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Abstract
We give density results on a conjecture of Mező about hyperharmonic numbers.
It is shown with stronger error terms that almost all hyperharmonic numbers are
not integers. Other types of density results based on a new su�cient condition
about the nonintegerness of hyperharmonic numbers are obtained. Quantitative
estimates for the frequency of noninteger hyperharmonic numbers are deduced using
the distribution of prime numbers. In particular, assuming the Riemann hypothesis
or Cramér’s conjecture on the gap between consecutive prime numbers, we come
very close to establishing Mező’s conjecture.

1. Introduction

This paper is concerned with giving density results on a conjecture of Mező [22]
about hyperharmonic numbers. All of our findings are in support of the conjecture
and show that it holds for the vast majority of possible cases. The classical harmonic
numbers are defined as the partial sums of the harmonic series

hn =
nX

k=1

1
k

for n � 1. Theisinger [27] and Kürschák [21] were among the first to show that hn is
never an integer except h1 = 1. This nonintegerness problem was generalized in [14]
and [25], where it was proved that multiple harmonic type sums are rarely integers.
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In another direction, Ramanujan gave an asymptotic formula for hn using triangular
numbers. However, he didn’t explain the structure of the mysterious coe�cients in
the corresponding asymptotic expansion. Later on, the work of Berndt revealed the
essence of the coe�cients, see [9, pp. 531–532].

Harmonic numbers enjoy many arithmetical and analytical properties. For re-
cent work on harmonic numbers and their applications to approximation of real
numbers via log-sine integrals, we refer to [1, 2, 3]. As an interesting connection
to formal logic, Pambuccian [24] verified the nonintegerness of more general sums
of fractions in Peano arithmetic without the axiom of induction. Numerators of
harmonic type numbers are closely related with Stirling numbers and recent work
on such numbers was done by Komatsu and Mező [20, 23]. A fruitful generalization
of harmonic numbers was introduced by Conway and Guy [10]. They defined the
nth hyperharmonic number of order r by the recursive formula

h(r)
n :=

nX
k=1

h(r�1)
k ,

where initially h(1)
n = hn. Functional equations and special values of zeta functions

arising from hyperharmonic and generalized harmonic numbers were studied in [4]
and [5]. Congruences and some properties of harmonic type sums were investigated
in [11, 16, 17]. Apart from that, polynomials related to hyperharmonic numbers and
their closed forms can be found in [13]. Inspired by the nonintegerness of harmonic
numbers, Mező [22] made the following conjecture:

“h(r)
n is never an integer except h(r)

1 = 1.”

In [22], he proved the conjecture for r = 2, 3. Amrane and Belbachir [7], [8] extended
this to r  25. They also tabulated other values of n and r such that h(r)

n is not
an integer. Although there seems to be no obvious reason for the truth of the
conjecture, a significant step towards its resolution was taken in [15]. In Theorem 1
of [15], it was shown that Mező’s conjecture holds in almost all cases. Precisely, if

S(x) =
���{(n, r) 2 [0, x]⇥ [0, x] : h(r)

n /2 Z}
��� ,

then
S(x) = x2 + O

⇣
x

2.475
1.475

⌘
.

Theorem 2 of [15] states that h(r)
n is not an integer in the cases when n is even, r

is odd and n is a prime power. We will improve both of these theorems here with
delicate density results possessing sharper error terms and thereby making further
progress towards Mező’s conjecture.
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Theorem 1. If S(x) is the number of pairs (n, r) 2 [0, x]⇥ [0, x] such that h(r)
n is

not an integer, then for any A > 0, we have

S(x) = x2 + OA

 
x

80
59

(log x)A

!
,

where the implied constant depends only on A. Assuming the Riemann hypothesis,
we have

S(x) = x2 + O
⇣
x

10
9 (log x)

28
9

⌘
.

Finally, assuming Cramér’s conjecture, namely that

pn+1 � pn = O(log2 pn)

for consecutive prime numbers pn and pn+1, we have

S(x) = x2 + O(x log3 x).

Note that in Theorem 1 of [15], the error term for S(x) was obtained in the forms

O✏

⇣
x

5
3+✏
⌘

for all ✏ > 0 and
O
⇣
x

3
2 log x

⌘
,

assuming the Riemann hypothesis or Cramér’s conjecture, respectively. Moreover,
we have

80
59
⇡ 1.35 < 1.67 ⇡ 2.475

1.475
,

10
9
⇡ 1.11 < 1.66 ⇡ 5

3
which represent considerable improvements in the exponents. Finally, assuming
Cramér’s conjecture, our asymptotic for S(x) comes very close to establishing
Mező’s conjecture as the number of all lattice points (n, r) in [0, x] ⇥ [0, x] with
n > 1 is

x2 + O(x).

Our next result gives a su�cient condition for h(r)
n /2 Z which is easy to check

numerically. Consequently, this condition leads to another density type outcome
not covered by Theorem 1. As usual, we let {x} = x� [x] be the fractional part of
a real number x.

Theorem 2. Assume that m is the highest power of a prime number p such that
pm divides at least one of the n consecutive numbers r, r + 1, . . . , r + n � 1. If pm

divides exactly one of r, r + 1, . . . , r + n� 1 and the condition
⇢

r � 1
pk

�
+
⇢

n

pk

�
< 1 (1)
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holds for some k with pk  n, then h(r)
n /2 Z. In particular, if⇢

r � 1
2k

�
+
n n

2k

o
< 1 (2)

holds for some k with 2k  n, then h(r)
n /2 Z.

Let us remark that if n � 2 is even, then taking k = 1 in (2), we see that h(r)
n /2 Z.

If r is odd, then we see again from (2) that h(r)
n /2 Z for n � 2. Lastly, if n = ps

is a prime power, where we may assume that p is odd, then taking k = s in (1)
and observing that pm with m � s divides exactly one of r, r + 1, . . . , r + n� 1, we
have h(r)

n /2 Z. Therefore, Theorem 2 is an improvement of Theorem 2 of [15], but
it gives much more than that as can be realized in the following consequence.

Corollary 1. Let k � 1, n, a be nonnegative integers subject to the conditions n ⌘ a
(mod 2k), a 2 {0, 1, . . . , 2k � 1} and 2k  n. If r ⌘ 1, 2, . . . , 2k � a (mod 2k), then
h(r)

n /2 Z. Consequently, for such a fixed n, the set of integers r with h(r)
n /2 Z

contains a set of density
1� a

2k
.

Furthermore, let k � 1, n, r, a be nonnegative integers with the conditions r ⌘ a
(mod 2k), a 2 {1, 2, . . . , 2k} and 2k  n. If n ⌘ 0, 1, . . . , 2k � a (mod 2k), then
h(r)

n /2 Z.

Corollary 1 signifies the dual role of n and r over arithmetic progressions that
leads to the nonintegerness of h(r)

n . For a fixed r, we know from Theorem 4 of
[15] that h(r)

n /2 Z whenever n � r/16. It follows that the density of such n is 1.
Although the second part of Corollary 1 falls short of this density, it is still not
implied by Theorem 4 of [15] since for n < r/16, there are values of n over the
indicated progressions such that h(r)

n /2 Z. However, for a fixed n, the frequency of
r such that h(r)

n /2 Z can also be estimated from below in terms of the largest prime
number not exceeding n.

Theorem 3. Let p(n) be the largest prime number that is  n. Then the set of
integers r with h(r)

n /2 Z contains a set of density

2� n

p(n)
.

Consequently, for all large enough n, the set of integers r with h(r)
n /2 Z contains a

set of density

1� n0.525

n� n0.525
= 1 + O

✓
1

n0.475

◆
.

Assuming the Riemann hypothesis, this density is

1� c
p

n log n

n� c
p

n log n
= 1 + O

✓
log np

n

◆
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for all n � 2 and some constant c > 0. Finally, assuming Cramér’s conjecture, this
density is

1� c log2 n

n� c log2 n
= 1 + O

✓
log2 n

n

◆

for all n � 2 and some constant c > 0.

It is known from [15] that h(r)
n /2 Z when 1 < n  32 or when r  20001.

However, none of the methods used in [15] could show that h(r)
33 /2 Z for all r.

Nevertheless, our final result gives a lower estimate for the frequency of r such that
h(r)

33 /2 Z indicating that finding r with h(r)
33 2 Z is not very probable.

Corollary 2. The set of integers r such that h(r)
33 /2 Z contains a set of density

143
144

⇡ 0.993.

2. Proofs

Proof of Theorem 1. Consider a pair (n, r) 2 [0, x]⇥[0, x], where n and r are positive
integers. First, we may assume that n > M for any given constant M as the number
of pairs (n, r) 2 [0, x]⇥ [0, x] with n M is O(x) and this will be a negligible error.
Next, let us put an upper bound on the size of n in terms of x. As a result of
Theorem 10 of [15], we know that if the interval (n � �(n), n] contains a prime
number for n large enough, where �(n) is a monotonically increasing function with
�(n) = o(n) and

r = O

✓
n2

�(n)

◆
, (3)

then h(r)
n /2 Z. As in [15], we may take �(n) = n0.525 when n is large enough. It

follows from (3) that if
r = O

�
n1.475

�
, (4)

then h(r)
n /2 Z. As r  x, it is clear from (4) that one may assume

n  cx
1

1.475 (5)

for some constant c > 0, since otherwise h(r)
n is guaranteed to be noninteger. One

may fix a large enough n subject to (5). It is known from [10] that

h(r)
n =

r(r + 1) . . . (r + n� 1)
n!

✓
1
r

+
1

r + 1
+ · · · + 1

r + n� 1

◆
. (6)

Let p(n) be the largest prime number that is  n. As n is large enough, Bertrand’s
postulate gives that p(n) > n/2. Therefore, p(n) can divide at most two integers
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among the n consecutive integers r, r + 1, . . . , r + n� 1. If p(n) divides exactly one
of r, r + 1, . . . , r + n � 1, then it is easy to see that h(r)

n is not an integer. We
may then assume that r  x is such that exactly two of the n consecutive integers
r, r + 1, . . . , r + n � 1 are divisible by p(n). Note that when n is large enough, we
have

n� p(n)  �(n) (7)

as soon as the interval (n��(n), n] contains a prime number. Therefore, if r  x is
such that exactly two of the n consecutive integers r, r+1, . . . , r+n�1 are divisible
by p(n), then from (7), there exists an integer k such that

|r � kp(n)| = O (�(n)) . (8)

Observe that the number of multiples of p(n) that are less than or equal to x is
x

p(n)

�
,

and consequently the number of r  x satisfying (8) is

O

✓
x

p(n)
�(n)

◆
= O

⇣x

n
�(n)

⌘
(9)

when n  cx
1

1.475 is large enough so that (n � �(n), n] contains a prime number.
One infers from (9) that

S(x) = x2 + O

0
B@x

X
ncx

1
1.475

�(n)
n

1
CA , (10)

where �(n) is subject to the only condition that (n � �(n), n] contains a prime
number. Put X = cx

1
1.475 . Jia [19] showed that for all n  X with at most

OA

✓
X

(log X)A

◆

exceptions, where A is any positive number and the implied constant depends only
on A, the interval (n� n1/19, n] contains a prime number (Jia [19] indeed obtained
the stronger conclusion that the exponent here can be any number > 1/20, but we
will not need this in the sequel). Therefore, we may take �(n) = n1/19 with the
number of exceptional n  X as above. Let us define a set of good n as follows:

G := {n  X : �(n) = n1/19}. (11)

According to (11), the set of bad n is defined as follows:

B := {n  X : n /2 G}. (12)
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From (11) and (12), we have
X
nX

�(n)
n

=
X
n2G

�(n)
n

+
X
n2B

�(n)
n

. (13)

Again using (11), one obtains
X
n2G

�(n)
n

⌧ X1/19. (14)

We also know that
M(X) :=

X
n2B

1⌧A
X

(log X)A
. (15)

Taking �(n) = n0.525 for the sum over n 2 B and applying partial summation, one
gets X

n2B

�(n)
n

=
X
n2B

1
n0.475

=
M(X)
X0.475

+ 0.475
Z X

2

M(t)
t1.475

dt + O(1). (16)

Using (15), we see that
M(X)
X0.475

⌧A
X0.525

(log X)A
(17)

and Z X

2

M(t)
t1.475

dt⌧A

Z X

2

1
t0.475(log t)A

dt. (18)

By partial integration, one obtains for 2  Y  X thatZ X

Y

1
t0.475(log t)A

dt =
X0.525

0.525(log X)A

+
A

0.525

Z X

Y

1
t0.475(log t)A+1

dt + OY (1). (19)

If Y is large enough only in terms of A, then

A

(0.525) log t
 1

2
(20)

holds for any t � Y . It is clear from (20) by the monotonicity of integrals that

A

0.525

Z X

Y

1
t0.475(log t)A+1

dt  1
2

Z X

Y

1
t0.475(log t)A

dt (21)

when Y is large enough only in terms of A. Assembling (19) and (21), we obtainZ X

2

1
t0.475(log t)A

dt =
Z Y

2

1
t0.475(log t)A

dt +
Z X

Y

1
t0.475(log t)A

dt

⌧A
X0.525

(log X)A
. (22)
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Therefore, (18) and (22) give
Z X

2

M(t)
t1.475

dt⌧A
X0.525

(log X)A
. (23)

Gathering (16), (17) and (23), we have

X
n2B

�(n)
n

⌧A
X0.525

(log X)A
. (24)

Next (13), (14) and (24) yield that

X
nX

�(n)
n

⌧A
X0.525

(log X)A
⌧A

x
0.525
1.475

(log x)A
. (25)

Feeding (25) into (10),

S(x) = x2 + OA

 
x

2
1.475

(log x)A

!

follows. This completes the proof of the first part of Theorem 1.
For the second part let us assume the Riemann hypothesis. An interesting feature

of the argument is the usage of di↵erent consequences of the Riemann hypothesis.
First, Cramér [12] showed, assuming the Riemann hypothesis, that the interval
(n� c

p
n log n, n] contains a prime number for n � 2 and some constant c > 0 (in

the same paper of Cramér, one can also find a probabilistic model on which Cramér
based his conjecture pn+1�pn = O(log2 pn) for the gaps between consecutive prime
numbers). For extensions of Cramér’s results to prime ideals in number fields, we
refer to [6] and [18]. Therefore, we may take �(n) = c

p
n log n and it follows from

(3) that if

r = O

✓
n3/2

log n

◆
, (26)

then h(r)
n is guaranteed to be noninteger. As r  x, we see from (26) that

n  X := cx2/3(log x)2/3 (27)

can be assumed for some constant c > 0 as otherwise h(r)
n is not an integer. Using

(27) and arguing as above, we arrive at the formula

S(x) = x2 + O

0
@x

X
nX

�(n)
n

1
A , (28)
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where �(n) is subject to the only condition that (n � �(n), n] contains a prime
number. Our definition of a set of good n is as follows:

G := {n  X : �(n) = n✓}, (29)

where 0 < ✓ < 1 is to be determined later. As a result of (29), the set of bad n
becomes

B := {n  X : n /2 G}. (30)

Using (28), (29) and (30), we may now express

S(x) = x2 + O

 
x
X
n2G

�(n)
n

+ x
X
n2B

�(n)
n

!
. (31)

As a second consequence of the Riemann hypothesis, let us recall a result of Selberg
[26] who proved that X

pnx
pn+1�pn�y

1 = O

✓
x log2 x

y2

◆
. (32)

Notice that (32) is very useful in putting a severe limitation on the number of
exceptionally large gaps between consecutive prime numbers. Let us decompose
the range [2, x] of summation in (32) to dyadic intervals of the form

h x

2k+1
,

x

2k

i

for k � 0. Applying (32) to each of these intervals, one obtains
X

x
2k+1pn x

2k

pn+1�pn�p✓
n

1 
X

x
2k+1pn x

2k

pn+1�pn� x✓

2(k+1)✓

1⌧ 22(k+1)✓�kx1�2✓ log2 x. (33)

Summing (33) over all possible values of k and noting that the series

1X
k=0

2(2✓�1)k

is convergent when 0 < ✓ < 1/2, we deduce that �(n) = n✓ for all n  X with
O
�
X1�2✓ log2 X

�
exceptions. It follows that

X
n2G

�(n)
n

⌧ X✓. (34)

We also know that
M(X) :=

X
n2B

1⌧ X1�2✓ log2 X. (35)
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Of course for n 2 B, we may take �(n) = c
p

n log n and this gives
X
n2B

�(n)
n

⌧
X
n2B

log n

n1/2
. (36)

Using (35) and applying partial summation, one obtains

X
n2B

log n

n1/2
⌧ X

1
2�2✓ log3 X +

Z X

2
t�

1
2�2✓ log3 t dt. (37)

Clearly, we have Z X

2
t�

1
2�2✓ log3 t dt⌧ X

1
2�2✓ log3 X. (38)

Assembling (36)–(38), one gets the estimate
X
n2B

�(n)
n

⌧ X
1
2�2✓ log3 X. (39)

To optimize the exponent, let us take ✓ = 1/6 so that from (27), (34) and (39),
X
n2G

�(n)
n

+
X
n2B

�(n)
n

⌧ X1/6 log3 X ⌧ x1/9(log x)28/9 (40)

follows. Lastly, feeding (40) into (31), we complete the proof of the second part of
Theorem 1 assuming the Riemann hypothesis.

Let us now assume Cramér’s conjecture so that pn+1�pn = O(log2 pn) holds for
all consecutive prime numbers pn and pn+1. This shows that it is possible to take
�(n) = c log2 n for some constant c > 0. Similarly as above, we get from (3) that if

r = O

✓
n2

log2 n

◆
, (41)

then h(r)
n is not an integer. As r  x, from (41),

n  X := c
p

x log x (42)

follows for some constant c > 0 as otherwise h(r)
n is not an integer. Using (42), we

have

S(x) = x2 + O

0
@x

X
nX

�(n)
n

1
A . (43)

Just noting that

X
nX

�(n)
n

⌧
X
nX

log2 n

n
⌧ log3 X ⌧ log3 x (44)

and combining (43) and (44), one completes the proof of Theorem 1.
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Proof of Theorem 2. Let m be the highest power of a prime number p such that pm

divides at least one of r, r+1, . . . , r+n�1. Assume that u satisfies pu  n < pu+1.
Since 

r + n� 1
pu

�
�

r � 1
pu

�
�


n

pu

�
� 1,

we see that at least one of r, r+1, . . . , r+n�1 is divisible by pu. This forces u  m.
From (6), h(r)

n can be written in the form

h(r)
n =

r+n�1X
j=r

xj , (45)

where each
xj =

r(r + 1) . . . (r + n� 1)
jn!

is a rational number. We define the exact power of p dividing xj as the exact
power of p dividing r(r + 1) . . . (r + n � 1) minus the exact power of p dividing
jn!. Let ⌫(xj) be the exact power of p dividing xj . As pm divides exactly one of
r, r + 1, . . . , r + n� 1 by our assumption, we observe that there is a unique j0 such
that

⌫(xj0) < ⌫(xj)

holds for all j 6= j0. Assume for a moment that ⌫(xj0) < 0. Then using (45), h(r)
n

can be written in the form

h(r)
n =

a1

ps1b1
+

a2

ps2b2
+ · · · + an

psnbn
,

where aj , bj are not divisible by p, s1 � 1 and max(s2, . . . , sn) < s1 (indeed we
have s1 = �⌫(xj0)). If h(r)

n happens to be an integer, then we see from the above
formula that

ps1

0
@ nY

j=1

bj

1
Ah(r)

n = a1

0
@ nY

j=2

bj

1
A+ N, (46)

where N is divisible by p. Clearly, (46) leads to a contradiction as

a1

0
@ nY

j=2

bj

1
A

is not divisible by p. Therefore,
⌫(xj0) < 0 (47)

is a su�cient condition for the nonintegerness of h(r)
n . In order to focus on the

condition (47), note that the exact power of p dividing n! is
uX

k=1


n

pk

�
.
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The exact power of p dividing r(r + 1) . . . (r + n� 1) is

mX
k=1

✓
r + n� 1

pk

�
�

r � 1
pk

�◆
. (48)

Observe that if u < k  m, then exactly one of r, r + 1, . . . , r + n� 1 is divisible by
pk and 

r + n� 1
pk

�
�

r � 1
pk

�
= 1

holds for such k. Taking this into account, (48) gives that the exact power of p
dividing r(r + 1) . . . (r + n� 1) is

m� u +
uX

k=1

✓
r + n� 1

pk

�
�

r � 1
pk

�◆
. (49)

Using (49), one may deduce that

⌫(xj0) = �u +
uX

k=1

✓
r + n� 1

pk

�
�

r � 1
pk

�
�


n

pk

�◆
. (50)

Clearly, 
r + n� 1

pk

�
�

r � 1
pk

�
�


n

pk

�
= 0 or 1

for all k. Since by our assumption,⇢
r � 1
pk

�
+
⇢

n

pk

�
< 1

holds for some k  u, we see that
r + n� 1

pk

�
�

r � 1
pk

�
�


n

pk

�
= 0

for at least one value of k  u. Therefore (50) implies (47). In particular, when
p = 2, the divisibility of exactly one of r, r + 1, . . . , r + n� 1 by 2m (which is easy
to show) comes for free from a simple but useful observation of Kürschák [21]. This
completes the proof of Theorem 2.

Proof of Corollary 1. Assume that n ⌘ a (mod 2k), a 2 {0, 1, . . . , 2k � 1} and
2k  n. It follows that n n

2k

o
=

a

2k
. (51)

Similarly, if r ⌘ 1, 2, . . . 2k � a (mod 2k), then
⇢

r � 1
2k

�
 2k � a� 1

2k
. (52)
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Combining (51) and (52), one obtains that
⇢

r � 1
2k

�
+
n n

2k

o
 2k � 1

2k
. (53)

As a result of (53), one verifies condition (2) of Theorem 2 and the consequence
h(r)

n /2 Z. Note that for a fixed n ⌘ a (mod 2k), r runs over 2k � a distinct residue
classes modulo 2k so that the set of r with h(r)

n /2 Z contains a set of density
1 � a/2k. Next assume that r ⌘ a (mod 2k), a 2 {1, 2, . . . , 2k} and 2k  n. If
n ⌘ 0, 1, . . . , 2k � a (mod 2k), then

n n

2k

o
 2k � a

2k
. (54)

Moreover, we have ⇢
r � 1
2k

�
=

a� 1
2k

. (55)

Thus, (53) holds again by (54) and (55), and h(r)
n /2 Z follows from (2) of Theorem

2. This completes the proof.

Proof of Theorem 3. Let p := p(n) be the largest prime number  n. Again we
know from (6) that if p divides exactly one of r, r +1, . . . , r +n� 1, then h(r)

n is not
an integer. Note that exactly one of the p consecutive integers r, r +1, . . . , r + p� 1
is divisible by p, say r + p� 1� k is divisible by p with 0  k  p� 1. Therefore, if
the next integer divisible by p, namely r + 2p� 1� k exceeds r + n� 1, then h(r)

n

is not an integer. This forces

0  k  min{p� 1, 2p� n� 1} = 2p� n� 1. (56)

Consequently, from (56), we deduce that as r runs over 2p�n distinct residue classes
modulo p, then h(r)

n is not an integer. Hence the set of r with h(r)
n /2 Z contains a

set of density
2� n

p
.

As it was argued in [15],
p � n� n0.525

for all large enough n. It follows that the above density is at least

2� n

n� n0.525
= 1� n0.525

n� n0.525

for all large enough n. The remaining assertions follow similarly as

p � n� c
p

nlog n
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for some c > 0 and all n � 2 under the Riemann hypothesis, and

p � n� c log2 n

for some c > 0 and all n � 2 under Cramér’s conjecture.

Proof of Corollary 2. As 33 ⌘ 1 (mod 25), we may use Corollary 1 to see that
h(r)

n /2 Z unless r ⌘ 0 (mod 25). Thus we may assume that r = 32k for k � 1. Let
m be the highest power of 3 such that 3m divides at least one of the 33 consecutive
integers r, r + 1, . . . , r + 32. If m � 4, then clearly 3m divides exactly one of
r, r + 1, . . . , r + 32. If m = 3 (note that in any case, we have m � 3), then let us
assume that r is subject to the condition

⇢
r � 1
33

�
+
⇢

33
33

�
< 1. (57)

Using (57), the number of integers among r, r + 1, . . . , r + 32 that are divisible by
33 is 

r + 32
33

�
�

r � 1
33

�
=

33
33

�
= 1. (58)

As a result of (58), exactly one of r, r +1, . . . , r +32 is divisible by 33. We conclude
by Theorem 2 that h(r)

n /2 Z when r = 32k is subject to the condition
⇢

32k � 1
33

�
<

21
27

. (59)

We observe that (59) is equivalent to

5k ⌘ 1, 2, . . . , 21 (mod 27). (60)

One obtains from (60) that h(r)
n /2 Z when r = 32k and k runs over 21 distinct

residue classes modulo 27. It follows that the set of integers r such that h(r)
n 2 Z is

contained in a set of density
1
32
⇥ 2

9
=

1
144

.

The proof is now complete.
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