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Abstract
Motivated by a sequence of polynomials from Hodge Theory, we define an arith-
metical function f(n) and we prove that its fixed points are related to both Fermat
and Mersenne primes.

1. Introduction

For any integer n � 1, consider the polynomial

E
⇣
X [n]; q

⌘
:=

�
qn � qn�1

� X
d|n

d ⌘ 1 (mod 2)

⇣
q�n(d) � q1��n(d)

⌘
, (1)

where �n(d) := 1
2

�
2n
d � d + 1

�
. From a Hodge-theoretic point of view [4], E

�
X [n]; q

�
is E-polynomial of the Hilbert scheme X [n] of n points on the algebraic torus
X := C⇥ ⇥ C⇥. The quotient E

�
X [n]; q

�
/(q � 1)2 is a polynomial whose coef-

ficients are nonnegative integer, named Kassel-Reutenauer q-analog of the sum of
divisors [2].

Several number-theoretic properties of these polynomials where studied in the
author’s Master Memoir [1]. Also, the coe�cients of E

�
X [n]; q

�
are related to

well-matched parentheses [3].
If q is a prime power [5, 6] then E

�
X [n]; q

�
is the number of ideals I of the

algebra Fq[x, y, x�1, y�1] such that the quotient Fq[x, y, x�1, y�1]/I, viewed as a
vector space over Fq, has dimension n. Furthermore, the sequence (Cn(q))n�1

evaluated at some roots of unity [7] can be expressed as the Fourier coe�cient of
certain ⌘-products.

It follows from (1) that

E
⇣
X [n]; q

⌘
= q2n � q2n�1 � (�1)(n) qf(n)+1 + Rn(q),

for some polynomial Rn(q) whose degree is at most f(n), where (n) and f(n) are
the arithmetical functions defined below.
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For each integer n � 1, define the arithmetical function

(n) :=

(
0, if n = 2k for some k 2 Z�0;
minMn, otherwise;

where Mn :=
�
d, 2n

d : d|n, d > 1 and d ⌘ 1 (mod 2)
 
. Let f(n) be the arithmeti-

cal function given by

(i) f
�
2k
�

:= 0 for all k 2 Z�0;

(ii) n
(n) �

f(n)
(n)+1 = 1

2 , for all n 2 Z�1, provided that n 6= 2k for all k 2 Z�0.

The values of (n) and f(n), for 1  n  25, are given in the following table.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
(n) 0 0 2 0 2 3 2 0 2 4 2 3 2 4 2
f(n) 0 0 3 0 6 6 9 0 12 10 15 14 18 15 21

The first polynomials E
�
X [n]; q

�
are

E
⇣
X [1]; q

⌘
= q2 � 2q + 1,

E
⇣
X [2]; q

⌘
= q4 � q3 � q + 1,

E
⇣
X [3]; q

⌘
= q6 � q5 � q4 + 2q3 � q2 � q + 1,

E
⇣
X [4]; q

⌘
= q8 � q7 � q + 1,

E
⇣
X [5]; q

⌘
= q10 � q9 � q7 + q6 + q4 � q3 � q + 1,

E
⇣
X [6]; q

⌘
= q12 � q11 + q7 � 2q6 + q5 � q + 1,

E
⇣
X [7]; q

⌘
= q14 � q13 � q10 + q9 + q5 � q4 � q + 1,

E
⇣
X [8]; q

⌘
= q16 � q15 � q + 1,

E
⇣
X [9]; q

⌘
= q18 � q17 � q13 + q12 + q11 � q10 � q8 + q7 + q6 � q5 � q + 1.

We recall that a prime number p = 2m + 1, with m 2 Z�1, is called Fermat
prime. Similarly, a prime number p = 2m � 1, with m 2 Z�1, is called Mersenne
prime. Furthermore, n is a fixed point of f if f(n) = n. The goal of this paper is
to prove the following elementary result.

Theorem 1. The function f(n) has infinitely many fixed points if and only if at
least one of the following statements holds:

(i) there are infinitely many Fermat primes;

(ii) there are infinitely many Mersenne primes.
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2. Proof of the Main Result

We proceed to prove the main result of this paper.

Proof of Theorem 1. Notice that, by definition of f , an integer n 2 Z�1 is a fixed
point of f if and only if

(n) ((n) + 1) = 2n. (2)

Suppose that n = p(p+1)
2 , where p = 2m � 1 is a Mersenne prime and m 2

Z�1. Then (n) = p < p + 1 = 2m = 2n
p . The left hand side of (2) becomes

(n) ((n) + 1) = p (p + 1), which coincides with its right hand side 2n = p (p + 1).
Hence, n is a fixed point of f .

Suppose that n = (p�1)p
2 , where p = 2m+1 is a Fermat prime and m 2 Z�1. Then

(n) = 2m = 2n
p = p� 1 < p. The left hand side of (2) becomes (n) ((n) + 1) =

(p� 1) p, which coincides with its right hand side 2n = (p� 1) p. Hence, n is a
fixed point of f .

Now, suppose that n is a fixed point of f . The equation (2) implies that (n) 6= 0.
So, n 6= 2k for all k 2 Z�0, i.e. n has an odd divisor greater than 1.

Suppose that (n) is an odd prime number. Let d be the largest odd divisor of
(n) + 1. Notice that 2d divides (n) + 1. The obvious inequality 2d  (n) + 1
implies that d  (n)+1

2 < (n). In virtue of the extremal property of µ, we conclude
that d = 1, i.e. (n) + 1 = 2m, for some m 2 Z�1. Hence, n = (p�1)p

2 , where p is a
Mersenne prime.

Suppose that (n) is not an odd prime number. By definition of  we have
(n) = 2m, for some m 2 Z�1. Let d be the largest divisor of (n) + 1 satisfying
d < (n) + 1. So, d < (n), because d is odd and (n) even. In virtue of the
extremal property of µ, we conclude that d = 1, i.e. (n) + 1 is prime. Hence,
n = p(p+1)

2 , where p is a Fermat prime.
We have shown that there is a bijection between the set fixed points of f(n) and

the set of both Fermat and Mersenne primes. Therefore, there are infinitely many
fixed points of f(n) if and only if the set of both Fermat and Mersenne primes is
infinite.
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