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Abstract
Let p,(n) denote the number of overpartitions of n into odd parts. In this article,
we study congruences for p,(n) modulo 8 and 16. Chen proved that p,(n) satisfies
the identity

oo 27 fS 14
> D,(16n + 14)q" = 112-32— + 256¢-21+,
fl f4 1

n=0

where fj, := [[°2,(1—¢"*). We prove similar identities for p,(16n+2), p,(16n+6),
and p,(16n + 10). Along the way, we find a new proof of the identity of Chen. We
also derive infinite families of congruences modulo 8 and 16 for p,(n). We use
Ramanujan’s theta function identities and some new p-dissections in our proofs.

1. Introduction and Statement of Results

Throughout this paper, for complex numbers a and ¢, (a;¢) stands for the g-
shifted factorial

(@;0)se = [[(1—ag"™"), lgl < 1; (1)

and f;, stands for (¢;¢")s. In [7], Corteel and Lovejoy introduce the notion of
overpartitions. Many interesting arithmetic properties of overpartitions are found
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by many mathematicians, for example, see Mahlburg [14], Hirschhorn and Sellers
[10], and Kim [12, 13]. An overpartition of a nonnegative integer n is a partition of
n in which the first occurrence of a part may be over-lined. For example, the eight
overpartitions of 3 are 3,3,2+ 1,2+ 1,2 +1,2+1,14+1+1,and T+ 1+ 1. Let
p(n) denote the number of overpartitions of n. The generating function for p(n) is
given by

S g = TG0 _ fo
nz::op(n)q (D [T @

For |ab| < 1, Ramanujan’s general theta function f(a,b) is defined as
f(a b Z a® n+1)/2bn(n 1)/2 (3)

In Ramanujan’s notation, the Jacobi triple product identity [4, Entry 19, p. 36]
takes the shape

fla,b) = (—a; ab) oo (—b; ab) oo (ab; ab) . (4)

The most important special cases of f(a,b) are

¢(q) == —1+22q

N f1
Wla) = flad®) = 3 g2 J;—Q (6)
n=0 1
f(=q) = f(=q,—=¢*) = Y (=) q"C" V2= . (7)

We now recall two definitions from [9, p. 225]. Let II represent a pentagonal number

(a number of the form 3”2"‘") and Q represent an octagonal number (a number of
the form 3n? + 2n). Let Il(q Z ¢ > ~ and Q(q Z q3” +2n  Then,
n=-—00 n=-—0oo
f2f3
II(q) = . 8
(@) =57 ®)
Also,
i 2 > 2
Q(*(]) _ Z (71)nq3n +2n _ Z (71)nq3n —2n
n— n— n fl f2
=[a =" - - ") = 7 (9)
f2fs

n>1
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In this article, we study overpartitions in which only odd parts are used. This
function has arisen in a number of recent papers, but in contexts which are very
different from overpartitions. For example, see Ardonne, Kedem and Stone [1],
Bessenrodt [3], and Santos and Sills [15]. We denote by p,(n) the number of over-
partitions of n into odd parts. Hirschhorn and Sellers [11] obtain many interesting
arithmetic properties of p,(n). They observe that the generating function for p,(n)
is given by

E Po(n)q" = — = ) 10
n=0 " el G ¥ 1o

They establish a number of arithmetic results including several Ramanujan-like
congruences satisfied by p,(n), and some easily-stated characterizations of p,(n)
modulo small powers of 2. For example, the following two Ramanujan-like congru-
ences can readily be seen from one of their main theorems:

Do(8n+5) =0 (mod 8), (11)
Do(8n+7) =0 (mod 16). (12)

They also prove that, for n > 1, p,(n) is divisible by 4 if and only if n is neither a
square nor twice a square. In [6, Theorem 1], Chen proves that

> 27 f3 14
> D160 + 14)q" = 112-32— + 256¢-21+, (13)
fl f4 1

n=0

from which it readily follows that p,(16n + 14) = 0 (mod 16). Using elementary
theory of modular forms, he further proves infinitely many congruences for p,(n)
modulo 32 and 64. Let ¢t > 0 be an integer and py,p2 = 1 (mod 8) be primes. Chen
[6, Theorem 2] proves that

P, (P71 (16n +14)) =0  (mod 32), (14)
Po(Pi3(16n +14)) =0 (mod 64), (15)
P,(p1p2(16n +14)) =0 (mod 64). (16)

The first two congruences are valid for all nonnegative integers n satisfying 8n #£ —7
(mod p1). The last congruence is valid for all nonnegative integers n satisfying
8n #Z —7 (mod p1) and 8n #Z —7 (mod ps).

In this article, we prove the following identities for p,(n) similar to (13) for other
values of n. Along the way, we also obtain (13).

Theorem 1. We have
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i
po 4n + 1 ,
Z f1f 13
Zp0(4n+2)q f2f8
f1
Zpo (4n + 3)q féfﬁfg7
It
45 21
Zpo (161 4 2)q f£f14+224 f22§4,
39 15
Z Po(16n +6)¢" = f29f10 +320q 2{4 J
n=0
0 33
> p,(16n +10)q" = 4Of27f6 + 384q f2

n=0

(18)

(19)

(20)

(21)

(22)

(23)

We also find congruences modulo 8 and 16 for p,(n) using Ramanujan’s theta

function identities and some dissections of theta functions. We prove the following

congruences for p,(n) modulo 8 and 16.

Theorem 2. We have

oo B . _ f_25
Zpo(8n+3)q =47 (mod 16),

> p,(16n+6)q" = 1222
= fi

(mod 16),

> B,(16n + 10)g" = 8% (mod 16),

=0
Z% B,(32n + 4)q" = 62 }f 2 (mod8),
ioﬁo(?ﬂn +12)¢" = 4% (mod 8),
Ti?o(?‘ln +1)¢" = 2% (mod 8),
ioz‘?o(wm F17)g" = 4f”;?§f62 (mod 8),

S 5,120+ 9)g" =61 /2 (mod 8).

n=0

(28)

(29)

(30)

(31)
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Theorem 3. For nonnegative integers n and o we have

P, (2%(32n+20)) =0 (mod 8), (32)
P, (2%(32n+28)) =0 (mod 8). (33)

We next prove certain infinite families of congruences for p,(n) modulo 8 and
16 as stated in the following theorems. We establish new p-dissections of ;—f; and
Q(—¢q), and use them to prove the congruences.

We recall that, for an odd prime p, the Legendre symbol is defined by

a 1 if a is a square modulo p and a Z0 (mod p);
<—> = —1 if a is not a square modulo p;
p 0 ifa=0 (modp).

—2
Theorem 4. Let p > 3 be a prime, n > 0 and o > 1. If (—) = —1, then we
p

have

P, (89°*n+ (3p+8j)p** ') =0 (mod 16), (34)
P, (16p°“n + (6p + 165)p** ') =0 (mod 16), (35)
D, (T20**n+ (9p + 72)p**~') =0 (mod 8), (36)
Do (24p**n+ (17p + 245)p** ") =0 (mod 8), (37)
Do (320°%n + (4p + 32j)p** ") =0 (mod 8), (38)
D, (32**n + (12p + 32j)p** ™) =0 (mod 8). (39)

If p=3 (mod 4), then we have
D, (16p**n + (10p + 165)p** ') =0 (mod 16), (40)

where 5 =1,2,...,p—1.

2. Preliminaries

In this section, we study certain p-dissection identities. We first state the following
4-dissection formula from [9, (1.9.4)] and [4, Entry 25, p. 40].

Lemma 1. We have
w(q) = (q") + 2q0(¢°). (41)

That s,

1B R
T (42)
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We next recall the following 3-dissection formula from [9, (26.1.2)] and [4, Corol-
lary (i), p. 49].

Lemma 2. We have

¥(q) = T1(¢°) + 2q1(¢%). (43)
That is,
3 fefs | fis
fi fafis * fo (44)

The following 4-dissection formulas are due to Hirschhorn and Sellers [10].

Lemma 3. We have

(p(iq) = (p(_lq4)4 (e(a")? + 2q0(q*)*¥(¢®) + 4 (") ¥ (d®)* + 8¢ ¥ (¢®)?) . (45)
That 1is,
R < iy Y 451 f_)
2o\ P Ty g ) (46)

The following 3-dissection formulas are due to Hirschhorn and Sellers [10].

Lemma 4. We have

= 1 (0(—0")? + 200(—°)Q—¢) + 4°Q(—¢*)?) . (47)

That s,

FE T A A

We now recall p-dissections of ¥(q), f(—¢q) and 1(¢?)f(—¢)* which will be used
to prove our main results.

fo _ SiS3 (fg fsfotis 2f§ff8>. s)

Lemma 5. [8, Theorem 2.1] For any odd prime p, we have

N k2 4k p2+@k+D)p  p2—(2k+1)p 21 2
Plg) =) q 2 f(q = ,q 2 )+qp8 P(g"). (49)

Furthermore, for 0 <k < p—;?’, k22+k % p2g1 (mod p).

Before we state the next lemma, we define that for any prime p > 5,

6 —2=1 ifp=-1 (mod 6).

:I:pl'_{ % ifp=1  (mod 6);
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Lemma 6. [8, Theorem 2.2] For any prime p > 5, we have

p—1
3k2+k 3p2+(6k+1)p 3p2—(6k+1)p
fl=q) = (-D*¢" = f(=¢ = ,—¢ 7 )
k;é:(:;rgzl
+p— 2_
+(=1) 75 " f(—g"). (50)

Furthermore, if fp—;l <k< % and k # i%_l, then ?’I“QTH“ * % (mod p).

Lemma 7. [2, Lemma 2.4] If p > 5 is a prime and
tp—1 El ifp=1 (mod 3)
3 7”371 ifp=-1 (mod 3),
p—1

2

(@) f(—q)* = Z qgk?ﬂk Z (3pn + 3k + l)qpn(Spn+6k+2)

k:—”gl n=-—o00
£p—1
k# ==

+ pg" T (g f(—q”)?. (51)

Furthermore, if k # % and —% <k< ”2;1, then 3k% + 2k # Lg_l (mod p).

then

The following lemma readily follows from [2, Lemma 2.3] by putting ¢? in place
of q. The lemma gives a p-dissection of f(—q?)3.

Lemma 8. For any prime p > 3, we have

1 .
_2\3 _ = _1\k Kk +E _1\n n(pn+2k+1)
f(=a*)’ =5 ;0( 1)*q n;@( 1)™(2pn + 2k + 1)g™"
byt
p=t p2-1 2p2\3
+ (=17 pg = f(=¢")". (52)
. — 2_
Furthermore, if 0 <k <p—1 and k # %, then k% + k # pTl (mod p).

In the following two lemmas, we deduce new p-dissections of f2 and Q(—q),
Ji
respectively.

Lemma 9. For a prime p > 5,

fs & NETTRIR 3pn+6k+1 R
7 - E ¢Fr E (6pn + 6k + 1)gP3pnt0k+1) 4 40 1 —fgp . (53)
4 k:—% n=—oo 4p2
k;ﬁ j:;r:s—l

In addition, z'ffp2;1 <k< % and k # i”ﬁ_l, then 3k? + k # p2151 (mod p).
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Proof. Due to Hirschhorn [9, (10.7.3)] and Berndt [5, (1.3.60)], we have

fg o i 3n2+n
= = 6n + 1)q

ff n=—oo
p=1
2 oo
k=—2;t n=—00
_ Z qSk +k Z 6pn+6k+1) pn(3pn+6k+1)
k_fT n=-—o00
et
2 o0
_ Z q3k2+k Z (6pn+6k+ 1)qpn(3pn+6k+l)
k:—prl n=-—00
k+# :(:1?571
P21 = 2(3n%4n)
+q¢" 7 Z p(6n + 1)gP
=z 2 > 21 f5 2
Z SR N (6pn o+ 6k + 1)gPr 3t g pg T 2
n=—oo 'f41”2
k;ﬁ ip 1
We observe that, for —u <k<ZE —, if 3k + k = T (mod p), then we have
(6k+1)2 =0 (mod p), Wthh yields k = ip L O
Lemma 10. Ifp > 5 is a prime and
tp+1 =2l ifp=1 (mod 3)
3 % ifp=-1 (mod 3),
then
pT—l
Q-q) = Y (~1)Fg Z g2 | (L) (g,
k=—251 1 n=-—oo

k; ip+1
(54)

Furthermore, if =252 < k < % and k # %, then 3k% — 2k # ”ZT_l (mod p).
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Proof. From (9), we have

o]
— Z ( l)n 3n%—2n
n=-—oo
p—1
2 oo
= Z (_1)pn+kq3(pn+k)2—2(pn+k)
k:_pT_l n=-—oo
p=1
2 o, %)
(71)kq3k —2k Z (71)nqpn(3pn+6k72)
—_p_1 n=-—oo
P . %
— Z (_1)kq3k —2k Z (_1)nqpn(3pn+6k—2)
—_p=1 n=-—oo
2z
dpe1 PPl e 2(3p2_2
LI Y (c1ngentoam
n=-—oo
p—1
2

_ Z (_1)kq3k2—2ky Z (_1)nqpn(3pn+6k:—2)

szpgl n=-—oo
tpt+1
k# =5=
tpt+1 p?-1 2

+ (=175 ¢ 7 Q(=¢").

Note that, if 3k% — 2k = £=1 (mod p), then k = Z+L.

3. Proofs of Theorem 1, Theorem 2 and Theorem 3

In this section, we prove Theorems 1, 2 and 3.

Proof of Theorem 1. From (10) and (41), we find that

i
_3<1>
Cfa \ St

3 2
=5 (7370)

::‘£§¢(q)
2

o0 3
ZEWW—E
n=0
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- wf%) (39
 e(9e(e?)
-~ o(@®)e(—¢?) (60)
2
g
_ (p(a") +2¢9(a%)) (#(g®) +2¢°0(q"%)) (62)
P |
from which it follows that
o W eleld® 8 BB
2PN = = R T o (®3)
o n_DU(PAe®) fE R A
2Pt 0 =2 e = e = gy (O
— n_ p(9)(qh) _ f3 f_82f_22 _ f2f8
2 Dol 20" =2 = e = Y gy (%5)
o AU LU N v - W LY LV
;po(4n+3)q _4 @(_q)z f2 f4 f1 fl . (66)

This completes the proofs of (17), (18), (19) and (20). We note that the identity
(20) is also found by Hirschhorn and Sellers [10, Theorem 2.12].
Using (41) and (45) in (19), we deduce that

Z@o<4n+ 2)q" (67)
4
BN BN/
(fi) (fja) (ff) (69)
= 20(a")e(0) S (70)
=2 1(!)(24))8 (e(q") + 2qv(¢*))
x (p(g")? + 2a0(q*) 20 (¢%) + 480 (a )0 (d*)? + 8¢°¥(q®)?)” (71)
, ")

20 q48(<p )+ 2q9(q%)) (¢(a*)® + dao(q*)’(q®) + 12¢°0(q*) *(¢%)?

+32¢%0(q")*1(¢®)® + 48q*0(q")* (¢®)" + 64¢°p(q") v (¢®)® + 64¢°4(¢*)°)  (72)
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¥(g*)
o(—q*)8

=2

11

(e(a™)™ + 6gp(q") %% (q®) + 200%0(q*)°¥(q®)? + 564°p(q* ) *1p(¢*)?

(73)

+ 112¢*p(q*)*1(¢®)* + 160¢°p(g*)*10(¢®)® + 192¢°p(g*)v(¢®)® + 128¢7¥(¢®)7).

Extracting the terms containing ¢*"*? for i = 0, 1,2, respectively, we obtain

p(—q)® p(—q)® f29f1° i

(Qv(Q)v(q?)° _ 40 2:’36 | 384 f2
1

©
LALVEREN VAL KRAR Y
©(—q)8 o(—q)8

This completes the proofs of (21), (22) and (23), respectively.

0(0)*V(@v(d®)° _ 39 4 320 2{2

(74)

(75)

(76)

O

Remark 1. If we extract the coefficients of ¢*"*2 from (73), we readily obtain (13).

We now prove Theorem 2.

Proof of Theorem 2. From the binomial theorem, we have

fi =13 (mod4).

Now, applying the above congruence in (20), we obtain

f2f4fs
Zpo (4n + 3)q 7

=471 (mod 16).

Extracting the terms containing ¢?*, we readily deduce (24).

(77)
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Using the binomial theorem, from (22) and (23), we obtain, respectively, modulo
16,

1
nz%po 16n+6)¢" = 12f29f10 = <fi> J;f < ) = 12 f1 (82)
22 E

n_o f5 i 218 f2f4
Zpo 16n +10)q _8f27f6 72 i (83)
n=0

This completes the proofs of (25) and (26).
From (17) and (41), we obtain

R

Zpo (4n)q = o (84)
BBV
= (ff) (85)
B ’
R (5*0( )) (86)
- 21];482w< ? (87)

f21]§4f8< (@) + 200(g)° (88)

- J}fg (00" + 6ap(q")20(¢®) + 124 0(a )b (¢®)? + 8 (@)

(89)

2n+1

Extracting the terms containing ¢ , and then using the binomial theorem, we

obtain, modulo 8,

S py(8n+ 4)g" = f£2f2 (60(c®)20(a") + 8av(d")) (90)
n=0
8 13 fs)
= g2 <6f2f8 8 S
57
=6 fllzo‘];% (92)
2 5 4
- (55—?) B (%) @
f2f4 (94)

f1
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Applying (42) in (94) yields

. fs fff126
> D,(8n+4)g" =64 (mod 8). (95)
= 3 16 fs
Extracting the terms containing ¢*” and ¢*"*!, respectively, we have, modulo 8,
— _ 4 fif3 o2 o
Zpo<32n + ) - f2 - 6fl<p( q ) f( q )a (96)
n=0
o n_ Jif7 2
> D,(32n+12)¢" = el = 4f19(¢°) f(—q)*. (97)

n=0

This completes the proofs of (27) and (28).
Applying the congruences fi = f2 (mod 4) and f2 = f} (mod 4) in (18) yield

1
Z P, (4n+1)q f1 P (98)
f2> fi (f4)
<f1 AN %)
ji;l (mod 8). (100)

Extracting the terms containing ¢?", we obtain, modulo 8,

— n_ofs oY)
;po(&z—&—l)q =25 —2@(_(]).

(101)

Now, (43) and (47) yield

_ 49
L;i(qg) = ;((;3))4 (T1(¢*) + 2qv(¢°)) (p(=4°)? + 2q0(—¢°)U—¢") + 44°Q(—4¢")?)
o(—¢")? 3 o(=¢°)® 2 (=¢°)? - 9
+43¢(7q9)9_32 9 102
v (—=¢°)"¢(q"). (102)

From (101) and (102), and then extracting the terms containing ¢*"*+* for i = 0,1, 2,
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respectively, we find, modulo 8§,

o n _ o(—¢%) f2f3 <f2>f2 <f_3>_ é
2 Po(2n -+ 1" =20 ) =2 =2 (5 ) 1 () =25 (109

o n _ o(=¢%)° 3y _ fof3 = (fz) (f4) _
;Po(24n+9)q _6780(*(1)4 ¥(q )_6fff6 8 f3fe 72 = 6/3fe,

(104)

o] _.3)\2 4
> on+ 100" = Ao aiet) =4 () R = DI

(105)

This completes the proofs of (29) and (30). Extracting the terms containing ¢*"

from (104) and using (7), we readily obtain (31). This complete the proof of Theo-
rem 2. O

If we extract the terms containing ¢! and ¢3"*+? from (104), the following two
Ramanujan-like congruences can readily be obtained.

Corollary 1. For anyn >0,

P, (72n+33) =0 (mod 8), (106)
P, (T2n+57) =0 (mod 8). (107)

We now prove Theorem 3.

Proof of Theorem 3. Extracting the terms containing ¢*"*2? and ¢*"*3 from (95),
we have

> 5,(32n420)¢" =0 (mod 8), (108)
n=0
> D,(32n+28)¢" =0 (mod 8). (109)
n=0

From [11, Corollary 2.10], we have that p,(2n) =0 (mod 8) if p,(n) =0 (mod 8).
This proves (32) and (33) for any a > 0. O

4. Infinite Families of Congruences for p,(n)

In this section, we prove Theorem 4. Before we prove Theorem 4, we first prove the
following result.



INTEGERS: 18 (2018) 15

-2
Theorem 5. Let p > 3 be a prime such that (—) = —1. Then, for all nonnega-
p

tive integers n and o, we have

> D890+ 3p™)q" = 4f(—¢*)*P(q) (mod 16). (110)

n=0

Proof. From (24), we have that (110) is true for & = 0. We now use induction on
a to complete the proof. Observe that (110) can also be written as

57, (s (v 18) a4 Gmod 16 (1)

n=0

We suppose that (111) holds for some « > 0. Substituting (49) and (52) into (111),
we have, modulo 16

oo p2a -1
> D, (8 <p2“n+ 35— ) + 3) q" (112)
n=0

p—1 00

1
=4 5 (_1)qu2+k Z (_1)n(2pn+2k,+1)qpn(pn+2k+1)
k=0 n=-—00
k#P2FL
p—1 2_
=1 pg" T f(—q )3}
222 ) )
mZ4m p“+(2m+1)p p*—(2m+1)p P21 R
X q 2 f( ( 5 ) , ( 5 ) +q = Qll(qp )
m=0
For a prime p >3 and 0 <k <p—1,0 < m < 25}, we consider
2 2
—1
(k* + k) + o ;rm =32 5 (mod p) (113)

which is equivalent to

22k +1)+ (2m+1)*=0 (mod p).

2
@2-1)

Since (_72) = —1, we have k = m = 27! is the only solution of (113). Therefore,

extracting the terms containing ¢P"+3
replacing ¢P by ¢, we deduce that

from both sides of (112), and then

— _ 2a+1 pett—1 n _ —2P\3o) (P
D B (8 (P 35— ) +3) ¢" =4f(=¢*)*¥(¢") (mod 16). (114)
n=0
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Similarly, extracting the terms containing ¢?” from both sides of (114), and then
replacing ¢” by ¢, we obtain

2(a+1) _ 1

o~ 2(a+1 p n _ 2
S (3 (s 3T ) =41 (mod 10), (19

proving the result for oo + 1. This completes the proof of the theorem. O
Proofs of (34) and (35). From (114), it follows that
Do (80**  (pn+ j) + 3p°*T*) =0  (mod 16), (116)

where j =1,2,...,p — 1. This completes the proof of (34) for o > 1.
The proof of (35) proceeds along similar lines to the proof of (34). Therefore,
we omit the details for reasons of brevity. O

We now prove two results which will be used to prove (36) and (37).

-2
Theorem 6. Let p > 3 be a prime such that () = —1. Then, for all nonnega-
p

tive integers n and o, we have

> D720 n + 9p**)q" = 6f(—q) f(—¢7) (mod 8). (117)

n=0

Proof. Clearly, (117) is true when o = 0 due to (31). We now use induction on «
to complete the proof.

For a prime p > 5 and —% <km< pT_l, we consider the congruence

3]62+IcJr 3m? +m p? —

3 2 5 =3 51 (mod p), (118)
which is equivalent to
(6k+1)>+2(6m+1)>=0 (mod p). (119)
Since (;2> = —1, therefore k = m = % is the only solution of (118). By
p

Lemma 6 and proceeding similarly as shown in the proof of Theorem 4, we deduce
the following congruence

p2a+2 -1

;ﬁo (72 (p%‘“n + 972> + 9) ¢" = 6f(~¢")f(—¢*") (mod 8). (120)

We next extract the terms containing ¢P™ from both sides of the above congruence,
and observe that (117) is true when « is replaced by « + 1. This completes the
proof of the result. O
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-2

Theorem 7. Let p > 3 be a prime such that (—) = —1. Then, for all nonnega-
p

tive integers n and o, we have

iﬁo (24 (ann + 17p2a24 1) + 17) " =4f(—¢*)*Q(—¢q) (mod 8). (121)
n=0

Proof. From (30) we can see that (121) is true when a = 0. Suppose that (121)
holds for some « > 0. Substituting (52) and (54) into (121), we have, modulo 8

e p2a -1
> D, (24 (ann 17, > + 17) " (122)

n=0

1 p—1 0

=3 Z (—1)mq3@ Z (=1)™(2pn +2m + 1)q

m=0 n=-—oo
m;ﬁprl

+(—1)p71pq3L81f(—q3p2)3]

3pn(pn+2m+1)
2

p—1

2 [ee]
2 n _on(3pn _ +p+1 p2-1 2
x| DT (DR N ()BT 4 ()T g Q(—g7)
o2t n==oo
k;ﬁi%_H

For a prime p > 5, 0<m < p—1 and —%§k§%7weconsider

1 2 -
% 3k 2k =177 (mod p), (123)
which is equivalent to (6m + 3)? 4+ 2(6k — 2)? = 0 (mod p). Since (%2) = -1, we
have m = ’72;1 and k = % is the only solution of (123). Therefore, extracting

2
the terms containing qpn+17”2—41 from both sides of (122), and then replacing ¢? by
q, we deduce that

St p2a+2 -1
Zﬁo (24 (anHn + 1724) + 17) " =4f(—¢*")3Q(—¢") (mod 8).
n=0

(124)

Similarly, extracting the terms containing ¢?” from both sides of (124), and then
replacing ¢” by ¢, we obtain

- 2 1 PQ(Q—H) -1
ZT)O (24 (p (at)p 4 17T) + 17) " =4f(—¢*)*Q(—q) (mod 8).
n=0

(125)
This completes the proof of the result. O
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Proofs of (36) and (37). By extracting the terms containing ¢?**7 from (120), where
j=1,2,...,p—1, it follows that

Do (720°*n + (9p + 725)p** ') =0 (mod 8). (126)

This completes the proof of (36) for o > 1.
From (124), it follows that

Po(24p** T (pn 4+ j) + 17p**3) =0 (mod 8), (127)
where j =1,2,...,p — 1. This completes the proof of (37) for o > 1. O

Proofs of (38) and (39). We now substitute the p-dissection identities, namely (50),
(51) and (53) into (27) and (28). For p > 3, —25* < k,m < 25 and (%) = -1,

the congruences

32+ k 2 _
~ =2 (mod p), (128)

2 P—
+3m*+m=3 2

2+ k 2
3T++3m2+2m59p

(mod p) (129)

have only the solutions k = m = ip(;l, and k = ipgl, m = ip?fl, respectively.

Proceeding similarly as shown in the proof of (37), we obtain

Zpo (32( 2oty 3%) +4) T f’}fzp (mod 8), (130)
4p

a 3
Zpo (32( Zatl, 9p2+;;1> +12) q" fff‘*” (mod 8). (131)
2p

Now, from (130) and (131), it follows that

Po(32p°* T (pn+j) + 4p***?) =0 (mod 8), (132)
7, (32p% M (pn 4 5) + 12p***?) =0 (mod 8), (133)

where j =1,2,...,p — 1. This completes the proofs of (38) and (39) for « > 1. O
Before we prove (40), we first prove the following result.

Theorem 8. Let p > 3 be a prime such that p =3 (mod 4). Then, for all nonneg-
ative integers n and «, we have

S 7, (16 (on+ 5252 ) 10) " = 870" 0l) (mod 16). (134

n=0
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Proof. We use induction on « to proof the theorem. Clearly, (134) is true when
a = 0 due to (26). Suppose that (134) holds for some o > 0. For a prime p > 5
and0<k<p—-1,0<m< ”2;1, the equation

m? +m 5 p?—1
2 8

2(k% + k) + (mod p), (135)

which is equivalent to 4(2k + 1)% + (2m + 1)2 = 0 (mod p), has the only solution

k=m = B2 as p = 3 (mod 4). Applying (49) and (52) in (134), and then

proceeding similarly as shown in the proof of Theorem 4, we deduce that

20042 1

iﬁo (16 (pza“n + 5PT) + 10) q" =4f(=q")*P(¢") (mod 16).
- (136)

Extracting the terms containing ¢ from both sides of (136), we find that

S ) L p2(a+1) -1 4
S7, (16 (p (et 4 57) n 10) 0" = 4f(~¢)*¥(q) (mod 16),
n=0

(137)

completing the proof of (134). O
Proof of (40). From (136), it follows that

Po(16p** ™ (pn + j) +10p****) =0 (mod 16), (138)

where j =1,2,...,p — 1. This completes the proof of (40) for o > 1. O
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