

#A60

ON A CONJECTURE OF DE KONINICK

Min Tang¹ School of Mathematics and Statistics, Anhui Normal University, Wuhu, China tmzzz2000@163.com

Zhi-Jun Zhou

School of Mathematics and Statistics, Anhui Normal University, Wuhu, China

Received: 1/15/18, Accepted: 6/22/18, Published: 6/29/18

Abstract

For a positive integer n, let $\sigma(n)$, $\omega(n)$ and $\gamma(n)$ denote the sum of divisors, the number of distinct prime factors and the product of the distinct prime divisors of n, respectively. In this paper, we focus on positive integers n such that $\sigma(n) = \gamma(n)^2$ and $\omega(n) = 5$.

1. Introduction

For a positive integer n, let $\sigma(n)$, $\omega(n)$ and $\gamma(n)$ denote the sum of divisors, the number of the distinct prime factors and the product of distinct prime divisors of n, respectively. Let

$$\mathcal{K} = \{n : \sigma(n) = \gamma(n)^2\}.$$

De Koninck conjectured $\mathcal{K} = \{1, 1782\}$. It is included in Richard Guy's compendium ([5], Section B11).

In 2012, Broughan, De Koninck, Kátai and Luca [1] showed that the only solution with at most four distinct prime factors is n = 1782. Moreover, they showed that if n > 1 is in \mathcal{K} , then n is not fourth power free.

Theorem A ([1, Lemma 1].) If n > 1 is in \mathcal{K} , then

$$n = 2^{e} p_1 \prod_{i=2}^{s} p_i^{\alpha_i}, \tag{1}$$

where $e \ge 1$, α_i is even for all i = 3, ..., s. Furthermore, either α_2 is even in which case $p_1 \equiv 3 \pmod{8}$, or $\alpha_2 \equiv 1 \pmod{4}$ and $p_1 \equiv p_2 \equiv 1 \pmod{4}$.

 $^{^1\}mathrm{Corresponding}$ author. This work was supported by National Natural Science Foundation of China, Grant No. 11471017.

By Theorem A, we know that if n > 1 and $n \in \mathcal{K}$, then the prime factorization of n has the form

$$n = 2^{\alpha} p q \prod_{i=1}^{s} p_i^{\alpha_i}, \tag{2}$$

where $\alpha \ge 1$, $\alpha_i (1 \le i \le s)$ are even and $p \equiv q \equiv 1 \pmod{4}$, or

$$n = 2^{\alpha} p \prod_{i=1}^{s} p_i^{\alpha_i}, \tag{3}$$

where $\alpha \ge 1$, $\alpha_i (2 \le i \le s)$ are even and either $p \equiv p_1 \equiv \alpha_1 \equiv 1 \pmod{4}$, $\alpha_1 \ge 5$ or $p \equiv 3 \pmod{8}$ and α_1 is even.

In 2014, Broughan, Delbourgo and Zhou [2] determined some necessary conditions that an integer n > 1 must meet in order to belong to \mathcal{K} (see also [3]).

Theorem B ([2, Theorem 1].) If $n \in \mathcal{K}$, then n is divisible by the fourth power of an odd prime.

In 2015, Chen and Tong [4] proved some new theorems on De Koninck's conjecture.

Theorem C ([4, Theorem 1.2].) If n > 1, $n \neq 1782 = 2 \cdot 3^4 \cdot 11$ and $n \in \mathcal{K}$ with the form (3), then n is divisible by the fourth powers of at least two odd primes.

Theorem D([4, Theorem 1.4].) If n > 1, $n \neq 1782 = 2 \cdot 3^4 \cdot 11$ and $n \in \mathcal{K}$ with the form (3), then at least two exponents of the odd primes in the prime factorization of n are equal to 2.

In this paper, we obtain the following results:

Theorem 1. There is no $n \in \mathcal{K}$ such that $n = 2^{\alpha} pqp_1^4 p_2^4$, where $\alpha \ge 1$ and $p \equiv q \equiv 1 \pmod{4}$.

Corollary 1. If $\omega(n) = 5$ and $n \in \mathcal{K}$, then the prime factorization of n has either the form

$$n = 2^{\alpha} p q p_1^2 p_2^{\alpha_2},$$

where $\alpha \ge 1$, $\alpha_2 \ge 4$ are even and $p \equiv q \equiv 1 \pmod{4}$, or the form

$$n = 2^{\alpha} p q p_1^{\alpha_1} p_2^{\alpha_2},$$

where $\alpha \geq 1$, $\alpha_1, \alpha_2 \geq 4$ are even, $(\alpha_1, \alpha_2) \neq (4, 4)$ and $p \equiv q \equiv 1 \pmod{4}$.

2. Proof of Theorem 1

We need the following lemma.

Lemma 1. (See [4, Lemma 2.2].) Let $\gamma_1, \gamma_2, \gamma$ be three primes. If $\gamma_2 \mid \gamma_1^{\gamma-1} + \gamma_1^{\gamma-2} + \cdots + \gamma_1 + 1$, then either $\gamma_2 = \gamma$ or $\gamma \mid \gamma_2 - 1$.

Suppose that $n \in \mathcal{K}$ and $n = 2^{\alpha} pqp_1^4 p_2^4$, where $\alpha \ge 1$ and $p \equiv q \equiv 1 \pmod{4}$, then

$$(2^{\alpha+1}-1)\frac{p+1}{2}\frac{q+1}{2}(p_1^4+p_1^3+p_1^2+p_1+1)(p_2^4+p_2^3+p_2^2+p_2+1) = p^2q^2p_1^2p_2^2.$$
 (4)

Thus we have the following observations:

(i) $3 \nmid n$ and $p, q \equiv 1 \pmod{3}$. Indeed, by $p \equiv q \equiv 1 \pmod{4}$, we know that if $3 \mid n$, then by the symmetry of p_1 and p_2 , we may assume that $p_1 = 3$. Since $\sigma(3^4) = 11^2$, we have $p_2 = 11$. Noting that $\sigma(11^4) = 5 \times 3221$, by (4) we may assume that p = 5 and q = 3221, thus $\frac{q+1}{2} = 3^2 \times 179$, hence (4) cannot hold. Therefore, $3 \nmid n$ and $p, q \equiv 1 \pmod{3}$.

(ii) $5 \nmid n$. Indeed, if $5 \mid n$, then we may assume that $p_1 = 5$ and observe that $\sigma(5^4) = 11 \times 71$. Noting that $11, 71 \equiv 3 \pmod{4}$, we have (4) cannot hold. Hence $5 \nmid n$.

(iii) $\alpha \geq 4$. Indeed, by (i) and (ii) we have $\alpha \neq 1, 3$. If $\alpha = 2$, then we may assume that $p_1 = 7$. Observe that $\sigma(p_1^4) = 2801$. Noting that if p = 2801, then $p + 1 = 2 \times 3 \times 467$, which is impossible; if $p_2 = 2801$ then $\sigma(p_2^4) = 5 \times 1956611 \times 6294091$, which is also impossible. Hence $\alpha \geq 4$.

Let

$$Q = (p_1^4 + p_1^3 + p_1^2 + p_1 + 1)(p_2^4 + p_2^3 + p_2^2 + p_2 + 1).$$

By (4), we have

$$pq = \frac{2^{\alpha+1} - 1}{2^2} \frac{Q}{p_1^2 p_2^2} \frac{p+1}{p} \frac{q+1}{q} > \frac{(2^{\alpha+1} - 1)Q}{2^2 p_1^2 p_2^2}.$$

If $(2^{\alpha+1}-1)Q \ge p^2q^2$, then

$$(2^{\alpha+1}-1)Q > \frac{(2^{\alpha+1}-1)^2 Q^2}{2^4 p_1^4 p_2^4},$$

thus $(2^{\alpha+1}-1)Q < 2^4 p_1^4 p_2^4$, which is impossible. Hence $(2^{\alpha+1}-1)Q < p^2 q^2$.

Since $5 \nmid n$, by Lemma 1 we have $gcd(Q, p_1^2p_2^2) = 1$, thus $Q \mid p^2q^2$. Since $p_1^4 + p_1^3 + p_1^2 + p_1 + 1 \neq p_2^4 + p_2^3 + p_2^2 + p_2 + 1$, we have $Q = pq, p^2q$ or q^2p . By the the symmetry of p and q, it is sufficient to consider Q = pq or p^2q . We now consider the following three cases.

Case 1:

$$p_1^4 + p_1^3 + p_1^2 + p_1 + 1 = p (5)$$

$$p_2^4 + p_2^3 + p_2^2 + p_2 + 1 = q (6)$$

$$(2^{\alpha+1}-1)\frac{p+1}{2}\frac{q+1}{2} = pqp_1^2p_2^2.$$
(7)

In this case, we have the following facts:

(a) $p_1 \nmid \frac{p+1}{2}$ and $p_2 \nmid \frac{q+1}{2}$. Assume $p_1 \mid \frac{p+1}{2}$, then $p_1 \mid p+1$, however, by (5) we have $p_1 \mid p-1$, thus $p_1 \mid \gcd(p+1, p-1) = 2$, which is impossible. Similarly, we have $p_2 \nmid \frac{q+1}{2}$.

(b) If $p_2 \mid p_1 - 1$, then $p_2 \nmid \frac{p+1}{2}$. Since $p_2 \mid p_1 - 1$, by (5) we have $p_2 \mid p - 5$. Assume $p_2 \mid \frac{p+1}{2}$, then $p_2 \mid \gcd(p+1, p-5) = 2$ or 6, which is impossible.

According to the number of prime divisors of $\frac{q+1}{2}$, we consider the following three subcases:

Case 1.1: $\frac{q+1}{2}$ has only one prime divisor. By (a) we have $\frac{q+1}{2} = p$ or p_1 . If $\frac{q+1}{2} = p$, then

$$(2^{\alpha+1}-1)\frac{p+1}{2} = qp_1^2 p_2^2.$$
(8)

Since q = 2p - 1 > p, we have $q \nmid \frac{p+1}{2}$. Since $p_2 \mid q - 1 = 2p - 2$, we have $p_2 \mid p - 1$, thus $p_2 \nmid p + 1$, hence $p_2 \nmid \frac{p+1}{2}$. Combined with (a), we know that (8) cannot hold. If $\frac{q+1}{2} = p_1$, then

$$(2^{\alpha+1}-1)\frac{p+1}{2} = pqp_1p_2^2.$$
(9)

Since $p_2 \mid q-1 = 2p_1 - 2$, we have $p_2 \mid p_1 - 1$, and by (b) we have $p_2 \nmid \frac{p+1}{2}$. Combined with (a) we have $\frac{p+1}{2} = q$, that is, $p+1 = 4p_1 - 2$, which contradicts with (5). Hence (9) cannot hold.

Case 1.2: $\frac{q+1}{2}$ has two prime divisors. By (a) we have $\frac{q+1}{2} = p_1^2$ or pp_1 . If $\frac{q+1}{2} = p_1^2$, then n+1

$$(2^{\alpha+1}-1)\frac{p+1}{2} = pqp_2^2.$$
 (10)

Noting that $p_2 | q - 1 = 2(p_1 + 1)(p_1 - 1)$, if $p_2 | p_1 - 1$, then by (b) we have $p_2 \nmid \frac{p+1}{2}$. If $p_2 | p_1 + 1$, then by (5) we have $p_2 | p - 1$, thus $p_2 \nmid \frac{p+1}{2}$. By (10) we have $\frac{p+1}{2} = q$, that is, $p + 1 = 4p_1^2 - 2$, which contradicts (5). Hence (10) cannot hold.

If $\frac{q+1}{2} = pp_1$, then

$$(2^{\alpha+1}-1)\frac{p+1}{2} = qp_1p_2^2.$$
(11)

Noting that $q - 1 = 2pp_1 - 2 = 2p_1(p+1) - 2p_1 - 2$, we have

$$gcd(p+1,q-1) = gcd(p+1,2p_1+2)$$

= $gcd(p_1^4+p_1^3+p_1^2+p_1+2,2p_1+2)$
= $gcd(p_1^3(p_1+1)+p_1(p_1+1)+2,2p_1+2)$
= 2 or 4.

If $p_2 \mid \frac{p+1}{2}$, then $p_2 \mid p+1$, however, $p_2 \mid q-1$, thus $p_2 \mid \gcd(p+1,q-1)$, which is impossible. Hence $p_2 \nmid \frac{p+1}{2}$. By (11) and (a), we have $\frac{p+1}{2} = q$, that is, $p+1=2q=4pp_1-2 > p+1$, a contradiction. Hence (11) cannot hold.

Case 1.3: $\frac{q+1}{2}$ has three prime divisors. By (a) we have $\frac{q+1}{2} = pp_1^2$. Then

$$(2^{\alpha+1}-1)\frac{p+1}{2} = qp_2^2.$$
 (12)

Noting that $q - 1 = 2pp_1^2 - 2 = 2p_1^2(p+1) - 2p_1^2 - 2$, we have

$$gcd(p+1,q-1) = gcd(p+1,2p_1^2+2) = gcd(p_1^4+p_1^3+p_1^2+p_1+2,2p_1^2+2) = gcd(p_1^2(p_1^2+1)+p_1(p_1^2+1)+2,2p_1^2+2) = 2 \text{ or } 4.$$

If $p_2 \mid \frac{p+1}{2}$, then $p_2 \mid p+1$, however, $p_2 \mid q-1$, thus $p_2 \mid \gcd(p+1,q-1)$, which is impossible. Hence $p_2 \nmid \frac{p+1}{2}$. By (12) we have $\frac{p+1}{2} = q$ and $2^{\alpha+1} - 1 = p_2^2$, which is impossible. Hence (12) cannot hold.

Case 2:

$$p_1^4 + p_1^3 + p_1^2 + p_1 + 1 = p^2 (13)$$

$$p_2^4 + p_2^3 + p_2^2 + p_2 + 1 = q (14)$$

$$(2^{\alpha+1}-1)\frac{p+1}{2}\frac{q+1}{2} = qp_1^2p_2^2.$$
(15)

In this case, we have $p_2 \nmid \frac{q+1}{2}$. Depending on the number of prime divisors of $\frac{q+1}{2}$, we consider the following two subcases:

Case 2.1: $\frac{q+1}{2}$ has only one prime divisor. Then $\frac{q+1}{2} = p_1$ and we have

$$(2^{\alpha+1}-1)\frac{p+1}{2} = qp_1p_2^2.$$
(16)

By $p \equiv 1 \pmod{4}$, we have

$$gcd(p+1, p^2-5) = gcd(p+1, (p+1)(p-1)-4) = gcd(p+1, 4) = 2.$$

If $p_2 \mid \frac{p+1}{2}$, then $p_2 \mid p+1$, however, $p_2 \mid q-1 = 2p_1 - 2$, thus $p_2 \mid p_1 - 1$. By (13) we have $p_1 - 1 \mid p^2 - 5$. Thus $p_2 \mid \gcd(p+1, p^2 - 5)$, which is impossible. Hence $p_2 \nmid \frac{p+1}{2}$.

By (16) we have $\frac{p+1}{2} = q$ or qp_1 . If $\frac{p+1}{2} = q$, then $p = 2q - 1 = 4p_1 - 3$, which contradicts (13). If $\frac{p+1}{2} = qp_1$, then $p = 4p_1^2 - 2p_1 - 1$, which is also impossible. Hence (16) cannot hold.

Case 2.2: $\frac{q+1}{2}$ has exactly two prime divisors. Then $\frac{q+1}{2} = p_1^2$ and we have

$$(2^{\alpha+1}-1)\frac{p+1}{2} = qp_2^2.$$
(17)

Noting that $2^{\alpha+1} - 1 \equiv 3 \pmod{4}$, we have $2^{\alpha+1} - 1 = p_2$ or qp_2 . If $2^{\alpha+1} - 1 = p_2$, then $\frac{p+1}{2} = qp_2$, and thus

$$p_1^4 + p_1^3 + p_1^2 + p_1 = p^2 - 1 = (4p_1^2p_2 - 2p_2 - 1)^2 - 1,$$

so we have $p_1 \mid p_2 + 1$. Moreover, $p_1 \mid q + 1$. Hence, $p_1 \mid \gcd(p_2 + 1, p_2^4 + p_2^3 + p_2^2 + p_2^3)$ $p_2 + 2) = 2$, which is impossible.

If $2^{\alpha+1} - 1 = qp_2$, then $\frac{p+1}{2} = p_2$. Thus

$$p_1^4 + p_1^3 + p_1^2 + p_1 = p^2 - 1 = 4p_2^2 - 4p_2,$$

and we have $p_1 \mid p_2-1$. Moreover, $p_1 \mid q+1$. Thus, $p_1 \mid \gcd(p_2-1, p_2^4+p_2^3+p_2^2+p_2+2)$. Noting that

$$gcd(p_2 - 1, p_2^4 + p_2^3 + p_2^2 + p_2 + 2) = gcd(p_2 - 1, 6),$$

so we have $p_1 = 2, 3$ or 6, which is impossible.

Case 3:

$$p_1^4 + p_1^3 + p_1^2 + p_1 + 1 = p (18)$$

$$p_2^4 + p_2^3 + p_2^2 + p_2 + 1 = pq (19)$$

$$(2^{\alpha+1}-1)\frac{p+1}{2}\frac{q+1}{2} = qp_1^2p_2^2.$$
(20)

In this case, we have $p_1 \nmid \frac{p+1}{2}$. According to the number of prime divisors of $\frac{q+1}{2}$, we consider the following three subcases:

Case 3.1: $\frac{q+1}{2}$ has only one prime divisor. Then $\frac{q+1}{2} = p_1$ or p_2 . If $\frac{q+1}{2} = p_1$, then

$$(2^{\alpha+1}-1)\frac{p+1}{2} = qp_1p_2^2.$$
(21)

If $p_2 \mid \frac{p+1}{2}$, then $p_2 \mid p+1$; however, $p_2 \mid pq-1$, thus $p_2 \mid \gcd(p+1, pq-1)$. Noting that

$$gcd(p+1, pq-1) = gcd(p+1, q(p+1) - (q+1))$$

= $gcd(p+1, q+1)$
= $gcd(p+1, 2p_1)$
= $gcd(p-1+2, 2p_1)$
= 2

we have $p_2 = 2$, which is impossible. Hence $p_2 \nmid \frac{p+1}{2}$. By (21) and the fact that $p_1 \nmid \frac{p+1}{2}$, we have $\frac{p+1}{2} = q$, that is, $p+1 = 2q = 4p_1 - 2$, which contradicts (18). If $\frac{q+1}{2} = p_2$, then

$$(2^{\alpha+1}-1)\frac{p+1}{2} = qp_1^2 p_2.$$
(22)

Since $p_1 \nmid \frac{p+1}{2}$ and $2^{\alpha+1} - 1 \equiv 3 \pmod{4}$, we know that $p_2 \nmid \frac{p+1}{2}$. Thus $\frac{p+1}{2} = q$. Hence

$$p_2^4 + p_2^3 + p_2^2 + p_2 + 1 = pq = 8p_2^2 - 10p_2 + 3,$$

which is impossible.

Case 3.2: $\frac{q+1}{2}$ has exactly two prime divisors. Then $\frac{q+1}{2} = p_1^2$ or p_2^2 or p_1p_2 . If $\frac{q+1}{2} = p_1^2$, then

$$(2^{\alpha+1}-1)\frac{p+1}{2} = qp_2^2.$$
(23)

If $p_2 \mid \frac{p+1}{2}$, then $p_2 \mid p+1$, however, $p_2 \mid pq-1$, thus $p_2 \mid \gcd(p+1, pq-1)$. Noting that

$$gcd(p+1, pq-1) = gcd(p+1, q(p+1) - (q+1))$$

= $gcd(p+1, q+1)$
= $gcd(p+1, 2p_1^2)$
= $gcd(p-1+2, 2p_1^2)$
= $2,$

and we have $p_2 = 2$, which is impossible. Hence $p_2 \nmid \frac{p+1}{2}$. By (23) we have $\frac{p+1}{2} = q$, thus $2^{\alpha+1} - 1 = p_2^2$, which is impossible.

If
$$\frac{q+1}{2} = p_2^2$$
, then

$$(2^{\alpha+1}-1)\frac{p+1}{2} = qp_1^2.$$
(24)

Since $p_1 \nmid \frac{p+1}{2}$ we have $\frac{p+1}{2} = q$, thus $2^{\alpha+1} - 1 = p_1^2$, which is impossible. If $\frac{q+1}{2} = p_1 p_2$, then

$$(2^{\alpha+1}-1)\frac{p+1}{2} = qp_1p_2.$$
(25)

If $\frac{p+1}{2} = p_2$, then

$$p_2^4 + p_2^3 + p_2^2 + p_2 + 1 = pq = (2p_2 - 1)(2p_1p_2 - 1) = 4p_1p_2^2 - 2p_2 - 2p_1p_2 + 1,$$

thus $p_2 \mid 2p_1 + 3$, that is, $\frac{p+1}{2} \mid 2p_1 + 3$, which is impossible. If $\frac{p+1}{2} = qp_2$, then

$$p_2^4 + p_2^3 + p_2^2 + p_2 + 1 = pq = 8p_1^2p_2^3 - 8p_1p_2^2 - 2p_1p_2 + 2p_2 + 1,$$

we have $p_2 \mid 2p_1 - 1$. Thus $p_2 \mid \gcd(p + 1, 2p_1 - 1)$.

Noting that

$$gcd(2p_1 - 1, p + 1)$$

$$= gcd(2p_1 - 1, 2p_1^4 + 2p_1^3 + 2p_1^2 + 2p_1 + 4)$$

$$= gcd(2p_1 - 1, p_1^3(2p_1 - 1) + 3p_1^3 + 2p_1^2 + 2p_1 + 4)$$

$$= gcd(2p_1 - 1, 6p_1^3 + 4p_1^2 + 4p_1 + 8)$$

$$= gcd(2p_1 - 1, 3p_1^2(2p_1 - 1) + 7p_1^2 + 4p_1 + 8)$$

$$= gcd(2p_1 - 1, 14p_1^2 + 8p_1 + 16)$$

$$= gcd(2p_1 - 1, 7p_1(2p_1 - 1) + 15p_1 + 16)$$

$$= gcd(2p_1 - 1, 47),$$

we have $p_2 = 47$, and thus $\sigma(p_2^4) = 11 \cdot 31 \cdot 14621$, which contradicts (19). If $\frac{p+1}{2} = q$, then

$$p_1^4 + p_1^3 + p_1^2 + p_1 + 2 = p + 1 = 2q = 4p_1p_2 - 3.$$

Thus $p_1 \mid 5$, and $p_1 = 5$, which contradicts (ii). Case 3.3: $\frac{q+1}{2}$ has three prime divisors. Then $\frac{q+1}{2} = p_1^2$

ase 3.3:
$$\frac{q+1}{2}$$
 has three prime divisors. Then $\frac{q+1}{2} = p_1^2 p_2$ or $p_1 p_2^2$.
If $\frac{q+1}{2} = p_1^2 p_2$, then
 $(2^{\alpha+1} - 1)\frac{p+1}{2} = qp_2.$ (26)

Noting that $2^{\alpha+1} - 1 \equiv 3 \pmod{4}$ and $q \equiv 1 \pmod{4}$, we have $q \neq 2^{\alpha+1} - 1$. By (26) we have $\frac{p+1}{2} = q$, that is,

$$p_1^4 + p_1^3 + p_1^2 + p_1 + 2 = p + 1 = 2q = 4p_1^2p_2 - 2.$$

Then $p_1 \mid 4$, which is impossible.

If $\frac{q+1}{2} = p_1 p_2^2$, then

$$(2^{\alpha+1}-1)\frac{p+1}{2} = qp_1.$$
(27)

Since $p_1 \nmid \frac{p+1}{2}$ we have $\frac{p+1}{2} = q$, that is,

$$p_1^4 + p_1^3 + p_1^2 + p_1 + 2 = p + 1 = 2q = 4p_1p_2^2 - 2,$$

then $p_1 \mid 4$, which is impossible.

This completes the proof of Theorem 1.

3. Proof of Corollary 1

By Theorems A, C, D, we know that if $\omega(n) = 5$ and $n \in \mathcal{K}$, then

$$n = 2^{\alpha} p q \prod_{i=1}^{2} p_i^{\alpha_i},$$

where $\alpha \ge 1$, α_1 and α_2 are even and $p \equiv q \equiv 1 \pmod{4}$.

By Theorem B and Theorem 1, we know that

$$n = 2^{\alpha} p q p_1^2 p_2^{\alpha_2},$$

where $\alpha \ge 1$, $\alpha_2 \ge 4$ are even and $p \equiv q \equiv 1 \pmod{4}$, or

$$n = 2^{\alpha} p q p_1^{\alpha_1} p_2^{\alpha_2},$$

where $\alpha \ge 1$, $\alpha_1, \alpha_2 \ge 4$ are even, $(\alpha_1, \alpha_2) \ne (4, 4)$ and $p \equiv q \equiv 1 \pmod{4}$. This completes the proof of Corollary 1.

Acknowledgments. We thank the anonymous referee for detailed comments.

References

- [1] K.A. Broughan, J.M. De Koninck, I. Kátai, F. Luca, On integers for which the sum of divisors is the square of the squarefree core, *J. Integer Seq.* **15** (2012), Artile 12.7.5, 12pp.
- [2] K.A. Broughan, D. Delbourgo, Q. Zhou, A conjecture of De Koninck regarding particular square values of the sum of divisors function, J. Number Theory 137 (2014), 50-66.
- [3] K.A. Broughan, D. Delbourgo, Corrigendum: A conjecture of De Koninck regarding particular square values of the sum of divisors function, J. Number Theory 180 (2017), 790-792.
- [4] Y.G. Chen and X. Tong, On a conjecture of de Koninck, J. Number Theory 154 (2015), 324-364.
- [5] R.K. Guy, Unsolved Problems in Number Theory, Third Edition, Springer, 2004.