
#A45 INTEGERS 18 (2018)

INTEGER COMPLEXITY: ALGORITHMS AND
COMPUTATIONAL RESULTS

Harry Altman
Department of Mathematics, University of Michigan, Ann Arbor, Michigan

harry.j.altman@gmail.com

Received: 3/24/17, Revised: 12/21/17, Accepted: 5/10/18, Published: 5/18/18

Abstract
Define knk to be the complexity of n, the smallest number of ones needed to write
n using an arbitrary combination of addition and multiplication. Define n to be
stable if for all k � 0, we have k3knk = knk + 3k. In a recent paper, this author
and Zelinsky showed that for any n, there exists some K = K(n) such that 3Kn
is stable; however, the proof there provided no upper bound on K(n) or any way
of computing it. In this paper, we describe an algorithm for computing K(n), and
thereby also show that the set of stable numbers is a computable set. The algorithm
is based on considering the defect of a number, defined by �(n) := knk � 3 log3 n,
building on the methods presented in a recent article of this author. As a side
benefit, this algorithm also happens to allow fast evaluation of the complexities of
powers of 2; we use it to verify that k2k3`k = 2k + 3` for k  48 and arbitrary
` (excluding the case k = ` = 0), providing more evidence for the conjecture that
k2k3`k = 2k + 3` whenever k and ` are not both zero. An implementation of these
algorithms in Haskell is available.

1. Introduction

The complexity of a natural number n is the least number of 1’s needed to write it
using any combination of addition and multiplication, with the order of the opera-
tions specified using parentheses grouped in any legal nesting. For instance, n = 11
has a complexity of 8, since it can be written using 8 ones as

11 = (1 + 1 + 1)(1 + 1 + 1) + 1 + 1,

but not with any fewer than 8. This notion was implicitly introduced in 1953 by
Kurt Mahler and Jan Popken [21]; they actually considered an inverse function,
the size of the largest number representable using k copies of the number 1. (More
generally, they considered the same question for representations using k copies of a
positive real number x.) Integer complexity was explicitly studied by John Selfridge,

INTEGERS: 18 (2018) 2

and was later popularized by Richard Guy [16, 17]. Following J. Arias de Reyna [8]
we will denote the complexity of n by knk.

Integer complexity is approximately logarithmic; it satisfies the bounds

3 log3 n =
3

log 3
log n  knk  3

log 2
log n, n > 1.

The lower bound can be deduced from the result of Mahler and Popken, and was
explicitly proved by John Selfridge [16]. It is attained with equality for n = 3k for
all k � 1. The upper bound can be obtained by writing n in binary and finding a
representation using Horner’s algorithm. It is not sharp, and the constant 3

log 2 can
be improved for large n [26].

One can compute knk via dynamic programming, since k1k = 1, and for n > 1,
one has

knk = min
a,b<n2N

a+b=n or ab=n

(kak+ kbk).

This yields an algorithm for computing knk that runs in time ⇥(n2); in the mul-
tiplication case, one needs to check a  pn, and, näıvely, in the addition case,
one needs to check a  n/2. However, Srinivas and Shankar [23] showed that the
upper bound on the addition case can be improved, lowering the time required to
O(nlog2 3), by taking advantage of the inequality knk � 3 log3 n to rule out cases
when a is too large. Arias de Reyna and Van de Lune [9] took this further and
showed that it could be computed in time O(n↵), where

↵ =
log(362�10(30557189 + 21079056 3

p
3 + 14571397 3

p
9))

log(21037)
< 1.231;

this remains the best known algorithm for computing knk for general n.
The notion of integer complexity is similar in spirit but di↵erent in detail from

the better known measure of addition chain length, which has application to com-
putation of powers, and which is discussed in detail in Knuth [20, Sect. 4.6.3]. See
also [1] for some interesting analogies between them; we will discuss this further in
Section 2.2.

1.1. Stability Considerations

One of the easiest cases of complexity to determine is powers of 3; for any k � 1, one
has k3kk = 3k. It is clear that k3kk  3k for any k � 1, and the reverse inequality
follows from Equation (1).

The fact that k3kk = 3k holds for all k � 1 might prompt one to ask whether
in general it is true that k3nk = knk + 3. This is false for n = 1, but it does not
seem an unreasonable guess for n > 1. Nonetheless, this does not hold; the next
smallest counterexample is n = 107, where k107k = 16 but k321k = 18. Indeed, not

INTEGERS: 18 (2018) 3

only do there exist n for which k3nk < k3nk+ 3, there are n for which k3nk < knk;
one example is n = 4721323. Still, this guess can be rescued. Let us first make a
definition.

Definition 1. A number m is called stable if k3kmk = 3k + kmk holds for every
k � 0. Otherwise it is called unstable.

In [7], this author and Zelinsky showed the following theorem.

Theorem 1. For any natural number n, there exists K � 0 such that 3Kn is stable.
That is to say, there exists a minimal K := K(n) such that for any k � K,

k3knk = 3(k �K) + k3Knk.

This can be seen as a “rescue” of the incorrect guess that k3nk = knk+3 always.
With this theorem, we can make the following definition.

Definition 2. Given n 2 N, define K(n), the stabilization length of n, to be the
smallest k such that 3kn is stable.

We can also define the notion of the stable complexity of n (see [2]), which is,
intuitively, what the complexity of n would be “if n were stable”.

Definition 3. For a positive integer n, we define the stable complexity of n, denoted
knkst, to be k3knk � 3k for any k such that 3kn is stable. This is well-defined; if
3kn and 3`n are both stable, say with k  `, then

k3knk � 3k = 3(k � `) + k3`nk � 3k = k3`nk � 3`.

The paper [7], while proving the existence of K(n), gave no upper bound on
K(n) or indeed any way of computing it. Certainly one cannot compute whether
or not n is stable simply by computing for all k the complexity of 3kn; one can
guarantee that n is unstable by such computations, but never that it is stable. And
it is not clear that knkst, though it has been a useful object of study in [2], can
actually be computed.

1.2. Main Result

We state the main result.

Theorem 2. We have:

1. The function K(n), the stabilization length of n, is a computable function of n.

2. The function knkst, the stable complexity of n, is a computable function of n.

3. The set of stable numbers is a computable set.

INTEGERS: 18 (2018) 4

It is worth observing here that, strictly speaking, all three parts of this theorem
are equivalent. If one has an algorithm for computing K(n), then one may check
whether n is stable by checking whether K(n) = 0, and one may compute knkst by
computing k3K(n)nk by the usual methods and observing that

knkst = k3K(n)nk � 3K(n).

Similarly, if one has an algorithm for computing knkst, one may compute whether n
is stable by checking if knkst = knk. Finally, if one has an algorithm for telling if n
is stable, one may determine K(n) by simply applying this algorithm to n, 3n, 9n,
. . . , until it returns a positive result, which must eventually occur. Such methods
for converting between K(n) and knkst may be quite slow, however. Fortunately,
the algorithm described here (Algorithm 8) will yield both K(n) and knkst at once,
averting such issues; and if one has K(n), checking whether n is stable is a one-step
process.

1.3. Applications

An obvious question about knk is that of the complexity of powers, generalizing
what was said about powers of 3 above. Certainly for k � 1 it is true that

knkk  kknk,

and as noted earlier in the case n = 3 we have equality. However other values of
n have a more complicated behavior. For instance, powers of 5 do not work nicely,
as k56k = 29 < 30 = 6 · k5k. The behavior of powers of 2 remains unknown; it has
previously been verified [19] that

k2kk = kk2k = 2k for 1  k  39.

One may combine the known fact that k3kk = 3k for k � 1, and the hope that
k2kk = 2k for k � 1, into the following conjecture.

Conjecture 1. For k, ` � 0 and not both equal to 0,

k2k3`k = 2k + 3`.

Such a conjecture, if true, is quite far from being proven; after all, it would
require that k2kk = 2k for all k � 1, which would in turn imply that

lim sup
n!1

knk
log n

� 2
log 2

;

at present, it is not even known that this limit is any greater than 3
log 3 , i.e., that

knk ⌧ 3 log3 n. Indeed, some have suggested that knk may indeed just be asymp-
totic to 3 log3 n; see [16].

Nonetheless, in this paper we provide some more evidence for this conjecture, by
proving the following theorem.

INTEGERS: 18 (2018) 5

Theorem 3. For k  48 and arbitrary `, so long as k and ` are not both zero,

k2k3`k = 2k + 3`.

This extends the results of [19] regarding numbers of the form 2k3`, as well as
the results of [7], which showed this for k  21 and arbitrary `. We prove this not
by careful hand analysis, as was done in [7], but by demonstrating, based on the
methods of [3], a new algorithm (Algorithm 10) for computing k2kk. Not only does
it runs much faster than existing algorithms, but it also works, as discussed above,
by determining k2kkst and K(2k), thus telling us whether or not, for the given k,
k2k3`k = 2k + 3` holds for all ` � 0.

The algorithms here can be used for more purposes as well; see Theorem 9 for a
further application of them.

2. Summary of Internals and Further Discussion

2.1. The Defect, Low-defect Polynomials, and Truncation

Let us now turn our attention to the inner workings of these algorithms, which are
based on the methods in [3]. Proving the statement knk = k has two parts; showing
that knk  k, and showing that knk � k. The former is, comparatively, the easy
part, as it consists of just finding an expression for n that uses at most k ones;
the latter requires ruling out shorter expressions. The simplest method for this is
simply exhaustive search, which, as has been mentioned, takes time ⇥(n2), or time
O(n1.231) once some possibilities have been eliminated from the addition case.

In this paper, we take a di↵erent approach to lower-bounding the quantity knk,
one used earlier in the paper [7]; however, we make a number of improvements to the
method of [7] that both turn this method into an actual algorithm, and frequently
allow it to run in a reasonable time. The method is based on considering the defect
of n, defined below.

Definition 4. The defect of n, denoted �(n) is defined by

�(n) := knk � 3 log3 n.

Let us make here a further definition.

Definition 5. For a real number s � 0, the set As is the set of all natural numbers
with defect less than s.

The papers [2, 3, 7] provided a method of, for any choice of ↵ 2 (0, 1), recursively
building up descriptions of the sets A↵, A2↵, A3↵, . . .; then, if for some n and k we
can use this to demonstrate that n /2 Ak↵, then we have determined a lower bound

INTEGERS: 18 (2018) 6

on knk. More precisely, they showed that for any s � 0, there is a finite set Ts

of multilinear polynomials, of a particular form called low-defect polynomials, such
that �(n) < s if and only if n can be written as f(3k1 , . . . , 3kr)3kr+1 for some f 2 Ts

and some k1, . . . , kr+1 � 0. In this paper, we take this method and show how
the polynomials can be produced by an actual algorithm, and how further useful
information can be computed once one has these polynomials.

In brief, the algorithm works as follows. First, we choose a step size ↵ 2 (0, 1). We
start with a set of low-defect polynomials representing A↵, and apply the method of
[2] to build up sets representing A2↵, A3↵, . . .; at each step, we use the “truncation”
method of [3] to ensure we are representing the set Ai↵ exactly and not including
extraneous elements. Then we check whether or not n 2 Ai↵; if it is not, we continue
on to A(i+1)↵. If it is, then we have a representation n = f(3k1 , . . . , 3kr)3kr+1 , and
this gives us an upper bound on knk; indeed, we can find a shortest representation
for n in this way, and so it gives us knk exactly.

This is, strictly speaking, a little di↵erent than what was described above, in
that it does not involve directly getting a lower bound on knk from the fact that
n /2 Ai↵. However, this can be used too, so long as we know in advance an upper
bound on knk. For instance, this is quite useful when n = 2k (for k � 1), as then
we know that knk  2k, and hence that �(n)  k�(2). So we can use the method of
the above paragraph, but stop early, once we have covered defects up to k�(2)� 1.
If we get a hit within that time, then we have found a shortest representation for
n = 2k. Conversely, if n is not detected, then we know that we must have

�(2k) > k�(2)� 1,

and hence that
k2kk > 2k � 1,

i.e., k2kk = 2k, thus verifying that the obvious representation is the best possible.
Again, though we have illustrated it here with powers of 2, this method can be used
whenever we know in advance an upper bound on knk; see the appendix.

Now, so far we have discussed using these methods to compute knk, but we can
go further and use them to prove Theorem 2, i.e., use them to compute K(n) and
knkst. In this case, at each step, instead of checking whether there is some f 2 Ti↵

such that n = f(3k1 , . . . , 3kr)3kr+1 , we check whether is some f 2 Ti↵ and some `
such that

3`n = f(3k1 , . . . , 3kr)3kr+1 .

It is not immediately obvious that this is possible, since näıvely we would need to
check infinitely many `, but Lemma 1 allows us to do this while checking only finitely
many `. Once we have such a detection, we can use the value of ` to determine
K(n), and the representation of 3`n obtained this way to determine k3K(n)nk and
hence knkst. In addition, if we know in advance an upper bound on knk, we can

INTEGERS: 18 (2018) 7

use the same trick as above to sometimes cut the computation short and conclude
not only that knk = k but also that n is stable.

2.2. Comparison to Addition Chains

It is worth discussing some work analogous to this paper in the study of addition
chains. An addition chain for n is defined to be a sequence (a0, a1, . . . , ar) such
that a0 = 1, ar = n, and, for any 1  k  r, there exist 0  i, j < k such that
ak = ai + aj ; the number r is called the length of the addition chain. The shortest
length among addition chains for n, called the addition chain length of n, is denoted
`(n). Addition chains were introduced in 1894 by H. Dellac [14] and reintroduced
in 1937 by A. Scholz [22]; extensive surveys on the topic can be found in Knuth [20,
Section 4.6.3] and Subbarao [24].

The notion of addition chain length has obvious similarities to that of integer
complexity; each is a measure of the resources required to build up the number n
starting from 1. Both allow the use of addition, but integer complexity supplements
this by allowing the use of multiplication, while addition chain length supplements
this by allowing the reuse of any number at no additional cost once it has been con-
structed. Furthermore, both measures are approximately logarithmic; the function
`(n) satisfies

log2 n  `(n)  2 log2 n.

A di↵erence worth noting is that `(n) is actually known to be asymptotic to
log2 n, as was proved by Brauer [10], but the function knk is not known to be
asymptotic to 3 log3 n; the value of the quantity lim supn!1

knk
log n remains unknown.

As mentioned above, Guy [16] has asked whether k2kk = 2k for k � 1; if true, it
would make this quantity at least 2

log 2 . The Experimental Mathematics Group at
the University of Latvia [19] has checked that this is true for k  39.

Another di↵erence worth noting is that unlike integer complexity, there is no
known way to compute addition chain length via dynamic programming. Specifi-
cally, to compute integer complexity this way, one may use the fact that for any
n > 1,

knk = min
a,b<n2N

a+b=n or ab=n

(kak+ kbk).

By contrast, addition chain length seems to be harder to compute. Suppose we have
a shortest addition chain (a0, . . . , ar�1, ar) for n; one might hope that (a0, . . . , ar�1)
is a shortest addition chain for ar�1, but this need not be the case. An example
is provided by the addition chain (1, 2, 3, 4, 7); this is a shortest addition chain
for 7, but (1, 2, 3, 4) is not a shortest addition chain for 4, as (1, 2, 4) is shorter.
Moreover, there is no way to assign to each natural number n a shortest addition
chain (a0, . . . , ar) for n such that (a0, . . . , ar�1) is the addition chain assigned to

INTEGERS: 18 (2018) 8

ar�1 [20]. This can be an obstacle both to computing addition chain length and
proving statements about addition chains.

Nevertheless, the algorithms described here seem to have a partial analogue for
addition chains in the work of A. Flammenkamp [15]. We might define the addition
chain defect of n by

�`(n) := `(n)� log2 n;

a closely related quantity, the number of small steps of n, was introduced by Knuth
[20]. The number of small steps of n is defined by

s(n) := `(n)� blog2 nc;

clearly, this is related to �`(n) by s(n) = d�`(n)e.
In 1991, A. Flammenkamp determined a method for producing descriptions of

all numbers n with s(n)  k for a given integer k, and produced such descriptions
for k  3 [15]. Note that for k an integer, s(n)  k if and only if �`(n)  k, so this
is the same as determining all n with �`(n)  k, restricted to the case where k is an
integer. Part of what Flammenkamp proved may be summarized as the following
theorem.

Theorem 4 (Flammenkamp). For any integer k � 0, there exists a finite set
Sk of polynomials (in any number of variables, with nonnegative integer coe�-
cients) such that for any n, one has s(n)  k if and only if one can write n =
f(2m1 , . . . , 2mr)2mr+1 for some f 2 Sk and some integers m1, . . . ,mr+1 � 0. More-
over, Sk can be e↵ectively computed.

Unfortunately, the polynomials used in Flammenkamp’s method are more com-
plicated than those produced by the algorithms here; for instance, they cannot
always be taken to be multilinear. Nonetheless, there is a distinct similarity.

Flammenkamp did not consider questions of stability (which in this case would
result from repeated multiplication by 2 rather than by 3; see [1] for more on
this), but it may be possible to use his methods to compute stability information
about addition chains, just as the algorithms here may be used to compute stability
information about integer complexity. The problem of extending Flammenkamp’s
methods to allow for non-integer cuto↵s seems more di�cult.

2.3. Discussion: Algorithms

Many of the algorithms described here are parametric, in that they require a choice
of a “step size” ↵ 2 (0, 1). In the attached implementation, ↵ is always taken to be
�(2) = 0.107 . . ., and some precomputations have been made based on this choice.
See the appendix for more on this. Below, when we discuss the computational
complexity of the algorithms given here, we are assuming a fixed choice of ↵. It is
possible that the value of ↵ a↵ects the time complexity of these algorithms. One

INTEGERS: 18 (2018) 9

could also consider what happens when ↵ is considered as an input to the algorithm,
so that one cannot do pre-computations based on the choice of ↵. (In this case we
should really restrict the form of ↵ so that the question makes sense, for instance to
↵ = p� q log3 n, with n a natural number and p, q 2 Q.) We will avoid these issues
for now, and assume for the rest of this section that ↵ = �(2) unless otherwise
specified. Two of the algorithms here optionally allow a second input, a known
upper bound L on knk. If no bound is input, we may think of this as L = 1.
We will assume here the simplest case, where no bound L is input, or equivalently
where we always pick L =1.

We will not actually conduct here a formal analysis of the time complexity of
Algorithm 8 or Algorithm 10. Our assertion that Algorithm 10 is much faster than
existing methods for computing k2kk is an empirical one. The speedup is a dramatic
one, though; for instance, the Experimental Mathematics Group’s computation
of knk for n  1012 required about 3 weeks on a supercomputer, although they
used the ⇥(n2)-time algorithm rather than any of the improvements [18]; whereas
computing k248k via Algorithm 10 required only around 20 hours on the author’s
laptop computer.

Empirically, increasing k by one seems to approximately double the run time of
Algorithm 10. This suggests that perhaps Algorithm 10 runs in time O(2k), which
would be better than the O(21.231k) bound coming from applying existing methods
[9] to compute the complexity of k2kk.

For Algorithm 8, the run time seems to be determined more by the size of
�st(n) := knkst � 3 log3 n (or by the size of �(n), in the case of Algorithm 9),
rather than by the size of n, since it seems that most of the work consists of build-
ing the sets of low-defect polynomials, rather than checking if n is represented. For
this reason, computing knk via Algorithm 9 is frequently much slower than using
existing methods, even though it is much faster for powers of 2. Note that strictly
speaking, �(n) can be bounded in terms of n, since

�(n)  3 log2 n� 3 log3 n,

but as mentioned earlier, this may be a substantial overestimate. So it is worth
asking the following question.

Question 1. What is the time complexity of Algorithm 10, for computing K(2k)
and k2kkst? What is the time complexity of of Algorithm 8 (with L = 1), for
computing K(n) and knkst? What is the time complexity of Algorithm 9 (with
L =1), for computing the values of k3knk for a given n and all k � 0? What if L
may be finite? How do these depend on the parameter ↵? What if ↵ is an input?

INTEGERS: 18 (2018) 10

2.4. Discussion: Stability and Computation

Although we have now given a means to compute K(n), we have not provided any
explicit upper bound on it. The same is true for the quantity

�(n) := knk � knkst,

which is another way of measuring “how unstable” the number n is, and which is
also now computable due to Theorem 2. We also do not have any reliable method
of generating unstable numbers with which to demonstrate lower bounds.

Empirically, large instabilities – measured either by K(n) or by �(n) – seem to
be rare. This statement is not based on running Algorithm 8 on many numbers
to determine their stability, as that is quite slow in general, but rather on simply
computing knk for n  315 and then checking knk, k3nk, k9nk,. . . , and guessing
that n is stable if no instability is detected before the data runs out, a method
that can only ever put lower bounds on K(n) and �(n), never upper bounds. Still,
numbers that are detectably unstable at all seem to be somewhat rare, although
they still seem to make up a positive fraction of all natural numbers; namely, around
3%. Numbers that are more than merely unstable – having K(n) � 2 or �(n) � 2
– are rarer.

The largest lower bounds on K(n) or �(n) for a given n encountered based
on these computations occur for n = 4721323, which, as mentioned earlier, has
k3nk < knk and thus �(n) � 4; and 17 numbers, the smallest of which is n = 3643,
which have k35nk < k34nk + 3 and thus K(n) � 5. Finding n where both K(n)
and �(n) are decently large is hard; for instance, these computations did not turn
up any n for which it could be seen that both K(n) � 3 and �(n) � 3.

One may see Table 2.4 for more examples of numbers that seem to have unusual
drop patterns. Here, the drop pattern of n is the list of values �(3kn) � �(3k+1n),
or equivalently k3knk � k3k+1nk + 3, up until the point where this is always zero.
Note that Table 2.4 is empirical, based on the same computation mentioned above;
it is possible these numbers have later drops further on. Also note that numbers
which are divisible by 3 have been excluded.

It is not even clear whether K(n) or �(n) can get arbitrarily large, or are bounded
by some finite constant, although there is no clear reason why the latter would be
so. Still, this is worth pointing out as a question.

Question 2. What is the natural density of the set of unstable numbers? What is
an explicit upper bound on K(n), or on �(n)? Can K(n) and �(n) get arbitrarily
large, or are they bounded?

Further questions along these lines suggest themselves, but these questions seem
di�cult enough, so we will stop this line of inquiry there for now.

Strictly speaking, it is possible to prove Theorem 2 using algorithms based purely
on the methods of [2], without actually using the “truncation” method of the paper

INTEGERS: 18 (2018) 11

Drop pattern Numbers with this pattern
4 4721323
1, 2 1081079
2, 1 203999, 1328219
1, 0, 0, 1 153071, 169199

Table 1: Numbers that seem to have unusual drop patterns

[3]. Of course, one cannot simply remove the truncation step from the algorithms
here and get correct answers; other checks are necessary to compensate. See the
appendix for a brief discussion of this. However, while this is su�cient to prove
Theorem 2, the algorithms obtained this way are simply too slow to be of any use.
And without the method of truncation, one cannot write Algorithm 6, without
which proving Theorem 9 would be quite di�cult. We will demonstrate further
applications of Theorem 9 and the method of truncation in future papers [4, 6].

We can also ask about the computational complexity of computing these func-
tions in general, rather than just the specific algorithms here. As noted above, the
best known algorithm for computing knk takes time O(n1.231). It is also known
[8] that the problem “Given n and k in binary, is knk  k?” is in the class NP ,
because the size of a witness is O(log n). (This problem is not known to be NP -
complete.) However, it is not clear whether the problem “Given n and k in binary,
is knkst  k?” is in the class NP , because there is no obvious bound on the size of
a witness. It is quite possible that it could be proven to be in NP , however, if an
explicit upper bound could be obtained on K(n).

We can also consider the problem of computing the defect ordering, i.e., “Given
n1 and n2 in binary, is �(n1)  �(n2)?”; the significance of this problem is that the
set of all defects is in fact a well-ordered set [2] with order type !!. This problem
lies in �P

2 in the polynomial hierarchy [2]. The paper [2] also defined the stable
defect of n.

Definition 6. The stable defect of n, denoted �st(n), is

�st(n) := knkst � 3 log3 n.

(We will review the stable defect and its properties in Section 3.1.) Thus we get
the problem of, “Given n1 and n2 in binary, is �st(n1)  �st(n2)?” The image of �st

is also well-ordered with order type !!, but until now it was not known that this
problem is computable. But Theorem 2 shows that it is, and so we can ask about
its complexity. Again, due to a lack of bounds on K(n), it is not clear that this lies
in �P

2 .
We can also ask about the complexity of computing K(n), or �(n) (which,

conceivably, could be easier than knk or knkst, though this seems unlikely), or,
perhaps most importantly, of computing a set Ts for a given s � 0. Note that in

INTEGERS: 18 (2018) 12

this last case, it need not be the set Ts found by Algorithm 6 here; we just want
any set satisfying the required properties – a good covering of Bs, as we call it here
(see Definition 17). Of course, we must make a restriction on the input for this last
question, as one cannot actually take arbitrary real numbers as input; perhaps it
would be appropriate to restrict to s of the form

s 2 {p� q log3 n : p, q 2 Q, n 2 N},

which seems like a large enough set of real numbers to cover all the numbers we
care about here.

We summarize the above discussion with the following question.

Question 3. What is the complexity of computing knk? What is the complexity
of computing knkst? What is the complexity of computing the di↵erence �(n)?
What is the complexity of computing the defect ordering �(n1)  �(n2)? What is
the complexity of computing the stable defect ordering �st(n1)  �st(n2)? What is
the complexity of computing the stabilization length K(n)?

Question 4. Given s = p�q log3 n, with p, q 2 Q and n 2 N, what is the complexity
of computing a good covering Ts of Bs?

3. The Defect, Stability, and Low-defect Polynomials

In this section we will review the results of [2] and [3] regarding the defect �(n), the
stable complexity knkst, and low-defect polynomials.

3.1. The Defect and Stability

First, we will need some basic facts about the defect.

Theorem 5. We have:

1. For all n, �(n) � 0.

2. For k � 0, �(3kn)  �(n), with equality if and only if k3knk = 3k + knk. The
di↵erence �(n)� �(3kn) is a nonnegative integer.

3. A number n is stable if and only if for any k � 0, �(3kn) = �(n).

4. If the di↵erence �(n) � �(m) is rational, then n = m3k for some integer k
(and so �(n)� �(m) 2 Z).

5. Given any n, there exists k such that 3kn is stable.

INTEGERS: 18 (2018) 13

6. For a given defect ↵, the set {m : �(m) = ↵} has either the form {n3k : 0 
k  L} for some n and L, or the form {n3k : 0  k} for some n. This latter
occurs if and only if ↵ is the smallest defect among �(3kn) for k 2 Z.

7. �(1) = 1, and for k � 1, �(3k) = 0. No other integers occur as �(n) for any
n.

8. If �(n) = �(m) and n is stable, then so is m.

Proof. Parts (1) through (7), excepting part (3), are just Theorem 2.1 from [2].
Part (3) is Proposition 12 from [7], and part (8) is Proposition 3.1 from [2].

The paper [2] also defined the notion of a stable defect.

Definition 7. We define a stable defect to be the defect of a stable number.

Because of part (9) of Theorem 5, this definition makes sense; a stable defect ↵
is not just one that is the defect of some stable number, but one for which any n
with �(n) = ↵ is stable. Stable defects can also be characterized by the following
proposition from [2].

Proposition 1. A defect ↵ is stable if and only if it is the smallest defect � such
that � ⌘ ↵ (mod 1).

We can also define the stable defect of a given number, which we denote �st(n).
(We actually already defined this in Definition 6, but let us disregard that for now
and give a di↵erent definition; we will see momentarily that they are equivalent.)

Definition 8. For a positive integer n, define the stable defect of n, denoted �st(n),
to be �(3kn) for any k such that 3kn is stable. (This is well-defined as if 3kn and
3`n are stable, then k � ` implies �(3kn) = �(3`n), and so does ` � k.)

Note that the statement “↵ is a stable defect”, which earlier we were thinking
of as “↵ = �(n) for some stable n”, can also be read as the equivalent statement
“↵ = �st(n) for some n”.

We then have the following facts relating the notions of knk, �(n), knkst, and
�st(n).

Proposition 2. We have:

1. �st(n) = mink�0 �(3kn)

2. �st(n) is the smallest defect ↵ such that ↵ ⌘ �(n) (mod 1).

3. knkst = mink�0(k3knk � 3k)

4. �st(n) = knkst � 3 log3 n

INTEGERS: 18 (2018) 14

5. �st(n)  �(n), with equality if and only if n is stable.

6. knkst  knk, with equality if and only if n is stable.

Proof. These are just Propositions 3.5, 3.7, and 3.8 from [2].

3.2. Low-defect Expressions, Polynomials, and Pairs

As has been mentioned in Section 2.1, we are going to represent the set Ar by
substituting in powers of 3 into certain multilinear polynomials we call low-defect
polynomials. Low-defect polynomials come from particular sorts of expressions we
will call low-defect expressions. We will associate with each polynomial or expression
a “base complexity” to form a low-defect pair. In this section we will review the
properties of these polynomials and expressions.

First, we give a definition.

Definitions 1. A low defect expression is defined to be a an expression in positive
integer constants, +, ·, and some number of variables, constructed according to the
following rules.

1. Any positive integer constant by itself forms a low-defect expression.

2. Given two low-defect expressions using disjoint sets of variables, their product
is a low-defect expression. If E1 and E2 are low-defect expressions, we will
use E1 ⌦ E2 to denote the low-defect expression obtained by first relabeling
their variables to be disjoint and then multiplying them.

3. Given a low-defect expression E, a positive integer constant c, and a variable
x not used in E, the expression E · x + c is a low-defect expression. (We can
write E ⌦ x + c if we do not know in advance that x is not used in E.)

We also define an augmented low-defect expression to be an expression of the
form E · x, where E is a low-defect expression and x is a variable not appearing in
E. If E is a low-defect expression, we also use Ê to denote the augmented low-defect
expression E ⌦ x.

Note that we do not really care about what variables a low-defect expression is
in – if we permute the variables of a low-defect polynomial or replace them with
others, we will regard the result as an equivalent low-defect expression.

We also define the complexity of a low-defect expression.

Definitions 2. The complexity of a low-defect expression E, denoted kEk, is the
sum of the complexities of all the constants used in E. A low-defect [expression]
pair is an ordered pair (E, k) where E is a low-defect expression, and k is a whole
number with k � kEk.

INTEGERS: 18 (2018) 15

One can then evaluate these expressions to get polynomials, as given by the
following definition.

Definitions 3. A low-defect polynomial is a polynomial f obtained by evaluating
a low-defect expression E. If (E, k) is a low-defect [expression] pair, we say (f, k)
is a low-defect [polynomial] pair. We use f̂ to refer to the polynomial obtained by
evaluating Ê, and call it an augmented low-defect polynomial. For convenience, if
(f, k) is a low-defect pair, we may say “the degree of (f, k)” to refer to the degree
of f .

The reason for introducing the notion of a “low-defect pair” is that we may not
always know the complexity of a given low-defect expression; frequently, we will only
know an upper bound on it. For more theoretical applications, one does not always
need to keep track of this, but since here we are concerned with computation, we
need to keep track. One can, of course, always compute the complexity of any low-
defect expression one is given; but to do so may be computationally expensive, and
it is easier to simply keep track of an upper bound. (Indeed, for certain applications,
one may actually want to keep track of more detailed information, such as an upper
bound on the complexity of each constant individually; see the appendix for more
on this.)

Typically, for practical use, what we want is not either low-defect expressions or
low-defect polynomials. Low-defect polynomials do not retain enough information
about how they were made. For instance, in the algorithms below, we will frequently
want to substitute in values for the “innermost” variables in the polynomial; it
is shown in [3] that this is well-defined even if multiple expressions can give rise
to the same polynomial. However, if all one has is the polynomial rather than
the expression which generated it, determining which variables are innermost may
require substantial computation.

On the other hand, low-defect expressions contain unneeded information; there
is little practical reason to distinguish between, e.g., 2(3x + 1) and (3x + 1) · 2, or
between 1 · (3x + 1) and 3x + 1, or 2(2(3x + 1)) and 4(3x + 1). A useful practical
representation is what [3] called a low-defect tree, defined as follows.

Definition 9. Given a low-defect expression E, we define a corresponding low-
defect tree T , which is a rooted tree where both edges and vertices are labeled with
positive integers. We build this tree as follows.

1. If E is a constant n, T consists of a single vertex labeled with n.

2. If E = E0 · x + c, with T 0 the tree for E, T consists of T 0 with a new root
attached to the root of T 0. The new root is labeled with a 1, and the new
edge is labeled with c.

3. If E = E1 · E2, with T1 and T2 the trees for E1 and E2 respectively, we
construct E by “merging” the roots of E1 and E2 – that is to say, we remove

INTEGERS: 18 (2018) 16

the roots of E1 and E2 and add a new root, with edges to all the vertices
adjacent to either of the old roots; the new edge labels are equal to the old
edge labels. The label of the new root is equal to the product of the labels of
the old roots.

See Figure 1 for an example illustrating this construction.

Figure 1: Low-defect tree for the expression 2((73(3x1 + 1)x2 + 6)(2x3 + 1)x4 + 1).

This will still contain information that is unnecessary for our purposes – for
instance, this representation still distinguishes between 4(2x + 1) and 2(4x + 2) –
but it is on the whole a good medium between including too much and including too
little. While the rest of the paper will discuss low-defect expressions and low-defect
polynomials, we assume these are being represented as trees, for convenience.

3.3. Properties of Low-defect Polynomials

Having now discussed the definition and representation of low-defect expressions
and polynomials, let us now discuss their properties.

Note first that the degree of a low-defect polynomial is also equal to the number
of variables it uses; see Proposition 3. We will often refer to the “degree” of a
low-defect pair (f,C); this refers to the degree of f . Also note that augmented low-
defect polynomials are never low-defect polynomials; as we will see in a moment
(Proposition 3), low-defect polynomials always have nonzero constant term, whereas
augmented low-defect polynomials always have zero constant term.

Low-defect polynomials are multilinear polynomials; indeed, they are read-once
polynomials (in the sense of for instance [25]), as low-defect expressions are easily
seen to be read-once expressions.

In [2] the following propositions about low-defect pairs were proved.

INTEGERS: 18 (2018) 17

Proposition 3. Suppose f is a low-defect polynomial of degree r. Then f is a
polynomial in the variables x1, . . . , xr, and it is a multilinear polynomial, i.e., it has
degree 1 in each of its variables. The coe�cients are non-negative integers. The
constant term is nonzero, and so is the coe�cient of x1 . . . xr, which we will call
the leading coe�cient of f .

Proposition 4. If (f,C) is a low-defect pair of degree r, then

kf(3n1 , . . . , 3nr)k  C + 3(n1 + . . . + nr).

and
kf̂(3n1 , . . . , 3nr+1)k  C + 3(n1 + . . . + nr+1).

Proof. This is a combination of Proposition 4.5 and Corollary 4.12 from [2].

Because of this, it makes sense to make the following definition.

Definition 10. Given a low-defect pair (f,C) (say of degree r) and a number N ,
we will say that (f,C) e�ciently 3-represents N if there exist nonnegative integers
n1, . . . , nr such that

N = f(3n1 , . . . , 3nr) and kNk = C + 3(n1 + . . . + nr).

We will say (f̂ , C) e�ciently 3-represents N if there exist n1, . . . , nr+1 such that

N = f̂(3n1 , . . . , 3nr+1) and kNk = C + 3(n1 + . . . + nr+1).

More generally, we will also say f 3-represents N if there exist nonnegative integers
n1, . . . , nr such that N = f(3n1 , . . . , 3nr), and similarly with f̂ . We will also use
the same terminology regarding low-defect expressions.

Note that if E is a low-defect expression and (E,C) (or (Ê, C)) e�ciently 3-
represents some N , then (E, kEk) (respectively, (Ê, kEk) e�ciently 3-represents N ,
which means that in order for (E,C) (or (Ê, C)) to 3-represent anything e�ciently
at all, we must have C = kEk. And if f is a low-defect polynomial and (f,C)
(or f̂ , C) e�ciently 3-represents some N , then C must be equal to the smallest
kEk among any low-defect expression E that evaluates to f (which in [2] and [3]
was denoted kfk). But, again, it is still worth using low-defect pairs rather than
just low-defect polynomials and expressions since we do not want to spend time
computing the value kEk.

For this reason it makes sense to use “E e�ciently 3-represents N” to mean “some
(E,C) e�ciently 3-represents N” or equivalently “(E, kEk) e�ciently 3-reperesents
N”. Similarly with Ê.

In keeping with the name, numbers 3-represented by low-defect polynomials, or
their augmented versions, have bounded defect. We will need some definitions first.

INTEGERS: 18 (2018) 18

Definition 11. Given a low-defect pair (f,C), we define �(f,C), the defect of
(f,C), to be C � 3 log3 a, where a is the leading coe�cient of f .

Definition 12. Given a low-defect pair (f,C) of degree r, we define

�f,C(n1, . . . , nr) = C + 3(n1 + . . . + nr)� 3 log3 f(3n1 , . . . , 3nr).

Then we obtain the following result.

Proposition 5. Let (f,C) be a low-defect pair of degree r, and let n1, . . . , nr+1 be
nonnegative integers.

1. We have
�(f̂(3n1 , . . . , 3nr+1))  �f,C(n1, . . . , nr)

and the di↵erence is an integer.

2. We have
�f,C(n1, . . . , nr)  �(f,C)

and if r � 1, this inequality is strict.

3. The function �f,C is strictly increasing in each variable, and

�(f,C) = sup
k1,...,kr

�f,C(k1, . . . , kr).

Proof. This is a combination of Proposition 4.9 and Corollary 4.14 from [2] along
with Proposition 2.14 from [3].

Indeed, one can make even stronger statements than (3) above. In [3], a partial
order is placed on the variables of a low-defect polynomial f , where, for variables
x and y in f , we say x � y if x appears “deeper” in a low-defect expression for f
than y does. Formally, we have the following definition.

Definition 13. Let E be a low-defect expression. Let x and y be variables appear-
ing in E. We say that x � y under the nesting ordering for E if x appears in the
smallest low-defect subexpression of E that contains y.

For instance, if E = ((((2x1 + 1)x2 + 1)(2x3 + 1)x4 + 1)x5 + 1)(2x6 + 1), one has
x1 � x2 � x4 � x5 and x3 � x4 � x5 but no other relations. Note that if f is a
low-defect polynomial, it can be shown that the nesting order is independent of the
low-defect expression used to generate it; see Proposition 3.18 from [3].

With this definition in hand, one can [3, Proposition 4.6] strengthen statement
(3) from Proposition 5; for in fact this statement is true even if only the minimal
(i.e., innermost) variables are allowed to approach infinity. We now state this more
formally.

INTEGERS: 18 (2018) 19

Proposition 6. Let (f,C) be a low-defect pair of degree r. Say xij , for 1  j  s,
are the minimal variables of f . Then

lim
ki1 ,...,kis!1

�f,C(k1, . . . , kr) = �(f,C)

(where the other ki remain fixed).

Note that if we store the actual low-defect expression rather than just the result-
ing polynomial, finding the minimal variables is easy.

With this, we have the basic properties of low-defect polynomials.

3.4. Good Coverings

Finally, before we begin listing algorithms, let us state precisely what precisely the
algorithms are for. We will first need the notion of a leader.

Definition 14. A natural number n is called a leader if it is the smallest number
with a given defect. By part (6) of Theorem 5, this is equivalent to saying that
either 3 - n, or, if 3 | n, then �(n) < �(n/3), i.e., knk < 3 + kn/3k.

We make here another definition as well.

Definition 15. For any real r � 0, define the set of r-defect numbers Ar to be

Ar := {n 2 N : �(n) < r}.

Define the set of r-defect leaders Br to be

Br := {n 2 Ar : n is a leader}.

These sets are related by the following proposition from [2].

Proposition 7. For every n 2 Ar, there exists a unique m 2 Br and k � 0 such
that n = 3km and �(n) = �(m); then knk = kmk+ 3k.

Because of this, if we want to describe the set Ar, it su�ces to describe the set
Br.

As mentioned earlier, what we want to do is to be able to write every number
in Ar as f(3k1 , . . . , 3kr)3kr+1 for some low-defect polynomial f drawn from a finite
set depending on r. In fact, we want to be able to write every number in Br as
f(3k1 , . . . , 3kr), with the same restrictions. Based on this, we make the following
definition.

Definition 16. For r � 0, a finite set S of low-defect pairs will be called a covering
set for Br if every n 2 Br can be e�ciently 3-represented by some pair in S. (And
hence every n 2 Ar can be e�ciently represented by some (f̂ , C) with (f,C) 2 S.)

INTEGERS: 18 (2018) 20

Of course, this is not always enough; we want not just that every number in Ar

can be represented in this way, but also that every number generated this way is in
Ar. To capture this notion, we make a further definition.

Definition 17. For r � 0, a finite set S of low-defect pairs will be called a good
covering for Br if every n 2 Br can be e�ciently 3-represented by some pair in
S (and hence every n 2 Ar can be e�ciently represented by some (f̂ , C) with
(f,C) 2 S); and if for every (f,C) 2 S, �(f,C)  r, with this being strict if
deg f = 0.

With this, it makes sense to state the following theorem from [3].

Theorem 6. For any real number r � 0, there exists a good covering of Br.

Proof. This is Theorem 4.9 from [3] rewritten in terms of Definition 17.

Computing good coverings, then, will be one of the primary subjects for the rest
of the paper.

Before we continue with that, however, it is also worth noting here the following
proposition from [3].

Proposition 8. Let (f,C) be a low-defect pair of degree k, and suppose that a is the
leading coe�cient of f . Then C � kak+ k. In particular, �(f,C) � �(a) + k � k.

Proof. This is a combination of Proposition 3.24 and Corollary 3.25 from [3].

This implies that in any good covering of Br, all polynomials have degree at most
brc.

4. Algorithms: Building Up Covering Sets

Now let us discuss the “building-up” method from [7] and [2] that forms one-half
the core of the algorithm. The second “filtering-down” half, truncation, will be
described in Section 5. This section will describe how to compute covering sets for
Br (see Definition 16); the next section will describe how to turn them into good
coverings.

Note however that the results of the above sections and previous papers deal
with real numbers, but real numbers cannot be represented exactly in a computer.
Hence, we will for the rest of this section fix a subset R of the real numbers on
which we can do exact computation. For concreteness, we will define

Definition 18. The set R is the set of all real numbers of the form q + r log3 n,
where q and r are rational and n is a natural number.

INTEGERS: 18 (2018) 21

This will su�ce for our purposes; it contains all the numbers we are working
with here. However it is worth noting that all these algorithms will work just as
well with a larger set of allowed numbers, so long as it supports all the required
operations.

Note that since the algorithms in both this section and later sections consist,
in some cases, of simply using the methods described in proofs of theorems in [2]
and [3], we will, in these cases, not give detailed proofs of correctness; we will
simply direct the reader to the proof of the corresponding theorem. We will include
proofs of correctness only where we are not directly following the proof of an earlier
theorem.

4.1. Algorithm 1: Computing B↵, 0 < ↵ < 1

The theorems of [2] that build up covering sets for Br do so inductively; they
require first picking a step size ↵ 2 (0, 1) and then determining covering sets Bk↵

for natural numbers k. So first, we need a base case – an algorithm to compute B↵.
Fortunately, this is given by the following theorem from [7].

Theorem 7. For every ↵ with 0 < ↵ < 1, the set of leaders B↵ is a finite set.
More specifically, the list of n with �(n) < 1 is as follows:

1. 3` for ` � 1, of complexity 3` and defect 0

2. 2k3` for 1  k  9, of complexity 2k + 3` and defect k�(2)

3. 5 · 2k3` for k  3, of complexity 5 + 2k + 3` and defect �(5) + k�(2)

4. 7 · 2k3` for k  2, of complexity 6 + 2k + 3` and defect �(7) + k�(2)

5. 19 · 3` of complexity 9 + 3` and defect �(19)

6. 13 · 3` of complexity 8 + 3` and defect �(13)

7. (3k + 1)3` for k > 0, of complexity 1 + 3k + 3` and defect 1� 3 log3(1 + 3�k).

Strictly speaking, we do not necessarily need this theorem to the same extent
as [2] needed it; we only need it if we want to be able to choose step sizes ↵
with ↵ arbitrarily close to 1. In [2], this was necessary to keep small the degrees
of the polynomials; larger steps translates into fewer steps, which translates into
lower degree. However, in Section 5, we will introduce algorithms for performing
truncation, as described in [3]; and with truncation, we can limit the degree without
needing large steps (see Corollary 8), allowing us to keep ↵ small if we so choose.
For instance, in the attached implementation, we always use ↵ = �(2). Nonetheless,
one may wish to use larger ↵, so this proposition is worth noting.

The above theorem can be rephrased as our Algorithm 1, which follows.

INTEGERS: 18 (2018) 22

Algorithm 1 Determine the set B↵

Ensure: ↵ 2 (0, 1) \R
Require: T = {(n, k) : n 2 B↵, k = knk}

T {(3, 3)}
Determine largest integer k such that k�(2) < ↵ and k  9 {k may be 0, in which
case the following loop never executes}
for i = 1 to k do

T T [{(2i, 2i)}
end for
Determine largest integer k such that �(5) + k�(2) < ↵ and k  3 {k may be
negative, in which case the following loop never executes}
for i = 0 to k do

T T [{(5 · 2i, 5 + 2i)}
end for
Determine largest integer k such that �(7) + k�(2) < ↵ and k  2 {k may be
negative, in which case the following loop never executes}
for i = 0 to k do

T T [{(7 · 2i, 6 + 2i)}
end for
if ↵ > �(19) then

T T [{(19, 9)}
end if
if ↵ > �(13) then

T T [{(13, 8)}
end if
Determine largest integer k for which 1 � 3 log3(1 + 3�k) < ↵ {k may be 0, in
which case the following loop never executes}
for i = 1 to k do

T T [{(3i + 1, 1 + 3i)}
end for
return T

Proof of correctness for Algorithm 1. The correctness of this algorithm is immedi-
ate from Theorem 7.

4.2. Algorithm 2: Computing B(k+1)↵

Now we record Algorithm 2, for computing a covering set for B(k+1)↵ if we have ones
already for B↵, . . . , Bk↵. This algorithm is essentially the proof of Theorem 4.10
from [2], though we have made a slight modification to avoid redundancy.

Algorithm 2 refers to “solid numbers”, and to a set T↵, notions taken from [7],
which we have not thus far defined, so let us define those here.

Definitions 4. We say a number n is solid if it cannot be e�ciently represented as

INTEGERS: 18 (2018) 23

a sum, i.e., there do not exist numbers a and b with a+b = n and kak+kbk = n. We
say a number n is m-irreducible if it cannot be e�ciently represented as a product,
i.e., there do not exist a and b with ab = n and kak + kbk = n. We define the
set T↵ to consist of 1 together with those m-irreducible numbers n which satisfy

1
n�1 > 3

1�↵
3 � 1 and do not satisfy knk = kn � bk + kbk for any solid b with

1 < b  n/2.

Algorithm 2 Compute a covering set Sk+1 for B(k+1)↵ from covering sets S1, . . . ,Sk

for B↵, . . . , Bk↵

Require: k 2 N, ↵ 2 (0, 1) \R, Si a covering set for Bi↵ for 1  i  k
Ensure: Sk+1 a covering set for B(k+1)↵

for all i = 1 to k do
S 0i Si \ {(1, 1), (3, 3)}

end for
Sk+1 ;
Compute the set T↵, and the complexities of its elements; let U be the set
{(n, knk) : n 2 T↵} {One may use instead a superset of T↵ if determining T↵

exactly takes too long}
Compute the set Vk,↵, the set of solid numbers n such that knk < (k+1)↵+3 log3 2
{Again, one may use a superset}
if k = 1 then

Sk+1 Sk+1 [{(f1 ⌦ f2 ⌦ f3, C1 + C2 + C3) : (f`, C`) 2 S 01}
Sk+1 Sk+1 [{(f1 ⌦ f2, C1 + C2) : (f`, C`) 2 S 01}

else
Sk+1 Sk+1 [{(f ⌦ g, C + D) : (f,C) 2 S 0i, (g,D) 2 S 0j , i + j = k + 2}

end if
Sk+1 Sk+1 [{(f ⌦ x + b, C + kbk) : (f,C) 2 Sk↵, b 2 Vk,↵}
Sk+1 Sk+1[{(g⌦(f⌦x+b), C+D+kbk) : (f,C) 2 Sk↵, b 2 Vk,↵, (g,D) 2 S 01}
Sk+1 Sk+1 [U
Sk+1 Sk+1 [{(f ⌦ g, C + D) : f 2 U, g 2 S 01}
return Sk+1

Proof of correctness for Algorithm 2. If we examine the proof of Theorem 4.10 from
[2], it actually proves the following statement: Suppose that 0 < ↵ < 1 and that k �
1. Further suppose that S1,↵,S2,↵, . . . ,Sk,↵ are covering sets for B↵, B2↵, . . . , Bk↵,
respectively. Then we can build a covering set Sk+1,↵ for B(k+1)↵ as follows.

1. If k + 1 > 2, then for (f,C) 2 Si,↵ and (g,D) 2 Sj,↵ with 2  i, j  k
and i + j = k + 2 we include (f ⌦ g, C + D) in Sk+1,↵; while if k + 1 = 2,
then for (f1, C1), (f2, C2), (f3, C3) 2 S1,↵, we include (f1 ⌦ f2, C1 + C2) and
(f1 ⌦ f2 ⌦ f3, C1 + C2 + C3) in S2,↵.

INTEGERS: 18 (2018) 24

2. For (f,C) 2 Sk,↵ and any solid number b with kbk < (k + 1)↵ + 3 log3 2, we
include (f ⌦ x1 + b, C + kbk) in Sk+1,↵.

3. For (f,C) 2 Sk,↵, any solid number b with kbk < (k + 1)↵ + 3 log3 2, and any
v 2 B↵, we include (v(f ⌦ x1 + b), C + kbk+ kvk) in Sk+1,↵.

4. For all n 2 T↵, we include (n, knk) in Sk+1,↵.

5. For all n 2 T↵ and v 2 B↵, we include (vn, kvnk) in Sk+1,↵.

Algorithm 2 is, for the most part, exactly this statement. The only di↵erence is
the removal of the pairs (3, 3) and (1, 1) from the possibilities of things to multiply
by; this step needs additional justification. For (1, 1), this is because no number
n can be most-e�ciently represented as 1 · n; if (f,C) is a low-defect pair, then
the low-defect pair (f,C + 1) cannot e�ciently 3-represent anything, as anything
it 3-represents is also 3-represented by the pair (f,C). For (3, 3), there are two
possibilities. If 3n is a number which is 3-represented by by (3f,C +3), then either
the representation as 3 · n is most-e�cient or it is not. If it is, then 3n is not a
leader, and so not in any Bi↵, and thus we do not need it to be 3-represented. If
it is not, then it is not e�ciently 3-represented by (3f,C + 3). So these particular
pairs do not need to be multiplied by, and the algorithm still works.

4.3. Algorithm 3: Computing a Covering Set for Br

We can now put the two of these together to form Algorithm 3, for computing a
covering set for Br. If we look ahead to Algorithm 5, we can turn it into a good
covering.

Algorithm 3 Compute a covering set for Br

Require: r 2 R, r � 0
Ensure: S is a covering set for Br

Choose a step size ↵ 2 (0, 1) \R
Let T1 be the output of Algorithm 1 for ↵ {This is a good covering of B↵}
for k = 1 to d r

↵e � 1 do
Use Algorithm 2 to compute a covering set Tk+1 for B(k+1)↵ from our covering sets
Ti for Bi↵

Optional step: Do other things to Tk+1 that continue to keep it a covering set for
B(k+1)↵ while making it more practical to work with. For instance, one may use
Algorithm 5 to turn it into a good covering of B(k+1)↵, or one may remove elements
of Tk+1 that are redundant (i.e., if one has (f, C) and (g, D) in Tk+1 such that any
n which is e�ciently 3-represented by (f, C) is also e�ciently represented by (g, D),
one may remove (f, C))

end for
S Tk+1

return S

INTEGERS: 18 (2018) 25

Proof of correctness for Algorithm 3. Assuming the correctness of Algorithm 1 and
Algorithm 2, the correctness of Algorithm 3 follows immediately. Again, this is just
making use of the proof of Theorem 4.10 from [2].

5. Algorithms: Computing Good Coverings

We have now completed the “building-up” half of the method; in this section we
will describe the “filtering-down” half. The algorithms here will be based on the
proofs of the theorems in [3], so we will once again refer the reader to said proofs
in our proofs of correctness.

5.1. Algorithm 4: Truncating a Polynomial to a Given Defect

The first step in being able to filter down is Algorithm 4, for truncating a given
polynomial to a given defect.

Algorithm 4 Truncate the low-defect pair (f,C) to the defect s

Require: (f,C) is a low-defect pair, s 2 R
Ensure: T is the truncation of (f,C) to the defect s

if deg f = 0 then
if �(f,C) < s then

T {(f,C)}
else

T ;
end if

else
if �(f,C)  s then

T {(f,C)}
else

Find the smallest K for which �f,C(k1, . . . , kr) � s, where ki = K + 1 if xi

is minimal in the nesting ordering and xi = 0 otherwise
T ;
for all xi a minimal variable, k  K do

Let g be f with 3k substituted in for xi and let D = C + 3k
Recursively apply Algorithm 4 to (g,D) and s to obtain a set T 0

T T [T 0

end for
end if

end if
return S

INTEGERS: 18 (2018) 26

Proof of correctness for Algorithm 4. This is an algorithmic version of the method
described in the proof of Theorem 4.8 from [3]; see that for details. (Note that
K is guaranteed to exist by Proposition 6; one can find it by brute force or slight
variants.) There is a slight di↵erence between the two methods in that the method
described there, rather than forgetting (f,C) when it recursively applies the method
to (g,D) and directly generating the set T , instead generates a set of values for
variables that may be substituted into f to yield the set T , only performing the
substitution at the end. This is the same method, but without keeping track of
extra information so that it can be written in a more straightforwardly recursive
manner.

5.2. Algorithm 5: Truncating Many Polynomials to a Given Defect

If we can truncate one polynomial, we can truncate many of them; this is Algo-
rithm 5.

Algorithm 5 Compute a good covering of Br from a covering set for Br

Require: r 2 R, r � 0, T a covering set for Br

Ensure: S is a good covering of Br

S ;
for all (f,C) 2 T do

Use Algorithm 4 to truncate (f,C) to r; call the result S 0
S S [S 0

end for
return S

Proof of correctness for Algorithm 5. This is an algorithmic version of the method
described in the proof of Theorem 4.9 from [3] – that if one has a covering set for
Br and truncates each of its elements to the defect r, one obtains a good covering
of Br. It can also be seen as an application of the correctness of Algorithms 2 and
4.

5.3. Algorithm 6: Computing a Good Covering of Br

We can then put this together into Algorithm 6, for computing a good covering of
Br.

Proof of correctness for Algorithm 6. This follows immediately from the correct-
ness of Algorithms 3 and 5.

We have now described how to compute good coverings of Br. But it still remains
to show how to use this to compute other quantities of interest, such as K(n) and
knkst. We address this in the next section.

INTEGERS: 18 (2018) 27

Algorithm 6 Compute a good covering of Br

Require: r 2 R, r � 0
Ensure: S is a good covering of Br

Use Algorithm 3 to compute a covering set T for Br

Use Algorithm 5 to compute a good covering S for Br from T
return S

6. Algorithms: Computing Stabilization Length K(n) and Stable
Complexity knkst

In order to compute K(n) and knkst, we will need to be able to tell, algorithmically,
whether, given a low-defect polynomial f and a a number n, there exists k � 0 such
that f 3-represents 3kn. If we simply want to know whether f 3-represents n, this
is easy; because

f(3k1 , . . . , 3kr) � 3k1+...+kr ,

we have an upper bound on how large the ki can be and we can solve this with brute
force. However, if we want to check whether it represents 3kn for any k, clearly
this will not su�ce, as there are infinitely many possibilities for k. We will need a
lemma to narrow them down.

Lemma 1. Let f be a polynomial in r variables with nonnegative integer coe�cients
and nonzero constant term; write

f(x1, . . . , xr) =
X

ai1,...,irx
i1
1 . . . xir

r

with ai1,...,ir positive integers and a0,...,0 > 0. Let b > 1 be a natural number and let
vb(n) denote the number of times n is divisible by b. Then for any k1, . . . , kr 2 Z�0,
we have

vb(f(bk1 , . . . , bkr)) 
X

ai1,...,ir >0

(blogb ai1,...,irc+ 1)� 1.

In particular, this applies when f is a low-defect polynomial and b = 3.

Proof. The number f(bk1 , . . . , bkr) is the sum of the constant term a0,...,0 (call it
simply A0) and numbers of the form Aib`i where the Ai are simply the remaining
ai1,...,ir enumerated in some order (say 1  i  s). Since we can choose the order,
assume that vb(A1b`1)  . . .  vb(Asb`s).

So consider forming the number f(bk1 , . . . , bkr) by starting with A0 and adding
in the numbers Aib`i one at a time. Let Si denote the sum

Pi
j=0 Ajb`j , so S0 = A0

and Ss = f(bk1 , . . . , bkr). We check that for any i, we have

vb(Si) 
iX

j=0

(blogb Ajc+ 1)� 1. (1)

INTEGERS: 18 (2018) 28

Before proceeding further, we observe that if for some i we have vb(Ai+1b`i+1) >
vb(Si), then by assumption, for all j > i, vb(Ajb`j) � vb(Ai+1b`i+1) > vb(Si). Now
in general, if vb(n) < vb(m), then vb(n + m) = vb(n). So we can see by induction
that for all j � i, vb(Sj) = vb(Si); for this statement is true for j = i, and if it is
true for j, then vb(Sj) = vb(Si) < vb(Ajb`j) and so vb(Sj+1) = vb(Si).

So let h be the smallest i such that vb(Ai+1b`i+1) > vb(Si). (If no such i exists,
take h = s.) Then we first prove that Equation (1) holds for i  h.

In the case that i  h, we will in fact prove the stronger statement that

blogb Sic 
iX

j=0

(blogb Ajc+ 1)� 1;

this is stronger as in general it is true that vb(n)  blogb nc. For i = 0 this is
immediate. So suppose that this is true for i and we want to check it for i+1, with
i + 1  h. Since i + 1  h, we have that vb(Ai+1b`i+1)  vb(Si). From this we can
conclude the inequality

blogb(Ai+1b
`i+1)c = `i+1 + blogb Ai+1c

 vb(Ai+1b
`i+1) + blogb Ai+1c  vb(Si) + blogb Ai+1c.

Now, we also know that

blogb Si+1c  max{blogb Sic, blogb(Ai+1b
`i+1)c} + 1. (2)

And we can observe using above that

blogb(Ai+1b
`i+1)c+ 1  blogb Sic+ blogb Ai+1c+ 1 

i+1X
j=0

(blogb Ajc+ 1)� 1.

We also know that

blogb Sic+ 1 
iX

j=0

(blogb Ajc+ 1) 
i+1X
j=0

(blogb Ajc+ 1)� 1,

as blogb Ai+1c+ 1 � 1. So we can conclude using Equation (2) that

blogb Si+1c 
i+1X
j=0

(blogb Ajc+ 1)� 1,

as desired.
Having proved Equation (1) for i  h, it then immediately follows for all i, as by

the above, for i � h,

vb(Si) = vb(Sh) 
hX

j=0

(blogb Ajc+ 1)� 1 
sX

j=0

(blogb Ajc+ 1)� 1;

this proves the claim.

INTEGERS: 18 (2018) 29

6.1. Algorithm 7: Computing Whether a Polynomial 3-represents Some
3kn.

With this in hand, we can now write down Algorithm 7 for determining if f 3-
represents any 3kn.

Algorithm 7 Determine whether (f,C) 3-represents any 3kn and with what com-
plexities
Require: (f,C) a low-defect pair, n a natural number
Ensure: S is the set of (k, `) such that there exist whole numbers (k1, . . . , kr) with

f(3k1 , . . . , 3kr) = 3kn and C + 3(k1 + . . . + kr) = `
S ;
Determine v such that for any k1, . . . , kr, one has v3(f(3k1 , . . . , 3kr))  v {one
method is given by Lemma 1}
for k = 0 to v � v3(n) do

for all (k1, . . . , kr) such that k1 + . . . + kr  k + blog3 nc do
if f(3k1 , . . . , 3kr) = 3kn then

S S [{(k,C + 3(k1 + . . . + kr))}
end if

end for
end for
return S

Proof of correctness for Algorithm 7. Once we have picked a v (which can be found
using Lemma 1), it su�ces to check if f represents 3kn with k + v3(n)  v. By
Proposition 3, for any k1, . . . , kr, we have

f(3k1 , . . . , 3kr) � 3k1+...+kr ,

and so it su�ces to check it for tuples (k1, . . . , kr) with k1 + . . . + kr  blog3 3knc.
There are only finitely many of these and so this can be done by brute force, and
this is exactly what the algorithm does.

Note that Algorithm 7 is for determining specifically if there is some k � 0 such
that f 3-represents 3kn; it is not for k  0. In order to complete the algorithms
that follow, we will also need to be able to check if there is some k  0 such that f
3-represents 3kn. However, this is the same as just checking if f̂ 3-represents n, and
can be done by the same brute-force methods as were used to check if f 3-represents
n; no special algorithm is required here.

6.2. Algorithm 8: Algorithm to Test Stability and Compute Stable
Complexity

Now, at last, we can write down Algorithm 8, for computing K(n) and knkst. We
assume that in addition to n, we are given L, an upper bound on knk, which may

INTEGERS: 18 (2018) 30

be1. Running Algorithm 8 with L =1 is always a valid choice; alternatively, one
may compute knk or an upper bound on it before applying Algorithm 8.

Algorithm 8 Compute K(n) and knkst

Require: n a natural number, L 2 N [{1}, L � knk
Ensure: (k,m) = (K(n), knkst)

Choose a step size ↵ 2 (0, 1) \R
Let r be the smallest nonnegative integer, or 1, such that r↵ > L� 3 log3 n� 1
i 1
U ;
while U = ; and i  r do

if i = 1 then
Let S1 be the output of Algorithm 1 for ↵ {This is a good covering of B↵}

else
Use Algorithm 2 to compute a covering Si of Bi↵ from coverings Sj of Bj↵

for 1  j < i
Use Algorithm 5 to turn Si into a good covering

end if
Optional step: Remove redundancies from Si as in Algorithm 2 {See “optional
step” there}
for all (f,C) 2 Si do

Let U 0 be the output of Algorithm 7 on (f,C) and n {If r is finite and i < r
this whole loop may be skipped}
Let s = deg f
for all (k1, . . . , ks+1) such that k1 + . . . + ks+1  blog3 nc do

if f̂(3k1 , . . . , 3ks+1) = n then
U 0 U 0 [{(k,C + 3(k1 + . . . + ks+1))}

end if
end for
U U [U 0

end for
end while
if U = ; then

(k,m) = (0, L)
else

Let V consist of the elements (k, `) of U that minimize `� 3k
Choose (k, `) 2 V that minimizes k
m `� 3k

end if
return (k,m)

Proof of correctness for Algorithm 8. This algorithm progressively builds up good
covers Si of Bi↵ until it finds some i such that there is some (f,C) 2 Si such that f̂

INTEGERS: 18 (2018) 31

3-represents 3kn for some k � 0. To see that this is indeed what it is doing, observe
that if

f(3k1 , . . . , 3kr)3kr+1 = 3kn,

then if k � kr+1, we may write

f(3k1 , . . . , 3kr) = 3k�kr+1n

and so f itself 3-represents some 3kn; while if k  kr+1, we may write

f(3k1 , . . . , 3kr)3kr+1�k = n

and so f̂ 3-represents n itself. And this is exactly what the inner loop does; it checks
if f 3-represents any 3kn using Algorithm 7, and it checks if f̂ 3-represents n using
brute force.

Now, if for a given i we obtain U = ;, then that means that no 3kn is 3-
represented by any (f,C) 2 Si, and so for any k, �(3kn) � i↵, that is, �st(3kn) � i↵.
Conversely, if for a given i we obtain U nonempty, then that means that some 3kn
is 3-represented by some (f,C) 2 Si. Since for any (f,C) we have �(f,C)  i↵
(and this is strict if deg f = 0), this means that �(3kn) < i↵, and so �st(n) < i↵.

So we see that if the algorithm exits the main loop with U nonempty, it does so
once it has found some i such that there exists k with �(3kn) < i↵; equivalently,
once it has found some i such that �st(n) < i↵. Or, equivalently, once it has found
some i such that �(3K(n)n) < i↵. Furthermore, note that 3K(n)n must be a leader if
K(n) > 0, as otherwise 3K(n)�1n would also be stable. So if K(n) > 0, then 3K(n)n
must be e�ciently 3-represented by some (f,C) 2 Si. Whereas if K(n) = 0, then
we only know that it is e�ciently 3-represented by some (f̂ , C) for some (f,C) 2 Si,
but we also know 3K(n)n = n. That is to say, the ordered pair (K(n), k3K(n)nk)
must be in the set U .

In this case, where U is nonempty, it remains to examine the set U and pick out
the correct candidate. Each pair (k, `) 2 U consists of some k and some ` such that
` � k3knk. This implies that

�st(n)  �(3kn)  `� 3k � 3 log3 n,

and so the pair (K(n), k3K(n)nk) must be a pair (k, `) for which the quantity ` �
3k� 3 log3 n, and hence the quantity `� 3k, is minimized; call this latter minimum
p. So

�st(n) = p� 3 log3 n.

(Note that this means that p = knkst.) Then the elements of V are pairs (k, p+3k)
with

�(3kn)  p� 3 log3 n,

INTEGERS: 18 (2018) 32

but we know also that

�(3kn) � �st(n) = p� 3 log3 n,

so we conclude that for such a pair, �(3kn) = �st(n). But this means that 3kn
is stable, and so k � K(n). But we know that K(n) is among the set of k with
(k, p + 3k) 2 V , and so it is their minimum. Thus, we can select the element
(k, `) 2 V that minimizes k; then k = K(n), and we can take k � 3` to find
m = knkst.

This leaves the case where U is empty. In this case, we must have that for all
1  i  r, and hence in particular for i = r, no (f,C) in Si 3-represents any n3k;
i.e., no n3k lies in Br↵, and hence, by Proposition 7, no n3k lies in Ar↵. That is to
say, for any k, �(n3k) � r↵, and so

kn3kk � r↵ + 3 log3 n + 3k > L + 3k � 1.

Since kn3kk > L + 3k � 1, and kn3kk  L + 3k, we must have kn3kk = L + 3k.
Since this is true for all k � 0, we can conclude that n is a stable number. So, n is
stable and knk = L, that is to say, K(n) = 0 and knkst = knk = L.

We can now prove Theorem 2.

Proof of Theorem 2. Algorithm 8, run with L = 1, gives us a way of computing
K(n) and knkst. Then, to check if n is stable, it su�ces to check whether or not
K(n) = 0. This proves the theorem.

6.3. Algorithm 9: Determining Leaders and the “Drop Pattern”

But we need not conclude here; we can go further. As mentioned in Section 2.1, we
can get more information if we go until we detect n, rather than stopping as soon
as we detect some 3kn. We now record Algorithm 9, for not only determining K(n)
and k3K(n)nk, but for determining all k such that either k = 0 or 3kn is a leader,
and the complexities k3knk. By Proposition 7, this is enough to determine k3knk
for all k � 0. One could also do this by using Algorithm 8 to determine K(n) and
then directly computing k3knk for all 0  k  K(n), but Algorithm 9 will often be
faster.

Proof of correctness for Algorithm 9. As in Algorithm 8, we are successively build-
ing up good coverings Si of Bi↵, and for each one checking whether there is an
(f,C) 2 Si and a k � 0 such that (f̂ , C) 3-represents 3kn. However, the exit condi-
tion on the loop is di↵erent; ignoring for a moment the possibility of exiting due to
i > r, the di↵erence is that instead of stopping once some 3kn is 3-represented, we
do not stop until n itself is 3-represented, or equivalently, �(n) < i↵. We will use i
here to denote the value of i when the loop exits.

INTEGERS: 18 (2018) 33

Algorithm 9 Compute information determining k3knk for all k � 0
Require: n a natural number, L 2 N [{1}, L � knk
Ensure: V the set of (k, `) where either k = 0 or k > 0 and 3kn is a leader, and

` = k3knk
Choose a step size ↵ 2 (0, 1) \R
Let r be the smallest nonnegative integer, or 1, such that r↵ > L� 3 log3 n� 1
i 1
U ;
while 0 /2 ⇡1(U), where ⇡1 is projection onto the first coordinate, and i  r do

if i = 1 then
Let S1 be the output of Algorithm 1 for ↵ {This is a good covering of B↵}

else
Use Algorithm 2 to compute a covering Si of Bi↵ from coverings Sj of Bj↵

for 1  j < i
Use Algorithm 5 to turn Si into a good covering

end if
Optional step: Remove redundancies from Si as in Algorithm 2 {See “optional
step” there}
for all (f,C) 2 Si do

Determine v such that for any k1, . . . , kr, one has v3(f(3k1 , . . . , 3kr))  v
{one method is given by Lemma 1} {If r is finite and i < r this whole loop
may be skipped}
Let U 0 be the output of Algorithm 7 on (f,C) and n
for all (k1, . . . , kr+1) such that k1 + . . . + kr+1  blog3 nc do

if f̂(3k1 , . . . , 3kr+1) = n then
U 0 U 0 [{(k,C + 3(k1 + . . . + kr+1))}

end if
end for
U U [U 0

end for
end while
if 0 /2 ⇡1(U) then

U U [{(0, L)}
end if
Let V = {(k, `� 3k) : (k, `) 2 U}
Let Vm consist of the minimal elements of V in the usual partial order
Let W = {(k, p + 3k) : (k, p) 2 Vm}
return W

We want the set U to have two properties. Firstly, it should contain all the pairs
(k, `) we want to find. Secondly, for any (k, `) 2 U , we should have k3knk  `. For

INTEGERS: 18 (2018) 34

the first property, observe that if 3kn is a leader and k > 1, then

�(3kn)  �(n)� 1 < L� 3 log3 n� 1,

and so �(3kn)  r↵; thus, 3kn (being a leader) is e�ciently 3-represented by some
(f,C) 2 Sr, and so if the loop exits due to i > r, then (k, k3knk) 2 U . Whereas
if the loop exits due to 0 2 ⇡1(U), then note �(3kn)  �(n) < i↵, and so 3kn
(again being a leader) is e�ciently 3-represented by some (f,C) 2 Si, and so again
(k, k3knk) 2 U . This leaves the case where k = 0. If the loop exits due to 0 2 ⇡1(U),
then by choice of i, n is e�ciently 3-represented by some (f̂ , C) for some (f,C) 2 Si,
so (0, knk) 2 U . Whereas if the loop exits due to i > r, then this means that
�(n) � r↵, and so

knk � r↵ + 3 log3 n > L� 1;

since we know knk  L, this implies knk = L, and so including (0, L) in U means
(0, knk) 2 U .

For the second property, again, there are two ways a pair (k, `) may end up in
U . One is that some low-defect pair (f,C) 3-represents the number 3kn, which, as
in the proof of correctness for Algorithm 8, means k3knk  `. The other is that
(k, `) = (0, L); but in this case, knk  L by assumption.

It then remains to isolate the pairs we want from the rest of U . We will show
that they are in fact precisely the minimal elements of U under the partial order

(k1, `1)  (k2, `2) () k1  k2 and `1 � 3k1  `2 � 3k2.

Say first that (k, `) is one of the pairs we are looking for, i.e, either k = 0 or 3kn
is a leader, and ` = k3knk. Now suppose that that (k0, `0) 2 U such that k0  k and
`� 3k0  `� 3k. Since (k0, `0) 2 U , that means that k3k0nk  `0. Since k0  k, we
conclude that

` = k3knk  `0 + 3(k � k0) (3)

and hence that `� 3k  `0 � 3k0, so `� 3k = `0 � 3k0. Now, if k = 0, then certainly
k  k0 (and so k = k0); otherwise, 3kn is a leader. Suppose we had k0 < k; then
since 3kn is a leader, that would mean �(3kn) < �(3k0n) and hence

k3knk < k3k0nk+ 3(k � k0) = ` + 3(k � k0),

contrary to (3). So we conclude k0 = k, and so (k, `) is indeed minimal.
Conversely, suppose that (k, `) is a minimal element of U in this partial order.

We must show that ` = k3knk, and, if k > 0, that 3kn is a leader. Choose k0  k
as large as possible with either k0 = 0 or 3k0n a leader, so that �(3k0n) = �(3kn).
Also, let `0 = k3k0nk; by above, (k0, `0) 2 U . Since (k, `) 2 U and �(3k0n) = �(3kn),
we know that

k3k0nk+ 3(k � k0) = k3knk  `

INTEGERS: 18 (2018) 35

and hence `0 � 3k0  ` � 3k. Since by assumption we also have k0  k, by the
assumption of minimality we must have (k0, `0) = (k, `). But this means exactly
that either k = 0 or 3kn is a leader, and that

k3knk = k3k0nk = `0 = `,

as needed.

6.4. Algorithm 10: Stabilization Length and Stable Complexity for
n = 2k

Finally, before moving on to the results of applying these algorithms, we make note
of one particular specialization of Algorithm 8, namely, the case where n = 2k and
` = 2k. As was noted in Section 2.3, this turns out to be surprisingly fast as a
method of computing k2kk. We formalize it here.

Algorithm 10 Given k � 1, determine K(2k) and k2kkst

Require: k � 1 an integer
Ensure: (h, p) = (K(2k), k2kkst)

Let (h, p) be the result of applying Algorithm 8 with n = 2k and L = 2k.
return (h, p)

Proof of correctness for Algorithm 10. This follows from the correctness of Algo-
rithm 8 and the fact that k2kk  2k for k � 1.

7. Further Notes on Stabilization and Stable Complexity

Before we continue on to the results of applying these algorithms, let us make a few
more notes on the stabilization length K(n) and the stable complexity knkst, now
that we have demonstrated how to compute them. We begin with the following
inequality.

Proposition 9. For natural numbers n1 and n2, kn1n2kst  kn1kst + kn2kst.

Proof. Choose k1, k2, and K such that k1 + k2 = K, both 3kini are stable, and
3Kn1n2 is also stable. Then

kn1n2kst = k3Kn1n2k � 3K  k3k1n1k+ k3k2n2k � 3(k1 + k2) = kn1kst + kn2kst.

INTEGERS: 18 (2018) 36

Unfortunately, the analogous inequality for addition does not hold; for instance,

k2kst = 2 > 0 = k1kst + k1kst;

more examples can easily be found.
As was mentioned in Section 2.4, we can measure the instability of the number

n by the quantity �(n), defined as

�(n) = knk � knkst = �(n)� �st(n).

We can also measure of how far from optimal a factorization is – and, due to
Proposition 9, we can do a stabilized version of this as well.

Definitions 5. Let n1, . . . , nk be positive integers, and let N be their product.
We define (n1, . . . , nk) to be the di↵erence kn1k+ . . . + knrk � kNk. Similarly we
define st(n1, . . . , nk) to be the di↵erence kn1kst + . . . + knkkst � kNkst.

If (n1, . . . , nk) = 0, we will say that the factorization N = n1 · · ·nk is a good
factorization. If st(n1, . . . , nk) = 0, we will say that the factorization N = n1 · · ·nk

is a stably good factorization.

These definitions lead to the following easily-proved but useful equation.

Proposition 10. Let n1, . . . , nk be natural numbers with product N . Then

�(N) + (n1, . . . , nk) =
kX

i=1

�(ni) + st(n1, . . . , nk).

Proof. Both sides are equal to the di↵erence
Pk

i=1 knik � kNkst.

The usefulness of this equation comes from the fact that all the summands are
nonnegative integers. For instance, we can obtain from it the following implications.

Corollary 1. Let n1, . . . , nk be natural numbers with product N ; consider the fac-
torization N = n1 · . . . · nk. Then:

1. If N is stable and the factorization is good, then the ni are stable.

2. If the ni are stable and the factorization is stably good, then N is stable.

3. If the factorization is stably good, then K(N) 
P

i K(ni).

(Part (1) of this proposition also appeared as Proposition 24 in [7].)

Proof. For part (1), by Proposition 10, if �(N) = (n1, . . . , nk) = 0, then we
must have that �(ni) = 0 for all i, i.e., the ni are all stable. For part (2), again
by Proposition 10, if st(n1, . . . , nk) = 0 and �(ni) = 0 for all i, then we must

INTEGERS: 18 (2018) 37

have �(N) = 0, i.e., N is stable. Finally, for part (3) let Ki = K(Ni), and let
K = K1 + . . . + Kr. Then

Q
i(3

Kini) = 3Kn. Now by hypothesis,

st(3K1n1, . . . , 3Krnr) = st(n1, . . . , nr) = 0,

and furthermore each 3Kini is stable. Hence by part (2), we must also have that
3KN is stable, that is, that K(N)  K = K(N1) + . . . + K(Nr).

Having noted this, let us now continue on towards the results of actually per-
forming computations with these algorithms.

8. Results of Computation

Armed with our suite of algorithms, we now proceed to the results of our compu-
tations. First, we can use Algorithm 10 to prove Theorem 3.

Proof of Theorem 3. Algorithm 10 was applied with k = 48, and it was determined
that K(248) = 0 and k248kst = 96, that is to say, that 248 is stable and k248k = 96,
that is to say, that k2483`k = 96 + 3` for all ` � 0. This implies that k2k3`k =
2k + 3` for all 0  k  48 and ` � 0 with k and ` not both zero, as if one
instead had k2k3`k < 2k + 3`, then writing 2483` = 248�k(2k3`), one would obtain
2483` < 96 + 3`.

But we can do more with these algorithms than just straightforward computation
of values of complexities and stable complexities. For instance, we can answer the
question, what is the smallest unstable defect other than 1?

In [7], the following theorem was proven.

Theorem 8. For any n > 1, if �(n) < 12�(2), then n is stable.

That is to say, with the exception of 1, all defects less than 12�(2) are stable.
This naturally leads to the question, what is the smallest unstable defect (other
than 1)? We might also ask, what is the smallest unstable number (other than 1)?
Interestingly, among unstable numbers greater than 1, the number 107 turns out
to be smallest both by magnitude and by defect. However, if we measure unstable
numbers (other than 1) by their stable defect, the smallest will instead turn out to
be 683. We record this in the following theorem.

Theorem 9. We have:

1. The number 107 is the smallest unstable number other than 1.

2. Other than 1, the number 107 is the unstable number with the smallest defect,
and �(107) = 3.2398 . . . is the smallest unstable defect other than 1.

INTEGERS: 18 (2018) 38

3. Among nonzero values of �st(n) for unstable n, the defect �st(683), or equiv-
alently �(2049) = 2.17798 . . ., is the smallest.

Proof. For part (1), it su�ces to use Algorithm 8 to check the stability of all numbers
from 2 to 106.

For parts (2) and (3), in order to find unstable numbers of small defect, we will
search for leaders of small defect which are divisible by 3. (Since if n is unstable,
then 3K(n)n is a leader divisible by 3, and �(3K(n)n) < �(n)). We use Algorithm 6
to compute a good covering S of B21�(2). Doing a careful examination of the low-
defect polynomials that appear, we can determine all the multiples of 3 that each
one can 3-represent; we omit this computation, but its results are that the following
multiples of 3 can be 3-represented by: 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36,
39, 42, 45, 48, 54, 57, 60, 63, 66, 72, 75, 78, 81, 84, 90, 96, 111, 114, 120, 126, 129,
132, 144, 162, 165, 168, 171, 180, 192, 225, 228, 231, 240, 252, 258, 264, 288, 321,
324, 330, 336, 360, 384, 480, 513, 516, 528, 576, 768, 1026, 1032, 1056, 1152, 1536,
2049, 2052, 2064, 2112, 2304, 3072, and, for k � 0, numbers of the forms 12 · 3k +3,
6 · 3k + 3, 9 · 3k + 3, 12 · 3k + 6, and 18 · 3k + 6.

For the individual leaders, we can easily check by computation that the only
ones which are leaders are 3, 321, and 2049. This leaves the infinite families. For
these, observe that if we divide them by 3, we get, respectively, 4 · 3k + 1, 2 · 3k + 1,
3 · 3k + 1, 2(2 · 3k + 1), and 2(3 · 3k + 1), and it is easy to check that any number
of any of those forms has defect less than 12�(2) and hence is stable by Theorem 8;
thus, multiplying them by 3 cannot yield a leader.

So we conclude that the only leaders m with �(m) < 21�(2) are 3, 321, and 2049.
Therefore, the only unstable numbers n with �st(n) < 21�(2) are 1, 107, and 683.
Note also that by the above computation, no power of 3 times any of 3, 321, or
2049 is a leader (as it would have to have smaller defect and would thus appear in
the list), and thus the numbers 3, 321, and 2049 are not just leaders but in fact
stable leaders. So to prove part (3), it su�ces to note that, since �st(3) = 0, among
�st(107) (i.e. �(321)) and �st(683) (i.e. �(2049)), the latter is smaller.

This leaves part (2). Observe that �(107) = �(321)+1. And if n is unstable, then
�st(n)  �(n)� 1. So if n > 1 is unstable and �(n) < �(107), then �st(n) < �(321),
which by the above forces n = 683. But in fact, although �(2049) < �(107), we
nonetheless have �(683) > �(107) (because while �(107) = �(321) + 1, �(683) =
�(2049) + 2). Thus �(107) is the smallest unstable defect other than 1, i.e., 107 is
(other than 1) the smallest unstable number by defect.

These computational results provide a good demonstration of the power of the
methods here.

Acknowledgements. The author is grateful to J. Arias de Reyna for helpful

INTEGERS: 18 (2018) 39

discussion. He thanks his advisor J. C. Lagarias for help with editing and further
discussion. Work of the author was supported by NSF grants DMS-0943832 and
DMS-1101373.

References

[1] H. Altman, Internal structure of addition chains: well-ordering, Theoret. Comput. Sci.
(2017), doi:10.1016/j.tcs.2017.12.002

[2] H. Altman, Integer complexity and well-ordering, Michigan Mathematical Journal 64 (2015),
no. 3, 509–538.

[3] H. Altman, Integer complexity: representing numbers of bounded defect, Theoret. Comput.
Sci. 652 (2016), 64–85.

[4] H. Altman, Integer complexity: the integer defect, in preparation.

[5] H. Altman, Refined estimates for counting numbers of low defect, in preparation.

[6] H. Altman and J. Arias de Reyna, Integer complexity, stability, and self-similarity, in prepa-
ration.

[7] H. Altman and J. Zelinsky, Numbers with integer complexity close to the lower bound,
Integers 12 (2012), no. 6, 1093–1125.

[8] J. Arias de Reyna, Complejidad de los números naturales, Gac. R. Soc. Mat. Esp. 3 (2000),
230–250.

[9] J. Arias de Reyna and J. Van de Lune, Algorithms for determining integer complexity,
arXiv:1404.2183, 2014

[10] A. Brauer, On addition chains, Bull. Amer. Math. Soc., 45 (1939), 736–739.

[11] P. W. Carruth, Arithmetic of ordinals with applications to the theory of ordered abelian
groups, Bull. Amer. Math. Soc. 48 (1942), 262–271.

[12] J. H. Conway, On Numbers and Games, Second Edition, A K Peters, Ltd., Natick, Mas-
sachusetts, 2001, pp. 3–14.

[13] D. H. J. De Jongh and R. Parikh, Well-partial orderings and hierarchies, Indag. Math. 39
(1977), 195–206.

[14] H. Dellac, Interméd. Math. 1 (1894), 162–164.

[15] A. Flammenkamp, Drei Beiträge zur diskreten Mathematik: Additionsketten, No-Three-in-
Line-Problem, Sociable Numbers, Diplomarbeit in Mathematics (Bielefield University, 1991),
pp. 3–118.

[16] R. K. Guy, Some suspiciously simple sequences, Amer. Math. Monthly, 93 (1986), 186–190;
and see 94 (1987), 965 & 96 (1989), 905.

[17] R. K. Guy, Unsolved Problems in Number Theory, Third Edition, Springer-Verlag, New
York, 2004, pp. 399–400.

[18] J. Iraids, personal communication.

INTEGERS: 18 (2018) 40

[19] J. Iraids, K. Balodis, J. Čerņenoks, M. Opmanis, R. Opmanis, K. Podnieks. Integer com-
plexity: experimental and analytical results, arXiv:1203.6462, 2012

[20] D. E. Knuth, The Art of Computer Programming, Vol. 2, Third Edition, Addison-Wesley,
Reading, Massachusetts, pp. 461–485

[21] K. Mahler and J. Popken, On a maximum problem in arithmetic (Dutch), Nieuw Arch.
Wiskunde, (3) 1 (1953), 1–15; MR 14, 852e.

[22] A. Scholz, Aufgabe 253, Jahresbericht der Deutschen Mathematikervereinigung, Vol. 47, Teil
II, B. G. Teubner, Leipzig and Berlin, 1937, pp. 41–42.

[23] V. V. Srinivas & B. R. Shankar, Integer complexity: breaking the ⇥(n2) barrier, World
Academy of Science, 41 (2008), 690–691

[24] M. V. Subbarao, Addition chains – some results and problems, Number Theory and Ap-
plications, Editor R. A. Mollin, NATO Advanced Science Series: Series C, V. 265, Kluwer
Academic Publisher Group, 1989, pp. 555–574.

[25] I. Volkovich, Characterizing arithmetic read-once Formulae, ACM Trans. Comput. Theory
8 (2016), no. 1, Art. 2, 19 pp.

[26] J. Zelinsky, An upper Bound on integer complexity, in preparation

Appendix: Implementation Notes

In this appendix we make some notes about the attached implementation of the
above algorithms and on other ways they could be implemented.

We have actually not implemented Algorithm 8 and Algorithm 9 in full generality,
where L may be arbitrary; we have only implemented the case where L = 1, the
case where L = knk (computed beforehand), and the case of Algorithm 10.

As was mentioned in Section 2.3, the step size in the attached implementation
has been fixed at ↵ = �(2), with the sets B↵ and T↵ precomputed. Other integral
multiples of �(2) were tried, up to 9�(2) (since 10�(2) > 1 and thus is not a valid
step size), but these all seemed to be slower, contrary to the author’s expectation.

Another variation with a similar flavor is that one could write a version of these
algorithms with nonstrict inequalities, computing numbers n with �(n)  r for a
given r, rather than �(n) < r; see Appendix A of [3]. We make the following
definition to formalize this.

Definition 19. For a real number r � 0, the set Ar is the set {n 2 N : �(n)  r}.
The set Br is the set of all elements of Ar which are leaders.

Definition 20. A finite set S of low-defect pairs will be called a covering set for Br

if, for every n 2 Br, there is some low-defect pair in S that e�ciently 3-represents
it. We will say S is a good covering of Br if, in addition, every (f,C) 2 S satisfies
�(f,C)  r.

INTEGERS: 18 (2018) 41

Then, as per Appendix A of [3], good coverings of Br exist, and only slight
variations on the algorithms above are needed to compute them. However, this was
not tried in this implementation.

It is also worth noting that the check for whether a given polynomial f 3-
represents a given number n can also be sped up. If f is a low-defect polynomial
with leading coe�cent a, maximum coe�cient A, and N terms, then

a3k1+...+kr  f(3k1 , . . . , 3kr)  NA3k1+...+kr ,

so we only need to search (k1, . . . , kr) with

dlog3
n

NA
e  k1 + . . . + kr  blog3

n

a
c,

a stricter condition than was described in the algorithms above. This improvement
is, in fact, used in the attached implementation. It is also possible that there is a
better way than brute force.

As was mentioned in Section 6, when running Algorithm 8 or Algorithm 9 with
L finite, one can omit the 3-representation check at intermediate steps. We have
only implemented this variant for Algorithm 10.

It was mentioned in Section 3.2 that considering “low-defect expression pairs”
(E,C) or “low-defect tree pairs” (T,C) (where E is a low-defect expression, T is
a low-defect tree, and C � kEk or C � kTk, as appropriate) may be useful. In
fact, the attached implementation works with a tree representation essentially the
same as low-defect trees and low-defect tree pairs. Among other things, this makes
it easy to find the minimal variables to be substituted into. If one were actually
representing low-defect polynomials as polynomials, this would take some work.
There is a slight di↵erence in that, rather than simply storing a base complexity
C � kTk, it stores for each vertex or edge – say with label knk – a number k such
that k � knk, unless we are talking about a non-leaf vertex and n = 1, in which
case k = 0. We can then determine a C by adding up the values of k. That is to
say, the complexity, rather than being attributed to the whole tree, is distributed
among the parts of the tree responsible for it; this makes it easier to check for and
remove redundant low-defect pairs.

It was also mentioned in Section 3.2 that one could use a representation similar
to low-defect expressions, but with all the integer constants replaced with +, ·, 1-
expressions for same. For example, instead of 2(2x+1), one might have (1+1)((1+
1)x + 1). We have not implemented this, but doing this would have one concrete
benefit – it would allow the algorithms above to not only determine the complexity
of a given number n, but also to give a shortest representation (and analogously
with stable complexity). The current implementation cannot consistently do this in
a useful manner. For instance, suppose that we ran Algorithm 10 and found some
k with k2kk = 2k� 1. We might then look at the actual low-defect pair (f,C) that

INTEGERS: 18 (2018) 42

3-represented it, to learn what this representation with only 2k � 1 ones is. But it
might turn out, on inspection, that f was simply the constant 2k; this would not
be very enlightening. Using +, ·, 1-expressions would remedy this, as would having
low-defect pairs keep track of their “history” somehow.

It is also possible to write numerical versions of Proposition 6, that say exactly
how far out one has to go in order to get within a specified " of the limit �(f,C);
one could use this in Algorithm 4 instead of simply searching larger and larger K
until one works. This was tried but found to be slower.

Finally, it is worth expanding here on the remark in Section 2.4 that it is possible
to write Algorithm 8 and Algorithm 9 without using truncation. Surprisingly little
modification is required; the only extra step needed is that, in order to check if n (or
any 3kn) has defect less than i↵, instead of just checking if a low-defect pair (f,C)
(or its augmented version) 3-represents n (or any 3kn), if one finds that indeed
n = f(3k1 , . . . , 3kr) (or the appropriate equivalent), one must additionally check
whether �f,C(k1, . . . , kr) < i↵, since this is no longer guaranteed in advance. We
will not state a proof of correctness here; it is similar to the proofs above. Such
no-truncation versions of the algorithms were tried, but found to be too slow to be
practical, because of the time needed to check whether the resulting polynomials
3-represented a given number. Another possibility, in the case where one is using
a cuto↵, is to truncate only at the final step, and not at the intermediate steps;
this has not been tried. If this is used, it should probably be combined with not
checking whether n (or any 3kn) is 3-represented until the final step, for the reason
just stated.

