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Abstract
For the Lucas sequence {Uk(P,Q)} we discuss the identities such as the well-known
Fibonacci identities. We also propose a method for obtaining identities involving
recurrence sequences, with the help of which we find an interpolating-type identity
for second-order linear recurrence sequences.

1. Introduction

Let F be an arbitrary field and P,Q be its nonzero elements. The Lucas sequences
{Uk(P,Q)}, {Vk(P,Q)} are defined recursively by

fk+2 = Pfk+1 �Qfk, (1)

with the initial values1 U0 = 0, U1 = 1, V0 = 2, V1 = P . The characteristic
equation of the recurrence relation (1) is x2�Px+Q = 0. Its roots are ↵ = P+

p
�

2

and ↵̄ = P�
p

�
2 , where � = P 2 � 4Q. If � 6= 0, the Lucas sequences can be

expressed in terms of ↵ and ↵̄ according to Binet formulas

Uk =
↵k � ↵̄k

↵� ↵̄
, Vk = ↵k + ↵̄k, P = ↵ + ↵̄, Q = ↵↵̄,

p
� = ↵� ↵̄. (2)

We define U�k = �Uk/Qk and V�k = Vk/Qk for k � 1. Then Binet formulas
are valid for every k 2 Z. More information about the subject can be found in
[6, 14, 18].

The sequence of the Fibonacci numbers {Fk} is defined by the recurrence relation
Fk+2 = Fk+1 + Fk (F0 = 0, F1 = 1) [13]. From this definition, it follows that
Fk = Uk(1,�1). There are many identities involving the Fibonacci numbers [15, 16].
Some of them are derived from identities involving {Uk} if we put P = 1, Q = �1.
In this paper, we generalize some identities for {Fk} in terms of {Uk}. Often such

1In this paper instead of Uk(P, Q) and Vk(P, Q) we will write Uk and Vk, if it is not ambiguous.
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generalized identities have a form close to the initial one. We also present a method
for obtaining identities involving recurrence sequences. To show the e�ciency of this
method we obtain some identities for the Fibonacci numbers. The most interesting
result is presented in Theorem 2.

2. Generalizations of Fibonacci Identities

It is clear that any identity which holds for {Uk} can be easy transformed into an
identity for {Fk}. But there exist identities involving {Fk} for which analogues in
terms of {Uk} are unknown. We note that the discussion fits in the literature [5, 10].
For example, Candido’s identity [2] was generalized in [3]. This result is as follows:

(F.1) 2(F 4
k + F 4

k+1 + F 4
k+2) = (F 2

k + F 2
k+1 + F 2

k+2)
2,

(GF.1) 2(Q4U4
k + P 4U4

k+1 + U4
k+2) = (Q2U2

k + P 2U2
k+1 + U2

k+2)
2.

Catalan’s identity and its generalization [15] are:

(F.2) F 2
k � Fk+nFk�n = (�1)k�nF 2

n ,

(GF.2) U2
k � Uk+nUk�n = Qk�nU2

n.

2.1. Two Important Identities for {Uk(P, Q)}

For the Fibonacci numbers the following holds:

(F.3) F2k+1 = F 2
k+1 + F 2

k ,

(F.4) F2k = Fk(2Fk+1 � Fk).

The generalizations of (F.3), (F.4) are:

(GF.3) U2k+1 = U2
k+1 �QU2

k ,

(GF.4) U2k = Uk(2Uk+1 � PUk).

Lemma 1. Let {Uk} be the Lucas sequence with parameters P,Q in an arbitrary
field F. Then (GF.3) and (GF.4) are valid.

Proof. Consider the well-known identity Un+m = UnUm+1 �QUmUn�1. If we put
n = k + 1 and m = k, then we obtain (GF.3). If we put n = k and m = k, then we
obtain U2k = Uk(Uk+1 �QUk�1). If we use QUk�1 = PUk � Uk+1 in the previous
equality, then we obtain (GF.4).

These two identities can be found in the literature: both identities are presented
in [17], (GF.3) is in [12, 22]. To show their importance, we note that (GF.3), (GF.4)
can be used to calculate the Lucas sequences. This is an alternative to the more
known method [11], which uses the properties of both sequences {Uk} and {Vk}.



INTEGERS: 18 (2018) 3

2.2. Higher Order Fibonacci Identities

The following identities hold:
(F.5) F3k = F 3

k+1 + F 3
k � F 3

k�1,
(F.6) F4k = F 4

k+1 + 2F 4
k � F 4

k�1 + 4F 3
k Fk�1,

(F.7) F5k = F 5
k+1 + 4F 5

k � F 5
k�1 + 10Fk+1F 3

k Fk�1.
The reader can find (F.5), (F.6) in [1, 4]. The generalizations of the above are:
(GF.5) U3k = U3

k+1/P + (U3 � P 2)U3
k + Q3U3

k�1/P ,
(GF.6) U4k = U4

k+1/P + (U4 � P 3)U4
k �Q4U4

k�1/P + 4Q2U3
kUk�1,

(GF.7) U5k = U5
k+1/P + (U5 � P 4)U5

k + Q5U5
k�1/P + 10Q2Uk+1U3

kUk�1.
One way to prove (GF.5)-(GF.7) is to use (2). But obtaining such identities by
using the Binet formulas is di�cult. In the next section we discuss how we obtain
similar identities.

3. A New Method for Obtaining Identities for Linear Recurrences

First we consider the matrix method that is often used to prove some identities
concerning the generalized Fibonacci and Lucas numbers [12, 17]. We have the
following matrix formulas:✓

Uk+1 Vk+1

Uk Vk

◆
= Mk

✓
1 P
0 2

◆
, where M =

✓
P �Q
1 0

◆
, (3)

✓
Uk Uk+1

Vk Vk+1

◆
=
✓

0 1
2 P

◆
Rk, where R =

✓
0 �Q
1 P

◆
. (4)

Theorem 1. Let {Ur(P,Q)}, {Vr(P,Q)} be the Lucas sequences with P,Q 2 F.
Then there exist the following representations of Umk and Vmk via Uk, Uk+1:

Umk =
mX

i=0

✓
m

i

◆
(�1)i+1UiU

i
kUm�i

k+1 , (5)

Vmk =
mX

i=0

✓
m

i

◆
(�1)iViU

i
kUm�i

k+1 , (6)

where m 2 Z+, k 2 Z and such that UkUk+1 6= 0. Moreover, there are no other
representations of the form

Pm
i=0 ciU i

kUm�i
k+1 , where ci are coe�cients that do not

depend on k.

Proof. By (3), we have

Mk =
✓

Uk+1 (�PUk+1 + Vk+1)/2
Uk (�PUk + Vk)/2

◆
. (7)
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It is well known that Vk = PUk � 2QUk�1. Then

Mk =
✓

Uk+1 �QUk

Uk �QUk�1

◆
=
✓

Uk+1 �QUk

Uk Uk+1 � PUk

◆
(8)

since Uk+1 = PUk �QUk�1 and therefore

Mk = Uk+1

✓
1 0
0 1

◆
+ Uk

✓
0 �Q
1 �P

◆
= Uk+1I + UkA, (9)

where
A =

✓
0 �Q
1 �P

◆
. (10)

It follows from (4) that if P is replaced by �P in R, then we obtain A. In addition,
if we use Vk = PUk � 2QUk�1 in the matrix formula (4), then

Rm =
✓
�QUm�1(P,Q) �QUm(P,Q)

Um(P,Q) Um+1(P,Q)

◆
. (11)

By the Binet formulas, it can be seen that Um(�P,Q) = (�1)m+1Um(P,Q). Then

Am =
✓

(�1)m+1QUm�1(P,Q) (�1)mQUm(P,Q)
(�1)m+1Um(P,Q) (�1)mUm+1(P,Q)

◆
. (12)

Thus

Mmk = (Mk)m = (Uk+1I + UkA)m =
mX

i=0

✓
m

i

◆
U i

kAiUm�i
k+1 . (13)

Since
Mmk =

✓
⇤ ⇤

Umk ⇤

◆
and Ai =

✓
⇤ ⇤

(�1)i+1Ui ⇤

◆
, (14)

the representation (5) follows from (13). Let tr(X) denote trace of the matrix X.
From (8) and (13), it is seen that

tr(Mmk) = Umk+1 �QUmk�1 = Vmk = tr

 
mX

i=0

✓
m

i

◆
U i

kAiUm�i
k+1

!

=
mX

i=0

✓
m

i

◆
U i

k tr
�
Ai
�
Um�i

k+1 . (15)

By (12), tr
�
Ai
�

= (�1)i(�QUi�1 +Ui+1) = (�1)iVi. Using this in (15), we get (6).
Let ai(P,Q) =

�m
i

�
(�1)i+1Ui, then Umk =

Pm
i=0 ai(P,Q)U i

kUm�i
k+1 . Suppose that

there is another representation in the analogical form Umk =
Pm

i=0 bi(P,Q)U i
kUm�i

k+1 .
Then

Pm
i=0(bi � ai)U i

kUm�i
k+1 = 0. We can take P = 2, Q = 1; in this case Uk = k.

Therefore, we have
Pm

i=0(bi�ai)ki(k+1)m�i ⌘ 0 (mod k), and hence k | (b0�a0).
This must hold for any k > 0, and is possible only if b0 = a0. By analogy we prove
that bi = ai for 0 < i  m. So the representation (5) is unique. The uniqueness of
the representation (6) can be proved similarly.
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We note that the study fits in the literature. For a generalization of (5) see
Remark 4.1 in [20]. When P 2�4Q is not a perfect square (see [19], Corollary 2.10),
both identities are proved.

Now we consider another way of obtaining the identity (5). We can use a method
similar to the partial fraction decomposition. We begin with the supposed identity
Umk =

Pm
i=0 ai(P,Q)U i

kUm�i
k+1 . Then we get the system of m + 1 equations whose

variables and coe�cients are functions of P,Q:

Umk =
mX

i=0

ai(P,Q)U i
kUm�i

k+1 (�b(m� 1)/2c  k  dm/2e) . (16)

Since U0 = 0, U1 = 1, it is seen that a0 = 0, am = (�1)m+1Um. The remaining
coe�cients can be found by solving the system.
Example 1. U3k = a0U3

k+1 + a1U2
k+1Uk + a2Uk+1U2

k + a3U3
k . The system (16) for

this case is: 8>>><
>>>:

U�3 = a0U3
0 + a1U2

0 U�1 + a2U0U2
�1 + a3U3

�1,

U0 = a0U3
1 + a1U2

1 U0 + a2U1U2
0 + a3U3

0 ,

U3 = a0U3
2 + a1U2

2 U1 + a2U2U2
1 + a3U3

1 ,

U6 = a0U3
3 + a1U2

3 U2 + a2U3U2
2 + a3U3

2 .

(17)

Using U�3 = �(P 2 � Q)/Q3, U�1 = �1/Q, U0 = 0, U1 = 1, U3 = P 2 � Q,
U6 = P 5�4P 3Q+3PQ2, we get the solution a0 = 0, a1 = 3, a2 = �3P , a3 = P 2�Q.
So U3k = 3U2

k+1Uk � 3PUk+1U2
k + (P 2 �Q)U3

k . This is consistent with (5).
Example 2. Consider the Fibonacci Pythagorean triples identity [9].

(F.8) (Fk�1Fk+2)2 + (2FkFk+1)2 = F 2
2k+1.

Suppose that there exists an identity of the form

c1(Uk�1Uk+2)2 + c2(UkUk+1)2 + c3U
2
2k+1 = 0. (18)

To get the system for the variables ci we put k = �1, 0, 1. Then
8><
>:

c1P 2/Q4 + c3/Q2 = 0,
c1P 2/Q2 + c3 = 0,
c2P 2 + c3(P 2 �Q)2 = 0.

(19)

If the system has no solutions (the rank is 3), then we can state that the identity
of the form (18) does not exist. In this case we may modify it by adding new terms
and obtain a new system. In fact, the rank is 2. We put c3 = �1, then the solution
is c1 = Q2/P 2, c2 = (P 2 �Q)2/P 2, c3 = �1. But when we use the Binet formulas
to verify the resulting formula we see that it is not valid. Moreover, if we get the
system which corresponds k = 0, 1, 2, then the determinant of the system matrix
is �2P 4

�
P 2 � 2Q

� �
P 2 �Q

� �
P 2 + Q

�
/Q. Thus, the solution exists if one of the
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following holds: P = 0, P 2 = 2Q,P 2 = ±Q. But if we add c4Uk�1UkUk+1Uk+2 to
the left side of (18), then we find the generalization of (F.8) as follows:

(GF.8) (QUk�1Uk+2)2 + ((P 2 �Q)UkUk+1)2 = (PU2k+1)2+

2Q(P 2+Q)Uk�1UkUk+1Uk+2.

Remark. In general, we cannot assert that the method leads to the final result
which holds for all k since a supposed formula similar to (18) is checked by a system
only for some values of k. So we need to use the Binet formulas to prove that the
final result is valid for all k. In Example 1 this check is not necessary, since by
Theorem 1 we know that the identity which involves Umk, Uk, Uk+1 exists. But we
obtained the unique solution using the method.

Example 3. We want to get an identity of the form

c1U
2
k+1 + c2U

2
k + c3U

2
k�1 = 0. (20)

We put k = �1, 0, 1 and obtain the following system
8><
>:

c2/Q2 + c3P 2/Q4 = 0,
c1 + c3/Q2 = 0,
c1P 2 + c2 = 0.

(21)

Since the determinant of the system matrix is 2P 2/Q4, we conclude that for a
nonzero P there is no identity which contains only squares of three consecutive
terms of {Uk}. But if we try to find an identity of the form

c1U
2
k+1 + c2U

2
k + c3U

2
k�1 + c4U

2
k�2 = 0, (22)

then we obtain

(GF.9) U2
k+1 �Q3U2

k�2 = (P 2 �Q)(U2
k �QU2

k�1).

If P = 1 and Q = �1, then we get the identity for the Fibonacci numbers:

(F.9) F 2
k+1 + F 2

k�2 = 2(F 2
k + F 2

k�1).

As shown the method is good not only for generalizing Fibonacci identities, but
also for finding new identities. Below we present some results that we obtained
using this method. Some of them are well-known.

(F.10) F2k = F 2
k+1 � F 2

k�1,

(GF.10) PU2k = U2
k+1 �Q2U2

k�1,

(F.11) F 2
k+1 = 4FkFk�1 + F 2

k�2,

(GF.11) U2
k+1 = 2P (P 2 �Q)UkUk�1 + (Q2 � P 4)U2

k�1 + P 2Q2U2
k�2,

(F.12) F 2
k+2 � F 2

k�2 = 3(F 2
k+1 � F 2

k�1),

(GF.12) U2
k+2 �Q4U2

k�2 = (P 2 � 2Q)(U2
k+1 �Q2U2

k�1).
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Note that (GF.9) and (GF.12) have similar forms. To generalize (GF.12) consider
c1U2

k+m + c2U2
k+l + c3U2

k�l + c4U2
k�m = 0. With the help of the method we get the

following system:
8><
>:

c1U2
m�1 + c2U2

l�1 + c3U2
l+1/Q2(l+1) + c4U2

m+1/Q2(m+1) = 0,
c1U2

m + c2U2
l + c3U2

l /Q2l + c4U2
m/Qm = 0,

c1U2
m+1 + c2U2

l+1 + c3U2
l�1/Q2(l�1) + c4U2

m�1/Q2(m�1) = 0.
(23)

The rank is 2. If we put c1 = U2
l+1 � Q2U2

l�1, then c2 = �(U2
m+1 � Q2U2

m�1),
c3 = Q2l(U2

m+1�Q2U2
m�1), c4 = �Q2m(U2

l+1�Q2U2
l�1). Using (GF.10), we obtain

(GF.13) U2l(U2
k+m �Q2mU2

k�m) = U2m(U2
k+l �Q2lU2

k�l),

(F.13) F2l(F 2
k+m � F 2

k�m) = F2m(F 2
k+l � F 2

k�l).

Another way to prove (GF.13) is to use Catalan’s identity (GF.2). It follows that
U2

k+m�Q2mU2
k�m = U2kU2m, U2

k+l�Q2lU2
k�l = U2kU2l, which completes the proof.

To generalize (GF.9) we consider the most general formula which involves only
four squares of sequence terms: U2

k + c1U2
k+m + c2U2

k+l + c3U2
k+n = 0. Using the

method, we get

(GF.14) U2
k = U2

k+mUlUs/(Q2mUl�mUs�m) + U2
k+lUsUm/(Q2lUs�lUm�l)+

U2
k+sUmUl/(Q2sUm�sUl�s),

(F.14) F 2
k = F 2

k+mFlFs/(Fl�mFs�m) + F 2
k+lFsFm/(Fs�lFm�l)+

F 2
k+sFmFl/(Fm�sFl�s).

Here we mean that l,m, s are distinct integers. The analog for cubes is

(GF.15) U3
k = U3

k+mUlUpUs/(Q3mUl�mUp�mUs�m)+

U3
k+lUmUpUs/(Q3lUm�lUp�lUs�l)+

U3
k+pUlUmUs/(Q3pUl�pUm�pUs�p)+

U3
k+sUlUmUp/(Q3sUl�sUm�sUp�s).

Similar identities on sums of powers of the terms of the Lucas sequences can be
found in [7, 21].

Theorem 2. Let {Uk} be the Lucas sequence with parameters P,Q in an arbitrary
field F. Let di (0  i  n) be distinct integers. Then the following holds:

Un
k+x =

nX
i=0

Un
k+di

nY
j=0
j 6=i

Ux�dj

Udi�dj

. (24)

Proof. We denote (↵/↵̄)x = y. Then

Un
k+x = ↵̄xn

✓
↵k+x/↵̄x � ↵̄k

↵� ↵̄

◆n

= ↵̄xn

✓
↵ky � ↵̄k

↵� ↵̄

◆n

. (25)
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We see that Un
k+x is the product of ↵̄xn and the polynomial in y of degree n with

coe�cients in F. Since Ux�dj = ↵̄x(↵�dj y � ↵̄�dj )/(↵ � ↵̄), the right side of (24)
has the same structure as Un

k+x. Since U0 = 0, it easy to see that (24) is valid for
x = di (0  i  n). Thus, the polynomials of degree n on the left and right sides of
(24) are equal, since they are equal for n + 1 di↵erent values of the variable.

Note that (24) is related to Lagrange interpolation. If we put x = 0, then after
simple transformations we obtain an identity that generalizes (GF.14) and (GF.15):

Un
k =

nX
i=0

Un
k+di

Qndi

nY
j=0
j 6=i

Udj

Udj�di

. (26)

As an example, we give some Fibonacci identities that can be obtained from (24):

F 3
k+2 + F 3

k�2 = 3
�
F 3

k+1 � F 3
k�1

�
+ 6F 3

k , (27)
F 4

k+3 � F 4
k�3 = 4(F 4

k+2 � F 4
k�2) + 20(F 4

k+1 � F 4
k�1), (28)

F 5
k+3 � F 5

k�3 = 8(F 5
k+2 + F 5

k�2) + 40(F 5
k+1 � F 5

k�1)� 60F 5
k . (29)

Corollary 1. Let p0, p1 be nonzeros in F, and let the sequence {Wk(a0, a1; p0, p1)}
be defined by the relation Wk+2 = p0Wk+1 + p1Wk, with W0 = a0,W1 = a1, where
a0, a1 2 F. Let s be an integer such that Ws = 0, and di (0  i  n) be integers
such that Wdi�dj+s 6= 0 for i 6= j. Then the following holds

Wn
k+x =

nX
i=0

Wn
k+di

nY
j=0
j 6=i

Wx�dj+s

Wdi�dj+s
. (30)

Proof. It is known [8] that Wk(a0, a1; p0, p1) = a1Uk(p0,�p1) + a0p1Uk�1(p0,�p1).
The rest of the proof is analogous to the proof of Theorem 2.
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