\(G) = 227 for t > 34, and when H = Z3
or Zs X Zg that A(G) = |G| — 1 for 2 <t < 4 from the Section 6 computations in
[2]. When H contains at least one Zz we can determine A\(G) for all ¢.

Theorem 2. Fort>1

927 ift>15
3 _ ’ fel )
A(Zs < Zyr) = {3t+3 1, if1<t<14. (14)

Fort>2
227, ift > 15,

15
331, if2<t<14. (15)

)\(Zg X Zg X Zst) = {
Similar to Theorem 1 we are able to evaluate the minimum for the remaining
case H = Zo7 only for sufficiently large t.

Theorem 3. Fort > 17
MZg7 x Zsr) = 227,

For 3 < t < 16 the values 1 mod 3**! less that 3"t — 1 can again not be
eliminated just using our congruences and the most that we can say is that

M Zy7 x Zst) = £1 mod 311, (16)

for 3 <t < 14, and (16) or 227 when t = 15 or 16.
Again it seems natural to ask:
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Question 3. Is

227, if t = 15 or 16,
331, if3<t<14?

)\(227 X th) = {

Finally we try to compute A\(H x Zs:) for |H| = 3*. From (11) we know that
the minimum is 28! for ¢+ > 102. Corresponding to Theorem 2 we get a complete
determination when H contains at least one Zgs.

Theorem 4. Fort > 1 we have

281 if t > 48
MZE X Zg) = ’ =
(23 x Zst) {3t+4—1, if 1<t <47,
fort>2
281 if t > 48
MZ2 X Tg X Tgt) = ’ =
(Zs x Zo  Lgt) {3t+4—1, if2 <t <47,
and fort >3

281 if t > 48,

MNZs X o7 X Zgt) =
(Zs x Zar x L) {3t+4—1, if3<t<AT.

If H= 7% or H = 731 then, as with Theorem 1 and Theorem 3, we can only get
an evaluation for ¢ sufficiently large, since our congruences cannot rule out 3:+3 — 1
or 31 — 1 respectively.

Theorem 5. Fort > 49
MNZ3 x 7 ) = 281,

Fort =48
MZ3 x Zgas) =31+ 1, 2.3 +1, or 2%,

and for 2 <t <47
MZ3 x Z3e) =373 +£1, 2.3 41, or 374 1.

Theorem 6. Fort > 51
)\(Zgl X Z3t) = 281.

For 4 <t < 50 the minimal value is £1 mod 31, or 281 when t > 48.

Following the pattern of Theorem 4 we might expect the minimum to be 23! for
t > 48 in both cases, and so we ask:

Question 4. Is it true that for ¢ > 48
MNZsg1 x Zgt) = N(Z2E x Zg:) = 281, (17)
with \(Zg; x Zs3t) = |G| —1 for 4 <t < 47 and \(Z& x Z3:) = |G| —1 for 2 < t < 477
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3. Additional 3-groups

The proofs for Section 2 require us to perform some computations. There are other
3-groups where we can obtain the minimum with little extra work. For example,
when the trivial bound (9) is optimal we can always add additional Zs’s.

Theorem 7. If H is a 3-group with \(H) = |H| — 1, or A\(H)? > 3|H| — 1, then
G =73 x H has
AG) = |G| - 1.

In particular, from Theorem 4 we have that for any r > 4
MNZy x Zge) =31 =1, 1<t <47,
In fact, we can improve the 47 to 97 for r = 5, 197 for r = 6, 398 for r = 7, etc.
Corollary 1. Ifr > 5 then
1<t<101-27° —r+1 = ANZ§xZz)=3""—1.
More generally, if |H,| = 3% and
G =73 X Zapy X -+ X L3p. X Hy X ZLgt,
where r > 2 and 3t is the highest invariant factor of G, then
Bot -+ B +3+1<101-2"7% = \(G) = |G| — 1.
From (11) we know that for large ¢ the minimum is not |G| — 1:

3" _
. log(4 1)

1 70 X Tigt) = 23" 1
log3 = MZz x Zst) ; (18)

with Question 1 suggesting log(2®" + 1)/log3 —  as a realistic cutoff for ¢.
From Lemma 2 below or Theorem 6.1 of [2] we readily obtain

)\(Zg X Lzt X Z3t) — 32t+1 —1,
)\(ZS X th X th+1) = 32t+2 1

We can use Theorem 7 to add Zs’s or otherwise generalize this:
Corollary 2. If r > 1 and
G=75xTst x L3, t<s<(2"—1t+2""1—r+1,
then \(G) = |G| — 1. More generally if |H,| = 3" and |Hs| = 3° and
G =173 X Z3py X -+ X Lap, X Hi X Ho
withr>1and 1< [y <--- <3, <t <s, then

Bot 4P +s+t<2t+ 271 = AG) = |G| - L.
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While these give us many examples, there are still plenty of straightforward 3-
groups, as in (13), where we cannot determine the minimal measure. It is quite
curious that we know that A\(Z3 x Zg: x Zz:) = 3%**1 — 1 for all t > 2 but cannot
determine A\(Zszt X Zgt) for any t > 2.

4. Some Congruence Conditions on the Measures

We observe that if we obtain G’ from G by increasing any of the k; or adding an
additional component Zg. then Mg (F) = Mg(F1) for a related Fy and A(G') >
MG). We also know, see for example [7], that

Mg(F) = F(1,...,1)/% mod 3. (19)

Writing the measure as a product of norms it is readily seen that 3 | Mg(F) if
and only if 3 | F(1,...,1) and all the norms, in which case 3"|G| | Mg(F). In
particular an extremal measure cannot be divisible by 3. In [2] we obtained some
more sophisticated congruences. If H; and Hy are 3-groups with

G:H:LXHQ,

where
H1:Z3a1 X"’XZgam, H2:Z351 X"'XZan, (20)

with n,m > 1, then F(z1,...,Tm,Y1,-..,Yn) with 31 Mg (F), has
[e5] Qo
Ma(F) =] TI Nivvoim
n=0 =0

where the Nj, . ; = are integers with

N; = AP0 od 3|Hal,

Fiseensd
and A is the Hy measure of F(1,...,1,y1,...,y,). In particular this gives
Mg (F) = A1l mod 3|Hy|,
and hence, by FEuler’s Theorem,
Mg (F)? =1 mod 3h, (21)

and
Mg (F) = £+1 mod 3h, (22)

where
h = min{|H,|, |Ha[}.
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Notice that from (22) we have
AMG) = 3min{[Hy [, [Ho[} — 1. (23)

Here the Nj;, . ;. represents the product obtained when the x; run through
the primitive 3/ith roots of unity and the y; through all the 3%th roots of unity,
in particular, by pairing complex conjugates, we know that the N; ;= will be
positive integers as long as at least one of the j; > 1.

For a 3-group G = Zz x H we can write the measure of an F in Z[x1,...,z,] as
M =NoN;---N;, N; =N mod 3|H|, (24)
where Ny is the H measure of F(1,zs,...,2,) and N; the H measure of

3]
H F(ele/BJ,xQ, cey Xp) € Zxa, ... 2y
=1
3.0)=1
Replacing F' by —F' as necessary we can make Ng > 0 and hence assume all N; > 0.
Lemma 1. For G =Zz x H, if any of the Nj =1 then M = +1 mod 3|H|.

Proof. If Ng = 1 then all the N; = 1 mod 3|H| and M =1 mod 3|H|. If N; =1
for some 1 < j < [ then N; = 1 mod 3|H| for any j < i <, with N® ' =1 mod
3|H| giving N3’ " = +1 mod 3|H| and

M = NIFO®++0 _ N8 1 mod 3]H|.
O

Notice that when [ = 1, as in Theorems 2, 4 and 7, the values £1 mod 3|H|
do not beat the trivial bound |G| — 1, and when [ > 1 in Theorems 1, 3, 5 and
6 these are exactly the problem cases that we cannot eliminate when ¢ is small.
Hence in the proofs in Section 2 we may assume that all the N; > 1 with 3 { Nj.
In particular, since they are H measures, N; > A\(H) all j, with N; > 37 4+ 1 for
j > 1 by Euler’s Theorem. We can also assume that we are taking the least residue
n (24), in fact that all the N; < 3|H|/2, since 2-3|H|/2 > |G| —1 when [ = 1, and
2-(3+1)--- (371 +1)3|H|/2 > 3'|H| > |G| — 1 when [ > 1.

When G = Z3 x H is a 3-group we get

Mg(F) = AL, L= A% mod |G|.

Here L and A are the H measures of F(e2™/3 xy, ... x,)F(e 2"/, 2y, ... x,) and
F(1,xs,...,z,) respectively. Replacing F' by —F as necessary we can always assume
that we are working with an A > 0. We have the following useful lemma:
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Lemma 2. If H = Hy x Hy with Hy, Hs of the form (20) with n,m > 1 and
AH) (3min{|Hy|, |Ho|} +1) > 3|H| -1,

then G = Z3 x H has
AMG) = |G| - 1.

Proof. As above we can assume that a measure Mg (F) < |G| — 1 takes the form
M = AL with L = A% mod |G| and A, L > X\(H). From (21) we have

L=A%2=1 mod 3h.
So L >3h+1and Mg(F)=AL > AX(H)(3min{|Hy|, |Hz|} + 1) > |G| — 1. O

5. Proofs for Section 2

Proof of Theorem 1. Suppose that G = Zg X Z3: with t > 2. In this case our trivial
upper bound (8) takes the form

29, if t > 4,

25
32 1, if2<t<3. (25)

MG) <min{2?, |G| — 1} = {
Hence to prove Theorem 1 and (13) we just have to show that there are no measures
M > 1 with M < 2° for t > 5, and none less than (25) that are not congruent to
+1 mod 3t*+! for ¢ < 4. Note that 3tt! — 1 > 29 for ¢ > 5.
As above we can write

M = ABC, B = A? mod 3", C = A° mod 3'*!,

where B, C' are positive integers and, replacing F' by —F' as necessary, A is a positive
integer with 31 A. Note, since M = A% mod 3t+!, we have M2 = A*G°) = 1 mod
33 and M = +1 mod 27. So there is nothing to show for ¢ = 2 and we can assume
that t > 3. From the discussion above we can assume that A, B,C > 2, with B=1
mod 3, C'=1 mod 9.

Case 1. Suppose that 2 < A < 3¢+1/6 Then A% and AS are less than 3'*! and
B> A% C > A% and M = ABC > A° > 2°.

Case 2. Suppose that 3¢+1/6 < 4 < 3(t+1)/2 Since A2 < 3t+! we have B > A2,
C >10. For t > 3 we have A > 4

M = ABC > 104% > 10-4% > 2°.
Case 3. Suppose that A > 3(+1/2 Then C' > 10, B > 4 and for t > 4 we

have A > 16 and M = ABC > 16-4-10 > 2°. For t = 3 we have A > 10 and
M=ABC>10-4-10 > |G| - 1.
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Notice that A = +1 mod 3**t!, B = C' = 1 satisfies our congruences and so the
M = +1 mod 3**! will not be eliminated when any of these are less than 2°. O

Proof of Theorem 2. We take G = Z3 x H where H = 73 X Zz+ or Zg X Zzt. As
above our measures can be written

M = AL, L= A?mod |G|.

We know that we can achieve 227 and |G| — 1 so need to show that there are no

P31, for2<t<14
M < B, B:=min{2%,|G| -1} = b RS (9
227, for ¢ > 15.
As discussed above we can assume that
MH)< A L<IG|. (27)

Moreover from (21) and (22) with Hy = Z3 x Zs or Zg, Hy = Z3+ we have
A =41 mod 27, L =1 mod 27.

In particular A > 26, L > 28 and AL > B for t < 3. From (6) and Theorem 1 we
can assume that A, L > \(H) > 242 for t = 4 and A, L > 2° for t > 5. These give
AL > B, and hence nothing to check, for ¢ < 8.

For 9 < t < 15 we found just two cases of 2° < A < B/29, A = +1 mod 27, that
produced a least residue L = A% mod 3'*3 with M = AL < B, namely

t=14, A=27836, L = 1918, M = 53389448, B = 129140162,
t =15, A=27836, L = 1918, M = 53389448, B = 134217728.

Fortunately we can eliminate these by showing that A = 27836 is not an H measure.
If Aisan H = Zs x (Z3 x Z3+) measure we know that

A=AL
where,
A=41mod9, £L=.A%mod 32 (28)
If Ais a Zg X Z3+ measure then
A=ALT, £L=A%mod 3" T = A% mod 3. (29)

Since A < 3'*! we can assume that £ and 7 are least residues in the congruences,
ruling out A = 1. Also A2 = L # 1 mod 3! ruling out A = A. Hence one just
has to check the proper divisors of A = 27836, namely A = 2,4,6959,13918. None
of these has A = £1 mod 9 as needed for (28) or produces an ALT = A in (29).
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Thus our bound B is optimal for 2 < ¢ < 15. For ¢t = 15 the minimum is 227
and hence this will be the minimum for all ¢ > 15, since the minimum does not go
down as we increase t and we can always achieve this value.

This is slightly different from the approach used to rule out problem A’s in
[2]. Since L is the resultant of a polynomial with the third cyclotomic polynomial
®3(x) = 2% + 2 + 1, we know (see [2, Lemma 4.2]) that if q is a prime with ¢*||L
then ¢ cannot be smaller than the order of ¢ mod 3. That is, L cannot be divisible
by a single power of a prime ¢ = 2 mod 3, with ¢ = 2 ruling out L = 1918. U

Proof of Theorem 3. With G = Zgs x Zgt we write
M = ABCD, B = A% mod 3!, C = A% mod 3!, D = A mod 3t+!.

As above, an M # 41 mod 3'*! must have A, B,C > 1. Notice that 3t*1 —1 > 227
when ¢t > 17. Our achievable upper bound takes the form

227, if t > 15,

B :=min{2%",|G| - 1} =
min{2%, |G| = 1} {3“3—17 if3<t<14.

Note M = A?" mod 3'*!. Hence M? =1 mod 81 and M = 41 mod 81 and there
is nothing to show when ¢t = 3. So assume that ¢ > 4. By Euler’s Theorem we have
B=1mod3, C=1mod9, D=1 mod 27.

Hence, to prove Theorem 3 and (16) we need to show that for A, B,C,D > 1 we
have M > B. Since 2-4-10-28 > 37 — 1, we can assume that t > 5.

We could at this stage, as in the proof of Theorem 2, simply test all the 2 <
A < B/4-10 - 28 to see that they produce no M = ABCD < B for t = 17 and
only M = #+1 mod 3**! for t = 5 to 16. Instead, as in the proof of Theorem 1, we
consider different ranges for A.

Case 1. Suppose that B and C' < 3(+1/3 Then C' = B3, D = C® and
M = AB" <2.41% =277,

This includes A < 3¢+1D/18 where B = A2, C' = A%, D = A8 and M = A?7 > 277,
Case 2. Suppose that 3(H+1/18 « A « 3(t+1)/6 Then B = A2, C' = A% and

M=A-A%-A%.D=A°D.
If t > 26 then A > 7 and D > 28 gives
M >28-77 > 227,

Since 28 - 22 > 3% — 1 and 28 - 49 > 3™ — 1 that leaves A = 2 for 6 < ¢t < 10
and A =4 or 5 for 12 < ¢t < 25. Now 218 = 1891 mod 37 and 6265 mod 3% with
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1891 - 29 > 3% — 1 and 6265 - 2° > 33 — 1 so we can ignore A = 2. Similarly
4'® = 2323 mod 38, 5'® = 2648 mod 37 with 2323 - 49 > 227 resolving A = 4 or 5.

Case 3. Suppose that 3(+1/6 <« 4 < 3(+1)/2 Then B = A2, A > 4 and
M =A-A*.CD = A3CD.

For A > 79 we have
M >79%.10-28 > 277,

For 4 < A< 77, 31A, we have
(A% mod 3°)(A'® mod 3°%) > 2296, (A% mod 3°)(A'® mod 3%) > 511147.

Since 43 - 2296 > 310 — 1 we can assume that ¢t > 8 and
M= A%.CD >3(+1/2. 511147 > B.

Case 4. Suppose that A > 3(+1)/2 with B or C' > 3(t+1)/3,

Note that for ¢t > 5 we have A > 28, so if B = 4 then A = 4+2 mod 3**! and

M > (371 —2).4.10-28 > 33 — 1.

So we can assume that B > 7 and

227, if t > 14,

M > 3t+1)/2 7. 3(+1)/3 98 -
- 33 1, ittt <13.

Proof of Theorem 4. We suppose that G = Z3 x H where
H = Zg X th, T3 X g X Z3t, or Zo7 X th.
Our achievable upper bound takes the form

281 if t > 48
B = 281’ 3t+4 _ 1 _ ) el 5
max{ FE\at 1 i< ar,
We know from Theorem 2 and Theorem 3 that A\(H) = 227 for t > 17, and that
A(H) > 31 —1 for t < 16. We already know that A(Z3) = 35 — 1 so we can assume
that ¢ > 2. We have
(311 —1) .28 > 31H4 1,

and for t = 17
227.82 > 3+t 1,
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and by Lemma 2 we have A(G) = |G| — 1 for ¢t < 17. So assume that ¢ > 18.
As usual we write the measures

M = AL, L= A? mod 3"+
From the initial discussion we can assume that L is the least residue mod 3t** and
A, L>\NH) =2,

Since AL > 2%% > 3% _ 1 for t < 30 we can assume that ¢ > 31. As A is an
H-measure we have A = =1 mod 81 and L = 1 mod 8&81.
If A< 3t+9/2 then L = A% and

M = A3 > 281,
So we can assume that
A>30H0/2 0 92T < [« B/A < B/3tH4/2 < 3(t+4)/2, (30)
We could proceed as before to find any pairs A, L with
3HD/2 A < (311 —1)/227) A =41 mod 81, L = A? mod 3",
that give an AL < B. But for large t the A range becomes unmanageable so we

work instead with the smaller range of L.

a) Small L. Reversing the roles of A and L, for each 227 < L < 322, with L =1
mod 81, we found the value A with A2 = L mod 3'**. Using Hensel’s Lemma it
was straightforward to find a square root of L to successively higher powers; the
recursively defined sequence

2

y zj;— L
Ty = ]., Tjp1 = Ty + )\J3 5 )\j = 37 mod 37

will have x? = L mod 3/. We can assume that A < 374/2 so A will be the smaller
of Tt44 and 3t+4 — Tt44.
For t = 31 all the way up to t = 48 we checked to find any L < 3min{(t+4)/2,22}

giving an A with AL < B. Only two examples were found:

t =36, A = 11564355583, L = 437053078, M = 5054237202636634474,
t =46, A = 2076248883915523, L = 227356795, M = 472049291869360360028785.

For 31 <t < 40 this checked all L from (30).

b) Large L. For 41 <t < 48 we have already checked the small L < 322 and are
left with
A>30H0/2 s 322,
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For j1/230+4/2 <« A < (j + 1)1/23(t+4/2 we plainly have I = A% — j3t+4
and for each j it is a matter of checking the first few A > j1/2304+4/2 gatisfying
A =41 mod 81 until M = A(A% — j3!+%) exceeds B. We performed this check for
j=1,...,2500, and found no new A, L with AL < B.

This just leaves the A > /2501 3(t+4/2 [, > 322 But these have

4 1, ift <47,
281, if t = 48,

AL > /2501 3t/2124 > {

and we are done.

It remains to rule out the two values encountered in Step a). We show that A
is not an H-measure. For H = Zg X Zst or Zg X Zg X Z3t we write H = Z3 X Hq,
with Hy = Z§ X Zst or Zg X Zst, and observe that

A=ab, b=a?mod 33,

where, since a is an H; measure a = +1 mod 27 and b = 1 mod 27.
For H = Zo7 X Z3+ we have

A = abed, b=a® mod 3" ¢ =a® = (ab)?® mod 3, d = a'® = (abc)? mod 31,

where the most we can say is b =1 mod 3, c=1 mod 9 and d = 1 mod 27.

Notice that an a,b,c or d = 1 would lead to an A = +1 mod 3**! and in both
cases A < 3! — 1. So we can assume that a,b,c,d > 1.

Hence it is enough to check whether the few, if any, proper divisors £ of A with
¢ =1 mod 27, have (A/¢)> = ¢ mod 3"+, with ¢ playing the role of b in the first
case or d in the second case. No such £ were found. Alternatively we could eliminate
these L using [2, Lemma 4.2] with ¢ = 2 or 5.

This gives the result for ¢ < 48. Since the minimal measure cannot go down for
higher ¢, and 28! is always achievable, we get A\(G) = 28! for all t > 48. O

Proof of Theorem 5. We write G = Zg x H where H = Zg x Zs:. Our achievable
upper bound (8) takes the form

281 if t > 48,

31
34— 1, if2<t<A4rT. (31)

B = max{2% 3™ — 1} = {

As usual we write
M = ABC, B = A?mod 33, C = A°%=B?=(AB)? mod 3'*3.
As observed above either M = 41 mod 3**3, or we can assume that

MH) < A,B,C < 33,
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with 313 — 1 > 28! for ¢ > 49. Since A is an H measure we have
A=+1mod 27, B=1mod 27, C =1 mod 81.

For t < 4 we have
M > )\(H)S > (3t+1 o 1)3 > 3t+4 o 1’

and for 5 <¢ <13
M > \(H)? =2%7 > 3!t — 1

so we can assume that ¢ > 14.
Observe that if we have an H-measure then we can similarly write it in the form

m = abc, b= a® mod 3", ¢=a® = (ab)? mod 3¢+

In particular if m < 3(+1)/2 then we must have a,ab < 3(+1/2 Since 3tt14+1 > m
we know that b, ¢ must be the least residues and b = a2, ¢ = (ab)? and m = a°.

We consider four ranges for A and B.

Case 1.  Suppose that A < 3(t+3)/6,
Then A%, A% < 33 and

M=A A% A5 = A% > \(H)® > 28"

Case 2.  Suppose that 3(tF3)/6 < A < 3(t+3)/2,
Then B = A% and M = A3C. We can assume that 8243 < B < 3t+* and
A < 30+1/2 and hence A = a® and M = a2?7C for some a with

30+9/5 < o < (B/82)/*

where (281 /82)1/27 < 7. That is we just have to check a = 2 for 14 <t < 31, a = 4
for 35 <t <49, and a = 5 for 40 < t < 49 and test that in these cases

a®” (a54 mod 3”‘3) > B.

Case 3. Suppose that A > 3(t+3)/2 and B < 3(t+3)/3,

Since B® < 313 we have C' = B and M = AB*. Since B < 3(t+3)/3 < 3(t+1)/2
we have B = b° for some b. Hence M = Ab3. Since A > A\(H) > 29, clearly we
just have to check b < (B/29)1/36 < (281 /29)1/36 = 4 which leaves only b = 2. But
B =2 #1 mod 27, ruling b = 2 out as well.

Case 4. Suppose that A > 3(t+3)/2 and B > 30+3)/3,

Then AB > 36(+3) and €' < B/AB < 3t+4/38(t43) — 3(t49)/6 < 3(t+1)/2_ G4 we
know that C' = ¢” for some ¢ < 3(:+9)/54 with 358/54 < 4, and we are just left with
c=2. But C =2 # 1 mod 81 so this cannot occur. O
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Proof of Theorem 6. For G = Zsa X Z3: we again have the achievable upper bound
(31) and measures take the form M = ABCDEFE with

B=A?mod 3", (= A%=B?=(AB)? mod 3,

D =A™ =03 = (ABC)? mod 3!, E = A% = D? = (ABCD)? mod 3.
Setting the M = 41 mod 3'*! aside, we can assume that 2 < A, B,C, D, E < 3t+1,
with B=1mod 3, C =1 mod 9, D =1 mod 27 and £ = 1 mod 81.

Hence any M < B must come from 2 < A < B/(4-10- 28 - 82). In particular we
can assume that ¢ > 8, otherwise there are no A to test.

For 8 < ¢ < 51 we checked all 2 < A < min{12029,3/91840} and found no
M < B.

Case 1.  Suppose that A < 3(+1/2,
Then B = A% and M = A3CDE.

(i) Suppose that C' < 3¢+1D/9 Then D = C?%, E = C° and M = A3C'3.
If A< 30FD/6 then C = AS and M = A% > 281,
If A> 3t+1D/6 then

M > 3(t+1)/2 1013 _ 3t-‘r43—(15-‘1-7)/210137

with this greater than 28! for ¢ > 48 and 3'** — 1 for ¢ < 47.

(ii) Suppose that 3(+1/9 < ¢ < 3+D/3 Then D = C3 and M = A3C*E.
For ¢t > 48 we have C > 397 and for A > 10589

M = A3C*E > 10589% 397* 82 > 281,
while for t < 47 and A > 12030

M = A3C4E Z A334(t+1)/982 — 3t+4A33—(5t+32)/982 > 3t+4 —1.

(iii) Suppose that C' > 3¢+D/3 and D < 3(¢+1/3, Then E = D3 and M =
A3CD*.
If A< 30+1)/6 then €' = A% and for A > 117 we have

M = A°D* > 117° 28* > 281,
If A > 3(+1/6 then for ¢ < 51

M = A30D4 > 3(t+1)/23(t+1)/3284 — 3t+43—(t+19)/6284 > 3t+4 —1.

(iv) Suppose that C' > 3¢+1/3 and D > 3(+1)/3,
If A< 3t+1/6 then C' = AS and for A > 44 we have

M = A°DE > 4493(t+1)/3g9 — gt+44493—(2t+11)/3g9
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greater than 28! for ¢t > 48 and 3™ — 1 for t < 7.
If A> 3t+1D/6 then

M = A3CDE > 3(t+1)/23(+1)/33(t+1)/3g9 — 37(t4+1)/6g9 ~ 3t+4 _ 1 (32)

Case 2.  Suppose that A > 3(t+1/2,
If at least two of B,C, D are greater than 3(**1)/3 then as in (32)

M = A(BCD)E > 3(t+1/232(+1)/3g9 ~ gi+4,
If all B,C, D are less than 3(¢+1/3 then C = B3, D = C3, F = D3 and
M = AB0 > 2.4%0 = 281,

So we can suppose that exactly one of B, C, D, is greater than 3(+1/3_1If it is B
we get D = 03, E = D? and for t < 51

M = ABcl?) > 3(t+1)/23(t+1)/31013 — 3t+43—(t+19)/61013 > 3t+4 —1.
If it is C then C = B3, E = D? and for t < 51

M — AB4D4 > 3(t+1)/234(t+1)/9284 — 3t+43—(t+55)/18284 > 3t+4 1.
If it is D then C = B3, D = B? and for t < 51

M = AB13E > 3(t+1)/2313(t+1)/2782 — 3t+43—(t+163)/5482 > 3t+4 —1.

Since we have checked numerically the A < 12029 we have proved the claim for
all ¢+ < 51, with the minimum value 28! when ¢+ = 51. Since the value cannot go
down and we can achieve 28!, this must be the minimum for all ¢ > 51. O

6. Proofs for Section 3

Proof of Theorem 7. As discussed in Section 4, when G = Zs x H we can assume
that any measure 1 < Mg (F') < |G| — 1 takes the form

Mg(F)=AL, L=A*mod |G|, 31A, A/ L>\H).
Since L = A% =1 mod 3 we have L >4 and if \(H) = |H| — 1
Me(F) = AL > 4(|H| - 1) > |G| — 1.

If \(H)? > |G| — 1 then plainlyMq(F) = AL > \(H)? > |G| — 1. O
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Notice that if we have A\(H)? > 3m/|H|+1 for some integer m > 1 we can further
say that the only measures up m|G| £ 1 are the j|G| £ 1 with 7 < m, all achievable
by (9), or multiples of 3, though as discussed in Section 4 these are usually large
enough to be ignored, for example if 3 | M then 3(t+a1)-(+er) | pr,

Proof of Corollary 1. We write G = Z3 x H with H = Z3p, X -+ X Zzp, X Hy X Zgt
and proceed by induction on 7, noting that (3™ — 1)2 > 32~! and t > f3,.
For r = 2 we use Theorem 4. For ¢t < 47

NH)? > NZs x Hy x Zz:)? = (3% —1)% > 3207 > 3445+ 1 = 3117 -1,
while for 48 <t <98 — 35
MNH)? > NZs x Hy x Zge)? = 2162 > 3102 _ 1 > g4+5+t _ 1 — 31H| — 1.
Suppose r > 3. If t < 101-2"73 — 33 —- - - — 3, — 3 then by the inductive assumption
MNH)? > MNZs3 X Zigpy X -+ X Lgp, X Hy X Lige)? = (3Pt H0ert _q)2
> 37TH20at 20,420 o, gAtfattBrtt _ ] = 31H| - 1,
while if 101-2"3 =33 —--- = 8, =3 <t <101-2""2 — By —--- — 3, — 3 then

)\(H)Q > )\(Z3 X Zgﬁg X X Zgﬁr x Hy x 23101-27“*3—,83—---—,HT—S)2
_ (314—101‘2"*3 _ 1)2

S glH101277% o gl Bt kBt 3|H| - 1.
O

Proof of Corollary 2. We write G = Zg x H with H = Zgp, X -+ X Z3p,. X Hy x Hy
and proceed by induction on r.
For r =1 we have H = Hy; X Hy and s =t or t + 1. By (23)

MH) (3min{|Hy|, |Ho|} +1) > (3" — 1)(3"F 1) > 3T+ 1,

and A\(G) = |G| — 1 from Lemma 2. So assume that r > 2.
Ift<s< (2! —1)t+2""2— 33 —--- — 3, then by the inductive assumption
MNH)? > XNZ3 X Zgpy X -+ X Lgp, x Hy x Ho)? = (31HPst+0rttds _1)2
> 31+2ﬁ3+---+25r+28+2t > 31+52+"'+57-+5+t 1= 3|H‘ 1.

Rt —1)t4+2"2 =33 — =B, <s< (2" =1t +2""1 = B — -+ — 3, we take
Hj to be a subgroup of Hs of order (2"t — 1)t 4+2""2 — 83 —--- — 3, and

ANH)? > MN(Zs X Ty X -+ X Lgs, x Hy x Hg)? = (3172 #4277 _ )2
> U2 S gl ekt ) — 31| 1,
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