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Abstract
For a positive integer n, let �(n), !(n) and �(n) denote the sum of divisors, the
number of distinct prime factors and the product of the distinct prime divisors of n,
respectively. In this paper, we focus on positive integers n such that �(n) = �(n)2

and !(n) = 5.

1. Introduction

For a positive integer n, let �(n), !(n) and �(n) denote the sum of divisors, the
number of the distinct prime factors and the product of distinct prime divisors of
n, respectively. Let

K = {n : �(n) = �(n)2}.

De Koninck conjectured K = {1, 1782}. It is included in Richard Guy’s compendium
([5], Section B11).

In 2012, Broughan, De Koninck, Kátai and Luca [1] showed that the only solution
with at most four distinct prime factors is n = 1782. Moreover, they showed that
if n > 1 is in K, then n is not fourth power free.
Theorem A ([1, Lemma 1].) If n > 1 is in K, then

n = 2ep1

sY
i=2

p↵i
i , (1)

where e � 1, ↵i is even for all i = 3, . . . , s. Furthermore, either ↵2 is even in which
case p1 ⌘ 3 (mod 8), or ↵2 ⌘ 1 (mod 4) and p1 ⌘ p2 ⌘ 1 (mod 4).
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By Theorem A, we know that if n > 1 and n 2 K, then the prime factorization
of n has the form

n = 2↵pq
sY

i=1

p↵i
i , (2)

where ↵ � 1, ↵i(1  i  s) are even and p ⌘ q ⌘ 1 (mod 4), or

n = 2↵p
sY

i=1

p↵i
i , (3)

where ↵ � 1, ↵i(2  i  s) are even and either p ⌘ p1 ⌘ ↵1 ⌘ 1 (mod 4), ↵1 � 5
or p ⌘ 3 (mod 8) and ↵1 is even.

In 2014, Broughan, Delbourgo and Zhou [2] determined some necessary condi-
tions that an integer n > 1 must meet in order to belong to K (see also [3]).

Theorem B ([2, Theorem 1].) If n 2 K, then n is divisible by the fourth power of
an odd prime.

In 2015, Chen and Tong [4] proved some new theorems on De Koninck’s conjec-
ture.

Theorem C ([4, Theorem 1.2].) If n > 1, n 6= 1782 = 2 · 34 · 11 and n 2 K with
the form (3), then n is divisible by the fourth powers of at least two odd primes.

Theorem D([4, Theorem 1.4].) If n > 1, n 6= 1782 = 2 · 34 · 11 and n 2 K with the
form (3), then at least two exponents of the odd primes in the prime factorization
of n are equal to 2.

In this paper, we obtain the following results:

Theorem 1. There is no n 2 K such that n = 2↵pqp4
1p

4
2, where ↵ � 1 and p ⌘ q ⌘ 1

(mod 4).

Corollary 1. If !(n) = 5 and n 2 K, then the prime factorization of n has either
the form

n = 2↵pqp2
1p

↵2
2 ,

where ↵ � 1, ↵2 � 4 are even and p ⌘ q ⌘ 1 (mod 4), or the form

n = 2↵pqp↵1
1 p↵2

2 ,

where ↵ � 1, ↵1,↵2 � 4 are even, (↵1,↵2) 6= (4, 4) and p ⌘ q ⌘ 1 (mod 4).

2. Proof of Theorem 1

We need the following lemma.
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Lemma 1. (See [4, Lemma 2.2].) Let �1, �2, � be three primes. If �2 | ���1
1 +

���2
1 + · · · + �1 + 1, then either �2 = � or � | �2 � 1.

Suppose that n 2 K and n = 2↵pqp4
1p

4
2, where ↵ � 1 and p ⌘ q ⌘ 1 (mod 4),

then

(2↵+1� 1)
p + 1

2
q + 1

2
(p4

1 + p3
1 + p2

1 + p1 +1)(p4
2 + p3

2 + p2
2 + p2 +1) = p2q2p2

1p
2
2. (4)

Thus we have the following observations:
(i) 3 - n and p, q ⌘ 1 (mod 3). Indeed, by p ⌘ q ⌘ 1 (mod 4), we know that

if 3 | n, then by the symmetry of p1 and p2, we may assume that p1 = 3. Since
�(34) = 112, we have p2 = 11. Noting that �(114) = 5 ⇥ 3221, by (4) we may
assume that p = 5 and q = 3221, thus q+1

2 = 32 ⇥ 179, hence (4) cannot hold.
Therefore, 3 - n and p, q ⌘ 1 (mod 3).

(ii) 5 - n. Indeed, if 5 | n, then we may assume that p1 = 5 and observe that
�(54) = 11⇥ 71. Noting that 11, 71 ⌘ 3 (mod 4), we have (4) cannot hold. Hence
5 - n.

(iii) ↵ � 4. Indeed, by (i) and (ii) we have ↵ 6= 1, 3. If ↵ = 2, then we may assume
that p1 = 7. Observe that �(p4

1) = 2801. Noting that if p = 2801, then p + 1 =
2⇥ 3⇥ 467, which is impossible; if p2 = 2801 then �(p4

2) = 5⇥ 1956611⇥ 6294091,
which is also impossible. Hence ↵ � 4.

Let
Q = (p4

1 + p3
1 + p2

1 + p1 + 1)(p4
2 + p3

2 + p2
2 + p2 + 1).

By (4), we have

pq =
2↵+1 � 1

22

Q

p2
1p

2
2

p + 1
p

q + 1
q

>
(2↵+1 � 1)Q

22p2
1p

2
2

.

If (2↵+1 � 1)Q � p2q2, then

(2↵+1 � 1)Q >
(2↵+1 � 1)2Q2

24p4
1p

4
2

,

thus (2↵+1 � 1)Q < 24p4
1p

4
2, which is impossible. Hence (2↵+1 � 1)Q < p2q2.

Since 5 - n, by Lemma 1 we have gcd(Q, p2
1p

2
2) = 1, thus Q | p2q2. Since

p4
1 +p3

1 +p2
1 +p1 +1 6= p4

2 +p3
2 +p2

2 +p2 +1, we have Q = pq, p2q or q2p. By the the
symmetry of p and q, it is su�cient to consider Q = pq or p2q. We now consider
the following three cases.

Case 1:

p4
1 + p3

1 + p2
1 + p1 + 1 = p (5)

p4
2 + p3

2 + p2
2 + p2 + 1 = q (6)

(2↵+1 � 1)
p + 1

2
q + 1

2
= pqp2

1p
2
2. (7)
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In this case, we have the following facts:
(a) p1 - p+1

2 and p2 - q+1
2 . Assume p1 | p+1

2 , then p1 | p + 1, however, by (5) we
have p1 | p � 1, thus p1 | gcd(p + 1, p � 1) = 2, which is impossible. Similarly, we
have p2 - q+1

2 .
(b) If p2 | p1 � 1, then p2 - p+1

2 . Since p2 | p1 � 1, by (5) we have p2 | p � 5.
Assume p2 | p+1

2 , then p2 | gcd(p + 1, p� 5) = 2 or 6, which is impossible.
According to the number of prime divisors of q+1

2 , we consider the following three
subcases:
Case 1.1: q+1

2 has only one prime divisor. By (a) we have q+1
2 = p or p1.

If q+1
2 = p, then

(2↵+1 � 1)
p + 1

2
= qp2

1p
2
2. (8)

Since q = 2p� 1 > p, we have q - p+1
2 . Since p2 | q� 1 = 2p� 2, we have p2 | p� 1,

thus p2 - p + 1, hence p2 - p+1
2 . Combined with (a), we know that (8) cannot hold.

If q+1
2 = p1, then

(2↵+1 � 1)
p + 1

2
= pqp1p

2
2. (9)

Since p2 | q � 1 = 2p1 � 2, we have p2 | p1 � 1, and by (b) we have p2 - p+1
2 .

Combined with (a) we have p+1
2 = q, that is, p + 1 = 4p1 � 2, which contradicts

with (5). Hence (9) cannot hold.

Case 1.2: q+1
2 has two prime divisors. By (a) we have q+1

2 = p2
1 or pp1.

If q+1
2 = p2

1, then

(2↵+1 � 1)
p + 1

2
= pqp2

2. (10)

Noting that p2 | q�1 = 2(p1 +1)(p1�1), if p2 | p1�1, then by (b) we have p2 - p+1
2 .

If p2 | p1 +1, then by (5) we have p2 | p�1, thus p2 - p+1
2 . By (10) we have p+1

2 = q,
that is, p + 1 = 4p2

1 � 2, which contradicts (5). Hence (10) cannot hold.
If q+1

2 = pp1, then

(2↵+1 � 1)
p + 1

2
= qp1p

2
2. (11)

Noting that q � 1 = 2pp1 � 2 = 2p1(p + 1)� 2p1 � 2, we have

gcd(p + 1, q � 1) = gcd(p + 1, 2p1 + 2)
= gcd(p4

1 + p3
1 + p2

1 + p1 + 2, 2p1 + 2)
= gcd(p3

1(p1 + 1) + p1(p1 + 1) + 2, 2p1 + 2)
= 2 or 4.

If p2 | p+1
2 , then p2 | p + 1, however, p2 | q � 1, thus p2 | gcd(p + 1, q � 1),

which is impossible. Hence p2 - p+1
2 . By (11) and (a), we have p+1

2 = q, that is,
p + 1 = 2q = 4pp1 � 2 > p + 1, a contradiction. Hence (11) cannot hold.
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Case 1.3: q+1
2 has three prime divisors. By (a) we have q+1

2 = pp2
1. Then

(2↵+1 � 1)
p + 1

2
= qp2

2. (12)

Noting that q � 1 = 2pp2
1 � 2 = 2p2

1(p + 1)� 2p2
1 � 2, we have

gcd(p + 1, q � 1) = gcd(p + 1, 2p2
1 + 2)

= gcd(p4
1 + p3

1 + p2
1 + p1 + 2, 2p2

1 + 2)
= gcd(p2

1(p
2
1 + 1) + p1(p2

1 + 1) + 2, 2p2
1 + 2)

= 2 or 4.

If p2 | p+1
2 , then p2 | p + 1, however, p2 | q � 1, thus p2 | gcd(p + 1, q � 1), which is

impossible. Hence p2 - p+1
2 . By (12) we have p+1

2 = q and 2↵+1 � 1 = p2
2, which is

impossible. Hence (12) cannot hold.

Case 2:

p4
1 + p3

1 + p2
1 + p1 + 1 = p2 (13)

p4
2 + p3

2 + p2
2 + p2 + 1 = q (14)

(2↵+1 � 1)
p + 1

2
q + 1

2
= qp2

1p
2
2. (15)

In this case, we have p2 - q+1
2 . Depending on the number of prime divisors of q+1

2 ,
we consider the following two subcases:

Case 2.1: q+1
2 has only one prime divisor. Then q+1

2 = p1 and we have

(2↵+1 � 1)
p + 1

2
= qp1p

2
2. (16)

By p ⌘ 1 (mod 4), we have

gcd(p + 1, p2 � 5) = gcd(p + 1, (p + 1)(p� 1)� 4) = gcd(p + 1, 4) = 2.

If p2 | p+1
2 , then p2 | p + 1, however, p2 | q � 1 = 2p1 � 2, thus p2 | p1 � 1. By (13)

we have p1 � 1 | p2 � 5. Thus p2 | gcd(p + 1, p2 � 5), which is impossible. Hence
p2 - p+1

2 .
By (16) we have p+1

2 = q or qp1. If p+1
2 = q, then p = 2q � 1 = 4p1 � 3, which

contradicts (13). If p+1
2 = qp1, then p = 4p2

1 � 2p1 � 1, which is also impossible.
Hence (16) cannot hold.

Case 2.2: q+1
2 has exactly two prime divisors. Then q+1

2 = p2
1 and we have

(2↵+1 � 1)
p + 1

2
= qp2

2. (17)
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Noting that 2↵+1 � 1 ⌘ 3 (mod 4), we have 2↵+1 � 1 = p2 or qp2.
If 2↵+1 � 1 = p2, then p+1

2 = qp2, and thus

p4
1 + p3

1 + p2
1 + p1 = p2 � 1 = (4p2

1p2 � 2p2 � 1)2 � 1,

so we have p1 | p2 + 1. Moreover, p1 | q + 1. Hence, p1 | gcd(p2 + 1, p4
2 + p3

2 + p2
2 +

p2 + 2) = 2, which is impossible.
If 2↵+1 � 1 = qp2, then p+1

2 = p2. Thus

p4
1 + p3

1 + p2
1 + p1 = p2 � 1 = 4p2

2 � 4p2,

and we have p1 | p2�1. Moreover, p1 | q+1. Thus, p1 | gcd(p2�1, p4
2+p3

2+p2
2+p2+2).

Noting that

gcd(p2 � 1, p4
2 + p3

2 + p2
2 + p2 + 2) = gcd(p2 � 1, 6),

so we have p1 = 2, 3 or 6, which is impossible.

Case 3:

p4
1 + p3

1 + p2
1 + p1 + 1 = p (18)

p4
2 + p3

2 + p2
2 + p2 + 1 = pq (19)

(2↵+1 � 1)
p + 1

2
q + 1

2
= qp2

1p
2
2. (20)

In this case, we have p1 - p+1
2 . According to the number of prime divisors of q+1

2 ,
we consider the following three subcases:

Case 3.1: q+1
2 has only one prime divisor. Then q+1

2 = p1 or p2.
If q+1

2 = p1, then

(2↵+1 � 1)
p + 1

2
= qp1p

2
2. (21)

If p2 | p+1
2 , then p2 | p + 1; however, p2 | pq� 1, thus p2 | gcd(p + 1, pq� 1). Noting

that

gcd(p + 1, pq � 1) = gcd(p + 1, q(p + 1)� (q + 1))
= gcd(p + 1, q + 1)
= gcd(p + 1, 2p1)
= gcd(p� 1 + 2, 2p1)
= 2,

we have p2 = 2, which is impossible. Hence p2 - p+1
2 . By (21) and the fact that

p1 - p+1
2 , we have p+1

2 = q, that is, p + 1 = 2q = 4p1 � 2, which contradicts (18).
If q+1

2 = p2, then

(2↵+1 � 1)
p + 1

2
= qp2

1p2. (22)
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Since p1 - p+1
2 and 2↵+1 � 1 ⌘ 3 (mod 4), we know that p2 - p+1

2 . Thus p+1
2 = q.

Hence
p4
2 + p3

2 + p2
2 + p2 + 1 = pq = 8p2

2 � 10p2 + 3,

which is impossible.

Case 3.2: q+1
2 has exactly two prime divisors. Then q+1

2 = p2
1 or p2

2 or p1p2.
If q+1

2 = p2
1, then

(2↵+1 � 1)
p + 1

2
= qp2

2. (23)

If p2 | p+1
2 , then p2 | p + 1, however, p2 | pq� 1, thus p2 | gcd(p + 1, pq� 1). Noting

that

gcd(p + 1, pq � 1) = gcd(p + 1, q(p + 1)� (q + 1))
= gcd(p + 1, q + 1)
= gcd(p + 1, 2p2

1)
= gcd(p� 1 + 2, 2p2

1)
= 2,

and we have p2 = 2, which is impossible. Hence p2 - p+1
2 . By (23) we have p+1

2 = q,
thus 2↵+1 � 1 = p2

2, which is impossible.
If q+1

2 = p2
2, then

(2↵+1 � 1)
p + 1

2
= qp2

1. (24)

Since p1 - p+1
2 we have p+1

2 = q, thus 2↵+1 � 1 = p2
1, which is impossible.

If q+1
2 = p1p2, then

(2↵+1 � 1)
p + 1

2
= qp1p2. (25)

If p+1
2 = p2, then

p4
2 + p3

2 + p2
2 + p2 + 1 = pq = (2p2 � 1)(2p1p2 � 1) = 4p1p

2
2 � 2p2 � 2p1p2 + 1,

thus p2 | 2p1 + 3, that is, p+1
2 | 2p1 + 3, which is impossible.

If p+1
2 = qp2, then

p4
2 + p3

2 + p2
2 + p2 + 1 = pq = 8p2

1p
3
2 � 8p1p

2
2 � 2p1p2 + 2p2 + 1,

we have p2 | 2p1 � 1. Thus p2 | gcd(p + 1, 2p1 � 1).
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Noting that

gcd(2p1 � 1, p + 1)
= gcd(2p1 � 1, 2p4

1 + 2p3
1 + 2p2

1 + 2p1 + 4)
= gcd(2p1 � 1, p3

1(2p1 � 1) + 3p3
1 + 2p2

1 + 2p1 + 4)
= gcd(2p1 � 1, 6p3

1 + 4p2
1 + 4p1 + 8)

= gcd(2p1 � 1, 3p2
1(2p1 � 1) + 7p2

1 + 4p1 + 8)
= gcd(2p1 � 1, 14p2

1 + 8p1 + 16)
= gcd(2p1 � 1, 7p1(2p1 � 1) + 15p1 + 16)
= gcd(2p1 � 1, 47),

we have p2 = 47, and thus �(p4
2) = 11 · 31 · 14621, which contradicts (19).

If p+1
2 = q, then

p4
1 + p3

1 + p2
1 + p1 + 2 = p + 1 = 2q = 4p1p2 � 3.

Thus p1 | 5, and p1 = 5, which contradicts (ii).

Case 3.3: q+1
2 has three prime divisors. Then q+1

2 = p2
1p2 or p1p2

2.
If q+1

2 = p2
1p2, then

(2↵+1 � 1)
p + 1

2
= qp2. (26)

Noting that 2↵+1 � 1 ⌘ 3 (mod 4) and q ⌘ 1 (mod 4), we have q 6= 2↵+1 � 1. By
(26) we have p+1

2 = q, that is,

p4
1 + p3

1 + p2
1 + p1 + 2 = p + 1 = 2q = 4p2

1p2 � 2.

Then p1 | 4, which is impossible.
If q+1

2 = p1p2
2, then

(2↵+1 � 1)
p + 1

2
= qp1. (27)

Since p1 - p+1
2 we have p+1

2 = q, that is,

p4
1 + p3

1 + p2
1 + p1 + 2 = p + 1 = 2q = 4p1p

2
2 � 2,

then p1 | 4, which is impossible.
This completes the proof of Theorem 1.

3. Proof of Corollary 1

By Theorems A, C, D, we know that if !(n) = 5 and n 2 K, then

n = 2↵pq
2Y

i=1

p↵i
i ,
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where ↵ � 1, ↵1 and ↵2 are even and p ⌘ q ⌘ 1 (mod 4).
By Theorem B and Theorem 1, we know that

n = 2↵pqp2
1p

↵2
2 ,

where ↵ � 1, ↵2 � 4 are even and p ⌘ q ⌘ 1 (mod 4), or

n = 2↵pqp↵1
1 p↵2

2 ,

where ↵ � 1, ↵1,↵2 � 4 are even, (↵1,↵2) 6= (4, 4) and p ⌘ q ⌘ 1 (mod 4).
This completes the proof of Corollary 1.
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