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Abstract
In this paper, we show that there are infinitely many primes of the form `2�`m+m2

such that 2`�m is prime, and that the number of such primes satisfies the expected
asymptotic formula. We show this by adapting the proof of a result of Fouvry and
Iwaniec who showed that there are infinitely many primes of the form `2 +m2 with
` prime.

1. Introduction and Statement of Results

By following a proof similar to that of a theorem of Fermat regarding representations
of primes as sums of two squares, it is possible to show that all primes congruent to
1 (mod 3) are representable as `2�`m+m2 = N(⇡),⇡ = `+m! Here, N = NQ(!)/Q
refers to the norm in the quadratic field Q(!), where ! = (�1 +

p
�3)/2. In this

paper, we show that there are infnitely many such primes s.t. R⇡ is half a prime.
In particular, we show the following result, which indicates that the number of

such primes satisfies the sort of asymptotic formula one would expect from congru-
ence considerations and the prime number theorem:

Theorem 1. We have
XX

`2�`m+m2x

⇤(2`�m)⇤(`2 � `m + m2) ⇠ �x

for some � > 0.

We shall prove Theorem 1 by following along the lines of the proof of Theorem
20.3 in [2], by using Q(!) rather than Q(i) when working with the bilinear forms
that arise in Section 20.4 of [2]. A related result was proven by Fouvry and Iwaniec
in [3] where it is shown that there are infinitely many primes of the form `2 + m2

such that ` is prime.
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2. Preliminaries

Let �` = log ` when ` is a prime greater than 2 and 0 otherwise. Then, let

an =
X

`2�`m+m2=n

�2`�m =
X

r2+3s2=4n

�r.

Let
A(x) =

X
nx

an

and let
Ad(x) =

X
nx

n⌘0 (mod d)

an.

Let ⇢(d) = |{v 2 Z/(d) : v2 + 3 ⌘ 0 (mod d)}|. We expect that Ad(x) is well
approximated by

Md(x) =
⇢(4d)
4d

X
r
p

4x

1
2
�r

r
4x� r2

3

so we let the remainder terms rd(x) be such that

Ad(x) = Md(x) + rd(x).

For d even, this is clearly equal to 0, while for d odd, since ⇢(d) is multipicative,
this is equal to

⇢(d)
4d

X
r
p

4x

�r

r
4x� r2

3
.

We then have the following:

Proposition 1. Suppose that for some
p

x < D  x(log x)�20

R(x;D) = sup
yx

X
dD

|rd(y)|⌧ A(x) log�2 x (1)

and let
T (x;D) =

X
`D

����
X
`mx

xD�1<mx2D�2

a`mµ(m)
����. (2)

Then, we have thatX
nx

an⇤(n) = HA(x)
�
1 + O((log x)�1)

 
+ O(T (x,D) log x) (3)

where

H =
Y
p

(1� g(p))
✓

1� 1
p

◆�1

(4)

for g(d) = ⇢(4d)/(4d).
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Proof. This is Theorem 18.6 in [2] for our particular sequence.

3. The Remainder Term

In this section, we verify that (1) holds. From this point on, e(↵) = e2⇡i↵. First,
we study the distribution of the roots of the congruence v2 + 3 ⌘ 0 (mod d) by
studying Weyl sums related to these quadratic roots. In order to do so, we will
establish a well-spacing of the points v/d (mod 1), similar to that established in
[1, 2, 3]. It is easy to show that for odd d, the roots to v2 + 3 ⌘ 0 (mod d) are in a
bijection with representations

d = r2 + rs + s2 =
(r � s)2 + 3(r + s)2

4
subject to (r, s) = 1,�r � s < r � s  r + s where v(r � s) ⌘ (r + s) (mod d).

To show this, note that it is su�cient to verify it only when d = p for primes
p ⌘ 0, 1 (mod 3). The case p = 3 is easily dealt with, so we assume p ⌘ 1 (mod 3).

In this case, note that since there exists v 6= 0 s.t. v2 + 3 ⌘ 0 (mod p), we have
that p|(v +

p
�3)(v�

p
�3) in Z[!] so it follows that since p - v +

p
�3, p - v�

p
�3,

p is not a prime in Z[!]. Then, it follows that there exists a 2 Z[!] with norm p.
Multiplying a with units in Z[!] to control the sign of the corresponding value of v
and the relative size of the real and imaginary parts yields the desired result.

It then follows that
v

d
⌘ �4(r � s)

r + s
+

r � s

d(r + s)
(mod 1)

where r � s is such that (r � s)(r � s) ⌘ 1 (mod r + s).
Note that we then have that

|r � s|
d(r + s)

 1
(r + s)2

.

Now, restrict d to the range 4D < d  9D. It then follows that 2D1/2 < r + s <

3D1/2, so for any two points v1/d1, v2/d2, max
n

r1+s1
r2+s2

, r2+s2
r1+s1

o
 3

2����v1

d1
� v2

d2

���� � 4
(r1 + s1)(r2 + s2)

� 1
(r1 + s1)2

� 1
(r2 + s2)2

� 1
D

.

Then by the large sieve inequality of Davenport and Halberstam, we have the
following result.

Lemma 1. For all ↵1,↵2, · · · 2 C, we have that

X
D<d2D

d⌘1 (mod 2)

X
v2+3⌘0 (mod d)

����
X
nN

↵ne
⇣vn

d

⌘ ����
2

⌧ (D + N)

 X
n

↵2
n

!
.
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Applying Cauchy’s inequality yields

Proposition 2. For all ↵1,↵2, · · · 2 C, we have that

X
D<d2D

d⌘1 (mod 2)

X
v2+3⌘0 (mod d)

����
X
nN

↵ne
⇣vn

d

⌘ ����⌧ D1/2(D + N)1/2

 X
n

↵2
n

!1/2

. (5)

Now, let

⇢h(d) =
X

v2+3⌘0 (mod d)

e

✓
vh

d

◆
.

Then, by the triangle inequality, the following holds.

Proposition 3. For all ↵1,↵2, · · · 2 C, we have that

X
dD

����
X
hN

↵h⇢h(d)
����⌧ D1/2(D + N)1/2

 X
n

↵2
n

!1/2

. (6)

Now, we prove that (1) holds by proving the following:

Proposition 4. For all D  x

X
dD

|rd(x)|⌧ D1/4x3/4(log x)4. (7)

Proof. Note that
Ad(x) =

X
r2+3s2

4 x

r2+3s2
4 ⌘0 (mod d)

�r.

It is more convenient for now to consider only the contribution of the terms with
(r, d) = 1. To that end, note that it is possible to replace Ad(x) with

A⇤d(x) =
X

r2+3s2
4 x

r2+3s2
4 ⌘0 (mod d)

(r,d)=1

�r.

We can do this since we have that
X
dD

|Ad(x)�A⇤d(x)| 
X
dD

X
r|d

|�r|
X

r2+3s24x
r2+3s2⌘0 (mod 4d)

1.
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When r is an odd prime and r|d, r2 + 3s2 ⌘ 0 (mod d), we have that s = rt for
some t. Therefore, it follows that

X
dD

|Ad(x)�A⇤d(x)| 
X

r2
p

x

�r

X
t
p

4x/3/r

⌧(r2(1 + 3t2))⌧ x1/2+".

Now, rather than approximating A⇤d(x), we shall approximate

A⇤d(f) =
X

r2+3s2⌘0 (mod 4d)

(r,d)=1

�rf

✓
r2 + 3s2

4

◆

for some smooth f supported on [1, x] satisfying

f(u) = 1, for y  u  x� y

f (j)(u)⌧ y�j

where y = min{x3/4D1/4, 1
2x}. Note that consdering A⇤d(f) instead of A⇤d(x) is

su�cient for proving the desired result since
X
dD

|A⇤d(f)�A⇤d(x)| 
X

`2�`m+m22I

⌧(`2�`m+m2) 
X
n2I

r(n)⌧(n)⌧
X
n2I

⌧(n)2⌧ y(log x)3

where I = Z\ ([1, y][ [x� y, x]), and r(n) = |{n 2 Z[!]|Nn = n}|. Note that since
�r is supported on odd primes, we have that

A⇤d(f) =
X

v2+3⌘0 (mod 4d)

X
(r,d)=1

�r

X
s⌘vr (mod 4d)

f

✓
r2 + 3s2

4

◆
.

Now, let

Ad(f) =
X

v2+3⌘0 (mod 4d)

X
r

�r

X
s⌘vr (mod 4d)

f

✓
r2 + 3s2

4

◆
.

We can replace A⇤d(f) with Ad(f) with an error of O(x1/2+") by a similar argument
to that with which we replaced Ad(x) with A⇤d(x), which is small enough. We then
have that by the Poisson summation formula

Ad(f) =
1
4d

X
r

�r

X
k2Z

⇢kr(4d)Fr

✓
k

4d

◆

where

Fr(v) =
Z

R
f

✓
r2 + 3t2

4

◆
e(�vt)dt = 2

Z 1

0
f

✓
r2 + 3t2

4

◆
cos(2⇡vt)dt.
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Note that the contribution to the sum due to the frequency k = 0 is equal
to Md(x) + O(y), so it is su�cient to bound the contribution from the sum over
frequencies k 6= 0. To that end, note that by the change of variable t = w

p
x/k,

Fr

✓
k

4d

◆
=

2
p

x

k

Z 1

0
f

 
r2 + 3xw2

k2

4

!
cos
✓

2⇡w
p

x

4d

◆
dw. (8)

Integrating by parts twice yields that this equals

16
p

xd2

⇡2k3

Z 1

0

✓
f
0
+

2w2x

k2
f
00
◆ 

r2 + 3xw2

k2

4

!
cos
✓
⇡w
p

x

2d

◆
dw. (9)

Now, let

R(f,D) =
X

D<d2D

���� 1
4d

X
r

�r

X
k2Z\{0}

⇢kr(4d)Fr

✓
k

4d

◆ ����.
We then have that

R(f,D)⌧ 1
D

X
D<d2D

����
XX

kr 6=0

�rFr

✓
k

4d

◆ ����.

To estimate this, we split this into sums with |k| restricted to dyadic intervals.
In particular, we write

Rn(f,D) =
1
D

X
D<d2D

����
X

2n|k|<2n+1

X
r

�r⇢kr(4d)Fr

✓
k

4d

◆ ����.

Note that R(f,D) =
P

n�0 Rn(f,D). Then, we have that by (8) and Proposition
3, Rn(f,D) is

1
D

X
D<d2D

����
X

2n|k|<2n+1

X
r

�r⇢kr(4d)
2
p

x

k

Z 1

0
f

 
r2 + 3xw2

k2

4

!
cos
✓
⇡w
p

x

2d

◆
dw

����

⌧
p

x

D

Z 2n+1

0

X
D<d2D

����
X

2n|k|<2n+1

X
r

�r⇢kr(4d)f

 
r2 + 3xw2

k2

4

!����dw

⌧ x1/2(log x)3

D1/2
(D + 2npx)1/2(2npx)1/2.

Similarly, we also have that by (9) and Proposition 3 Rn(f,D) is

⌧ D
p

x

23n

Z 2n+1

0

X
D<d2D

����
X

2n|k|<2n+1

X
r

�r⇢kr(4d)
✓

f
0
+

2w2x

k2
f
00
◆ 

r2 + 3xw2

k2

4

!����dw
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⌧ x3/2(log x)3D3/2

y222n
(D + 2npx)1/2(2npx)1/2.

The desired result then follows since we have that

X
n>log(D

p
x/y)/ log 2

Rn(f,D)⌧
X

n>log(D
p

x/y)/ log 2

x2(log x)3D3/2

y22n
⌧ D1/4x3/4(log x)3

and

X
0nlog(D

p
x/y)/ log 2

Rn(f,D)⌧ x5/4(log x)4

y1/2
D1/2x1/4(D

p
x/y)1/2 ⌧ D1/4x3/4(log x)4.

4. The Bilinear Form

Now, we shall bound the billinear form in (2) by estimating the sum

B1(M,N) =
X

NnN 0

����
X

M<mM 0

amnµ(m)
���� (10)

for some arbitrary M < M 0  2M,N < N 0  2N . In particular, we show the
following result.

Proposition 5. For � a su�ciently small positve number, we have that

B(M,N)⌧MN(log MN)�A (11)

for all A > 0, where M = N�.

This implies that T (x;D) ⌧ x(log x)�A for the same reason (20.20) implies
Proposition 20.8 in [2], and therefore, from it follows the main theorem.

Proof. First, note that it is su�cient to estimate

B1(M,N) =
X

N<nN 0

����
X

M<mM 0

(m,n)=1

amnµ(m)
����,

since if (m,n) = d, if d < M1/2, we can just transfer the factor of d to n, and
otherwise use the trivial bound. Writing �(a) to denote �2 Re a, note that we have
that

an =
X

Na=n

�(a)
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so by unique factorization in Q(!), we have that for relatively prime m,n,

amn =
1
6

X
Nm=m

X
Nn=n

�(mn)

where the factor of 1/6 accounts for the six units ±1,±!,±!2 in Z[!]. It follows
that

B1(M,N) =
1
6

X
N<N(n)N 0

����
X

M<N(m)M 0

(m,n)=1

�(mn)µ(m)
����.

The coprimality condition can easily be dropped by a similar argument by which
it was added, so it follows that it is su�cient to show that

B2(M,N) =
X

N<N(n)N 0

����
X

M<N(m)M 0

�(mn)µ(m)
����⌧MN(log MN)�A.

By Cauchy, we have that it is su�cient to show that

B3(M,N) =
X

N<N(n)N 0

����
X

M<N(m)M 0

�(mn)µ(m)
����
2

⌧M2N(log MN)�A.

Expanding and reversing the order of summation, we have that

B3(M,N) =
X

M<N(m1),N(m2)M 0

µ(m1)µ(m2)S(m1,m2),

where
S(m1,m2) =

X
N<N(n)N 0

�(nm1)�(nm2).

Now, let `1, `2 be such that

nm1 + nm1 = `1

nm2 + nm2 = `2,

and let �(m1,m2) = � = i(m1m2 � m1m2). Note that `1, `2  4
p

MN . When
� = 0, note that the contribution B0(M,N) satisfies

B0(M,N)⌧ N(log N)2
XX

Im m1m2=0

1

which is clearly ⌧M2N(log MN)�A. Otherwise, we have that

n =
i(`1m2 � `2m1)

�
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so it follows that
`1m2 ⌘ `2m1 (mod �)

and that
�2N < N(`1m2 � `2m1)  �2N 0.

Therefore
S(m1,m2) =

X
`1m2⌘`2m1 (mod �)

�2N<N(`1m2�`2m1)�2N 0

�`1�`2 .

Now, we state Proposition 20.9 in [2].

Proposition 6. We have

X
qQ

max
a2Z,(a,q)=1

a2C
y2R

����
XX
`1,`2x

|`1�a`2|y

`1⌘a`2 (mod q)

�`1�`2 � '(q)�1
XX
`1,`2x

|`1�a`2|y

�`1�`2

����⌧ x2(log x)�A

where Q = x(log x)�B for some B > 0 that depends on A.

Now we can split up S(m1,m2) into classes restricted to

`1 ⌘ a`2 (mod �)

for a 2 (Z/(�))⇤ such that am2 ⌘ m1 (mod �) and apply Proposition 6. It then
follows that

B3(M,N)⌧ B4(M,N) + O(NM2(log MN)�A)

where

B4(M,N) =
XX

M<N(m1),N(m2)M 0

µ(m1)µ(m2)
⌘(�)
'(�)

XX
`1,`2x

�2N<N(`1m2�`2m1)�2N 0

�`1�`2

where ⌘(�) is the total number of a 2 (Z/(�))⇤ such that am2 ⌘ m1 (mod �). By
the prime number theorem, we have that the inner sum satisfies

XX
`1,`2x

�2N<N(`1m2�`2m1)�2N 0

�`1�`2 = X + O(MN(log MN)�A)

where

X =
Z Z

�
p

N<|`1m2�`2m1|�
p

N 0

d`1d`2 = |�|
Z Z

N<|u+!v|N 0

dudv =
1
2
⇡
p

3|�|(N 0 �N).
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It therefore now remains to estimate

S1 =
XX

M<N(m1),N(m2)M 0

µ(m1)µ(m2)
⌘(�)|�|
'(�)

.

Splitting this up for all (m1,m2) = d, we then have that

S1 =
X

d

µ2(d)
XX

M<N(m1d),N(m2d)M 0

(m1,m2)=(m1m2,d)=1

µ(m1d)µ(m2d)
⌘(�N(d))|�|N(d)

'(�N(d))

=
X

d

µ2(d)
XX

M<N(m1d),N(m2d)M 0

(m1,m2)=(m1m2)=1

µ(m1)µ(m2)
⌘(�N(d))|�|N(d)

'(�N(d))
.

Since we have that

⌘(�N(d)) =
X

a2(Z/(�N(d)))⇤

a⌘m2m�1
1 (mod d�)

1 = N(d)
Y

p|N(d),p-�

✓
1� 1

p

◆
,

it follows that

S1 =
X

d

µ2(d)N(d)
XX

M<N(m1d),N(m2d)M 0

(m1,m2)=(m1m2)=1

µ(m1)µ(m2)
|�|
'(�)

.

By multiplicativity, we have that

|�|
'(�)

=
X
d|�

µ2(d)'(d)�1.

Using this and reversing the order of summation, we have that

S1 =
X

d

µ2(d)N(d)
XX

M<N(m1d),N(m2d)M 0

(m1,m2)=(m1m2)=1

µ(m1)µ(m2)
X
d|�

µ2(d)'(d)�1

=
X

d

µ2(d)N(d)
X

d2M

'(d)�1
XX

M<N(m1d),N(m2d)M 0

(m1,m2)=(m1m2)=1

m1m2⌘m1m2 (mod d)

µ(m1)µ(m2)

=
X

d

µ2(d)N(d)
X

d2M

1
d'(d)

X
�

XX
M<N(m1d),N(m2d)M 0

(m1,m2)=(m1m2)=1

µ(m1)µ(m2) (m1) (m2),

where � runs over the characters of Z[!]/(d) and  (m) = �(m)�(m), where the last
statement follows by orthogonality. To estimate this, we use the following version
of the Siegel-Walfisz Theorem that follows from the main result in [4].
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Proposition 7. For any character  on ideals of Z[i], we haveX
N(m)x

µ(m) (m)⌧A x(log x)�A

for all A > 0.

Now, let

S⇤d,d, (M) =
XX

M<N(m1d),N(m2d)M 0

(m1,m2)=(m1m2,d)=1

µ(m1)µ(m2) (m1) (m2).

Then, it is easy to see that S⇤d,d, (M) = Sd,d, (M) + O(M1+") where

Sd,d, (M) =
XX

M<N(m1d),N(m2d)M 0

(m1,m2)=1

µ(m1)µ(m2) (m1) (m2).

We then have that X
d12Z[!]\{0}

µ2(d1)Sd,d, (M/N(d1))

=

0
@ X

M<N(m1d)M 0

µ(m1) (m1)

1
A
0
@ X

M<N(m2d)M 0

µ(m2) (m2)

1
A ,

so by a variant of Möbius inversion, we have that

Sd,d, (M)⌧ (M/N(d))2(log M/N(d))�A.

The desired result follows.
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