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Abstract
For a positive integer n, let o(n), w(n) and y(n) denote the sum of divisors, the
number of distinct prime factors and the product of the distinct prime divisors of n,
respectively. In this paper, we focus on positive integers n such that o(n) = v(n)?
and w(n) = 5.

1. Introduction

For a positive integer n, let o(n), w(n) and vy(n) denote the sum of divisors, the
number of the distinct prime factors and the product of distinct prime divisors of
n, respectively. Let

K={n:o(n)=~(n)?}.
De Koninck conjectured K = {1,1782}. It is included in Richard Guy’s compendium
([5], Section B11).

In 2012, Broughan, De Koninck, Kétai and Luca [1] showed that the only solution
with at most four distinct prime factors is n = 1782. Moreover, they showed that
if n > 11isin K, then n is not fourth power free.

Theorem A ([1, Lemma 1].) If n > 1 is in KC, then

S
n =21 [, (1)
i=2
where e > 1, a; is even for alli =3, ...,s. Furthermore, either as is even in which

case p1 =3 (mod 8), or ag =1 (mod 4) and p; = p2 =1 (mod 4).
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By Theorem A, we know that if n > 1 and n € K, then the prime factorization
of n has the form

n = 2%q Hp;"‘, (2)
i=1

where e > 1, a;(1 <4 < s) are even and p =g =1 (mod 4), or
s
n=2p 2, 3)
i=1

where a@ > 1, @;(2 <4 < s) are even and either p =p; = a3 =1 (mod 4), a; > 5
or p=3 (mod 8) and ay is even.

In 2014, Broughan, Delbourgo and Zhou [2] determined some necessary condi-
tions that an integer n > 1 must meet in order to belong to K (see also [3]).

Theorem B (/2, Theorem 1].) If n € K, then n is divisible by the fourth power of

an odd prime.

In 2015, Chen and Tong [4] proved some new theorems on De Koninck’s conjec-
ture.

Theorem C ([4, Theorem 1.2].) If n > 1, n # 1782 =2-3*-11 and n € K with
the form (3), then n is divisible by the fourth powers of at least two odd primes.

Theorem D ([}, Theorem 1.4].) If n > 1, n #1782 =2-3*-11 and n € K with the
form (3), then at least two exponents of the odd primes in the prime factorization
of n are equal to 2.

In this paper, we obtain the following results:

Theorem 1. There is non € K such thatn = 2%pqpips, wherea > 1 andp=q=1
(mod 4).

Corollary 1. If w(n) =5 and n € K, then the prime factorization of n has either
the form

n = 2°pgpips?,

where a« > 1, ag > 4 are even and p =g =1 (mod 4), or the form
n = 2%pgpy" p3*,

where a > 1, oy, a0 > 4 are even, (a1, a2) # (4,4) and p=g=1 (mod 4).

2. Proof of Theorem 1

We need the following lemma.
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1

Lemma 1. (See [4, Lemma 2.2].) Let v1,72,7 be three primes. If vo | v{ +

71Y*2+...+71+1, then either o =y or vy | 72 — 1.

Suppose that n € K and n = 2%pqpips, where a > 1 and p = ¢ = 1 (mod 4),
then
ptlg+l

2a+1 -1

(p1+p1 +pi+ 1+ 103 +03 +p3 +p2+1) = p°Ppip3. (4)
Thus we have the following observations:

(i) 3t n and p,g = 1 (mod 3). Indeed, by p = ¢ = 1 (mod 4), we know that
if 3 | n, then by the symmetry of p; and p2, we may assume that p; = 3. Since
o(3*) = 112, we have p = 11. Noting that o(11%) = 5 x 3221, by (4) we may
assume that p = 5 and ¢ = 3221, thus %1 = 32 x 179, hence (4) cannot hold.
Therefore, 31 n and p,g =1 (mod 3).

(ii) 5t n. Indeed, if 5 | n, then we may assume that p; = 5 and observe that
o(5%) = 11 x 71. Noting that 11,71 = 3 (mod 4), we have (4) cannot hold. Hence
51 n.

(iii) o > 4. Indeed, by (i) and (ii) we have a # 1,3. If & = 2, then we may assume
that p; = 7. Observe that o(p}) = 2801. Noting that if p = 2801, then p + 1 =
2 x 3 x 467, which is impossible; if po = 2801 then o(p3) = 5 x 1956611 x 6294091,
which is also impossible. Hence o > 4.

Let

Q= (pf +p} + P2 +p1+1)(ph +p3 +p3 +p2 + 1)

By (4), we have

pg= 21 Q prlgtl (77 -1)Q
2 pip P g 22ptps
If (22 — 1)Q > p?¢?, then

(2a+1 _ 1)2@2
24pip3

@2 -1Q > :
thus (2971 — 1)Q < 2*pip4, which is impossible. Hence (2°*! —1)Q < p?¢%.

Since 5 { n, by Lemma 1 we have ged(Q,p3p3) = 1, thus @ | p?>¢®. Since
pi+p}+pi+p1+1# ps+p3+p3+p2+1, we have Q = pq,p*q or ¢?p. By the the
symmetry of p and g, it is sufficient to consider QQ = pq or p?q. We now consider
the following three cases.

Case 1:
pPi+pi+pi+p+1l = p (5)
Ps+pi+pstpe+l = g (6)
o p+1lg+1
(20T —1)=—— —— = pgpips. (7)

2 2
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In this case, we have the following facts:
(a) pr 1 % and po { %~ Assume py |
have p1 | p — 1, thus p;y | ged(p + 1,p — 1)
have po t %1.
(b) If pa | p1 — 1, then py 4 %. Since p2 | p1 — 1, by (5) we have py | p — 5.
Assume po | %H, then po | ged(p + 1,p — 5) = 2 or 6, which is impossible.
According to the number of prime divisors of q;r—l, we consider the following three
subcases:

p+1

P2=, then p; | p + 1, however, by (5) we

2, which is impossible. Similarly, we

Case 1.1: q;—l has only one prime divisor. By (a) we have %1 =por p;.
If q‘g—l = p, then
p+1
(27T = 1)=— = apips. (8)

Since ¢ = 2p — 1 > p, we have qf%. Since py | ¢ — 1 = 2p — 2, we have ps | p — 1,
thus pa ¥ p + 1, hence ps ¢ %. Combined with (a), we know that (8) cannot hold.
If q‘g—l = p1, then

a ptl

(27" = 1)=— = pap1p3. (9)
Since pa | ¢ — 1 = 2p; — 2, we have ps | p1 — 1, and by (b) we have po ¢t %
Combined with (a) we have % = ¢, that is, p + 1 = 4p; — 2, which contradicts
with (5). Hence (9) cannot hold.
Case 1.2: q;—l has two prime divisors. By (a) we have % = p? or pp;.

If q',i)'—l = p?, then
a ptl
(20 = 1)=—— = paps. (10)

2

Noting that ps | ¢—1 =2(p1+1)(p1—1), if p2 | p1 — 1, then by (b) we have ps 1 %.
If po | p1+1, then by (5) we have ps | p—1, thus pa 1 %. By (10) we have p%l =gq,
that is, p + 1 = 4p? — 2, which contradicts (5). Hence (10) cannot hold.

If —q21 = pp1, then
+1

Noting that ¢ — 1 = 2pp1 — 2 =2p1(p+ 1) — 2p; — 2, we have

= qp1p3. (11)

(p + P +pi +p1+2,2p1 +2)
= ged(pi(pr +1) +pi(pr +1) +2,2p1 +2)
= 2ord4.

ged(p+1,g—1) = ged
ged

If D2 ‘ pT+17 then P2 | p + ]-7 however, D2 ‘ q — 1, thus D2 | ng(p + ]-aq - ]-)a
which is impossible. Hence ps 1 p—;l. By (11) and (a), we have % = q, that is,
p+1=2q=4pp; —2 > p+ 1, a contradiction. Hence (11) cannot hold.
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Case 1.3: 2! has three prime divisors. By (a) we have Z* = pp?. Then
1
(et - = g (12)

Noting that ¢ — 1 = 2pp} — 2 = 2p?(p + 1) — 2p? — 2, we have

ged(p+1,g—1) = ged(p+1,2p7 +2)
= ged(pi +p} +pi +p1 +2,2p7 +2)
ged(pi(p} +1) + pi(p +1) +2,2p7 +2)
= 2ord4.

If po | %, then po | p 4+ 1, however, ps | ¢ — 1, thus ps | ged(p 4+ 1,¢ — 1), which is
impossible. Hence ps { pgl. By (12) we have pTH = q and 2°*! — 1 = p3, which is
impossible. Hence (12) cannot hold.

Case 2:
pi+pi+pi+p+1 = p? (13)
pa+pi+pstpetl = g (14)
o p+1lqg+1
@ =)= = apips (15)

In this case, we have py 1 %. Depending on the number of prime divisors of %,
we consider the following two subcases:

Case 2.1: q‘g—l has only one prime divisor. Then % = p; and we have

1
(2a+1 _ 1)p +

5 = qp1p3. (16)

By p=1 (mod 4), we have
ged(p+1,p = 5) = ged(p+ 1, (p+ 1)(p — 1) — 4) = ged(p + 1,4) = 2.

If po | %1, then po | p+ 1, however, ps | ¢ — 1 = 2p; — 2, thus ps | p1 — 1. By (13)
we have p; — 1 | p? — 5. Thus py | ged(p + 1, p? — 5), which is impossible. Hence
p2t B

By (16) we have % =qorqp. If p—;l = ¢, then p = 2¢ — 1 = 4p; — 3, which
contradicts (13). If pT'H = qp1, then p = 4p? — 2p; — 1, which is also impossible.
Hence (16) cannot hold.

Case 2.2: q;—l has exactly two prime divisors. Then %1 = p? and we have

pt1l

20+l 1
( )5

= qp5. (17)
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Noting that 247! — 1 =3 (mod 4), we have 291 — 1 = py or gps.
If 20+1 — 1 = py, then 2 = gpo, and thus
PPl ot A=t = 1= (dplps — 2p2 —1)* — 1,

so we have p; | p2 + 1. Moreover, p; | ¢ + 1. Hence, p; | ged(pe + 1,p3 + p3 + p3 +
p2 + 2) = 2, which is impossible.
If 291 — 1 = gpo, then p%l = py. Thus

pi+pt+pf +p1=p* — 1= 4p} — 4dpo,

and we have p; | po—1. Moreover, p; | ¢+1. Thus, p1 | ged(pe—1, p3+p3+p3+p2+2).
Noting that

ged(p2 — 1,p3 + pi + p3 4+ p2 +2) = ged(p2 — 1,6),

so we have p; = 2,3 or 6, which is impossible.

Case 3:
pi+pi+pi+p+1 = p (18)
ps+ps+pitpe+l = pg (19)
o p+1lqg+1
@ =)= = apips (20)

In this case, we have p; 1 %. According to the number of prime divisors of %1,

we consider the following three subcases:

Case 3.1: q;—l has only one prime divisor. Then %1 = p1 Or pa.

If q‘g—l = p1, then
+1
gatl _ 1y P T2
COERILA
If po | %H, then po | p+ 1; however, py | pg — 1, thus ps | ged(p + 1,pg — 1). Noting

that

= qp1p3. (21)

ged(p+1,pg—1) = ged(p+1,q(p+1)—(¢+1))
= ged(p+1,g+1)
= ged(p+1,2p1)
= ged(p—1+2,2p1)

|
o

b

we have py = 2, which is impossible. Hence ps t % By (21) and the fact that

p1t pTH, we have % = ¢, that is, p+ 1 = 2¢g = 4p; — 2, which contradicts (18).
If 4 — . then
2 )
ptl

oo+l _q
( )

= qpips. (22)
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Since py t 25 and 22+ — 1 = 3 (mod 4), we know that p, f Z£*. Thus % =q.
Hence
Ps + 15+ 5 +p2+ 1= pg=8p3 — 10ps + 3,
which is impossible.
Case 3.2: q‘g—l has exactly two prime divisors. Then %1 = p? or p3 or p1po.

If q;—l = p?, then

p+1
= (23)

If po | pTH7 then ps | p+ 1, however, ps | pg — 1, thus ps | ged(p+ 1, pg — 1). Noting
that

(2a+1 _ 1)

ged(p+1,pg—1) = ged(p+1,9(p+1)—(¢+1))
= ged(p+1,g+1)
= ged(p+1,2p7)
= ged(p—1+2,2p7)

|
O

)

and we have ps = 2, which is impossible. Hence ps 1 pTH. By (23) we have %1 =q,
thus 291 — 1 = p2, which is impossible.
If q;—l = p3, then
p+1
Pl g (24)

Since p; { % we have p—;l = ¢, thus 2271 — 1 = p?, which is impossible.

(2a+1 _ 1)

If q;—_l = p1p2, then
p+1
(27 = 1) = gpip2. (25)
If % = po, then

Ps+ D3+ ps+pa+1=pg=(2ps — 1)(2p1p2 — 1) = dp1p3 — 2p2 — 2p1p2 + 1,

thus ps | 2p1 + 3, that is, % | 2p1 + 3, which is impossible.
If % = qps, then

Ps+ D3 +p5+p2+1=pg=28pip; — 8p1p3 — 2p1p2 + 2p2 + 1,

we have py | 2p; — 1. Thus ps | ged(p+ 1,2p; — 1).
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Noting that

(2p1 —1,p+1)

(2p1 — 1,2p] + 2p3 + 2p? + 2p; +4)

(2p1 — L,p}(2p1 — 1) + 3pT + 2p7 + 2p1 +4)
ged(2p1 — 1,6p7 + 4pT + 4py + 8)

(2p1 — 1,3p3(2p1 — 1) + Tp7 + 4py +8)

(2p1 — 1, 14p? + 8p; + 16)

(2p1 — 1,7p1(2p1 — 1) + 15p1 + 16)
ged(2p; — 1,47),

we have py = 47, and thus o(p3) = 11 - 31 - 14621, which contradicts (19).
If % = q, then

pl+pd+pi+pi+2=p+1=2¢=4pips—3.

Thus p; | 5, and p; = 5, which contradicts (ii).

Case 3.3: q;—l has three prime divisors. Then 2+ = p?p, or pip3.
If q‘g—l = p?pa, then
p+1
20+ — 1)T = qps. (26)

Noting that 29! — 1 =3 (mod 4) and ¢ = 1 (mod 4), we have q # 2! — 1. By
(26) we have 2t = ¢, that s,

PP+ 4 pr+2=p+1=2¢=4p’ps — 2.

Then p; | 4, which is impossible.
If q;—l = p1p3, then
ptl

2O¢+171
et -2

= qp1. (27)
Since p; { % we have p—;l = g, that is,
PP+l +p+2=p+1=2¢=4pip5 -2,

then p; | 4, which is impossible.
This completes the proof of Theorem 1.

3. Proof of Corollary 1

By Theorems A, C, D, we know that if w(n) =5 and n € K, then

2
n=2%pq [ [ pi",
=1
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where a > 1, oy and s are even and p = ¢ =1 (mod 4).
By Theorem B and Theorem 1, we know that

2 Qo

n = 2%pqpip3*,

where @ > 1, ap > 4 are even and p = ¢ =1 (mod 4), or
n = 2%pqpy! ps*,

where a > 1, ai, g > 4 are even, (a1, a2) # (4,4) and p=¢ =1 (mod 4).
This completes the proof of Corollary 1.
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