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Abstract
In this paper, we determine all triplets of positive integers a,b, and ¢ such that
every nonnegative integer can be represented as

oz, y, z,w) = ax® + by? + c(2 + 2w + w?) with z,y, z,w € Z.

Furthermore, we prove that f@° can represent all the nonnegative integers if it
represents 1,2, 3,5,6, and 10.

1. Introduction

Throughout this paper, we set N = {1,2,3,...} and Ny = {0,1,2,3,...}, and Z
denotes the set of rational integers. In addition, the triangular numbers are ¢, =
z(z +1)/2, (x € Np). Furthermore, a,b and ¢ are fixed positive integers with 1 <
a <b.

More than 200 years ago, Lagrange [4, pp. 279] proved one of the most celebrated
theorems in number theory, the Four Squares Theorem, which states that every
positive integer can be expressed as a sum of four squares. Since then, the universal
representability by a quadratic form has been becoming one of the most interesting
problems in number theory. Incredibly, Ramanujan [8] extended Lagrange’s theorem
to other positive definite quaternary quadratic forms az? + by? + cz? + du?, and
determined all of the positive integers a,b, ¢ and d such that ax? + by? + cz? + du?
can represent positive integers universally, totally 54 cases. Unlike Jacobi’s “proof”
to Lagrange’s theorem, which follows directly from his beautiful formula,

{(z,y, 2,u) € Z'|n = 22 + ¥ + 22 + u?}| = 80(n) — 320(n/4) > 0,

where o(n) = > djn 4, Ramanujan’s proofs rely on the representability of ternary
quadratic forms and their relations to the quaternary quadratic forms under inves-
tigation. For example, for Lagrange’s Four Squares Theorem, one first shows [3]
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that a positive integer n can be expressed as a sum of three squares if and only if
n # 48(81 + 7) for any nonnegative integers k and [. Then if n # 4¥(8] + 7), one
has n = 22 + 92 + 22 + 02 if n = 4¥(81 + 7), then n = 4%(81 + 6) + (2%)2, where
n = 4F (8] + 6) is representable by a sum of three squares.

Inspired by Ramanujan’s proofs, in our recent work [7], using a similar strategy,
the author succeeded in extending his results to the quaternary quadratic poly-
nomials at, + bt, + c(2* + zw + w?). In this work, we aim to further extend the
previous work of Ramanujan to another type of quaternary quadratic forms, namely,
ax? + by? + c(2% + zw + w?). We conclude this section by summarizing our main
results in the following theorem:

Theorem 1. For positive integers a,b, and ¢ with a < b, set
[P @y, z,w) = az® + by® + o(2* + 2w+ w?), (z,y,2,w € ).
(1) Every nonnegative integer can be represented by f&° if and only if

(1,b,1) (b=1,2,3,4,5,6),
(2,0,1)  (b=2,3,4,5,6,7,8,9,10),
(a,b,¢) ={ (1,6,2) (b=1,2,3,4,5),
(
(

(2) If f(‘}’b represents 1,2,3,5,6, and 10, then it can represent all the nonnegative
integers.

2. Notations and Preliminaries

To prove Theorem 1, we follow Ramanujan by introducing
2 > (n+1) 2 2
@)=Y _¢", @)=Y _q¢ 7 ,alg)= > ¢, (¢€C, |gl < 1),
neZ n=0 m,neZ

and we apply the following identities:

a(q) = a(q") + 6qv(¢*)v(d°), v(@)e(d®) = alq®) + 2qv(q°)Y(q®). (1)

For the proofs of these formulas, see Berndt [1, pp. 232] and Hirschhorn et al. [5].
For fixed positive integers a and ¢, and for each n € Ny, we define

Ai(n) =t {(z,y,2) € Z°|n = f§ (,0,y,2)} .
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Moreover, for fixed positive integers a, b, and ¢, and for each n € Ny, we set

rap(n) =t {(z,y) € Z° |n = az® + by*},
tas(n) =t {(z,y) € N2|n = at, + by},
rabp(n):]j{(a:, 2) € Z3 | n = ax? + by? +cz}
Ma-b,e(n) =t {(z,y, 2 ) EZxNj|n=az®+bt,+ct.}.

3. The Case Where ¢ =1

Lemma 1. Suppose that 1 < a <b, c=1, and f»° can represent all the nonnega-
tive integers. Then, a =1 or 2.

Proof. From the supposition, n = 2 can be written as

2 =ax® + by + (2* + 2w+ w?), (z,y,2,w € 7).
On the other hand, n = 2 cannot be written as z? + zw + w? with z,w € Z, which
implies that a = 1, 2. ]
3.1. The Case Where a =1
We use the following result, which was introduced by Dickson [3, pp. 112-113]:

Lemma 2. A nonnegative integer n can be written as x +y° + 322 with x,y,2 € Z
if and only if n # 9%(91 4 6), (k,1 € Np).

As a consequence of Lemma 2, we have the following proposition:

Proposition 1. A nonnegative integer n can be written as 2 + (y? +yz + 22) with
x,y, 2 € Z if and only if n # 9¥(91 +6), (k,1 € Np).

Proof. By multiplying both sides of (1) by ¢(g), we have that

)
e(q)alq) =p(q)alq*) + 6qp(q)v(q*)(d°),
o(q)*0(q*) =p(q)alq*) + 2q0(q) v (¢*)¥(¢°),

which implies that

> Ai(n) ZA4 n)g" +6q Y mize(n)g", (2)
n=0 n=0

o0
27“1,1,3 ZA4 n)q" +2qzm126 n)q". (3)
n=0

n=0
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In our present notation, Lemma 2 states that n # 9%(91 +6), (k,! € Ny) if and only
if r1,1,3(n) > 0. By equating coefficients in (3), we see that Lemma 2 is equivalent
to AX(n) > 0ormi.se(n—1) > 0, which in turn is equivalent to A}(n) > 0 from (2).
Therefore, as A} (n) is the number of ways n can be represented as 2%+ (y%+yz+22),
the proposition follows. O

By Proposition 1, we obtain the following theorem:

Theorem 2. Any nonnegative integer n can be represented by fll’b if and only if
b=1,2,3,4,5, or6.

Proof. We first prove the “only if” direction. Therefore, n = 6 can be represented
by
6 = 2% + by? + (2% + 2w +w?), z,9,z,w € Z.

On the other hand, Proposition 1 shows that n = 6 cannot be written as 2 + (22 +
2w + w?), which implies that b =1,2,3,4,5,6.

In order to establish the “if” direction, we need only prove that f11 ° represents
n =90+ 6 with [ € Ny.

When b=1,2,3,4 or 5, we can set y = 1 to obtain that

nfbyQ:9l+6*b’125554737271m0d93

which can be written as 22 + (22 + 2w + w?) with z, 2, w € Z.
Suppose that b = 6. Then, if n =6 or 15, or [ = 2 or 8mod 9, we can set y = 1
to obtain that
n—6-12=9, (I=0,1orl =2,8mod9),

which can be represented as 2% + (22 + zw + w?) with x, z, w € Z.
If I > 2 and [ # 2 or 8mod 9, then by taking y = 2 we have that

n—6-22=91+6-24=9(-2),
which can be written as 22 + (22 + zw + w?) with z, 2, w € Z. O

3.2. The Case Where a = 2
We use the following result, which was proved by Dickson [2]:
Lemma 3.

(1) A nonnegative integer n can be written as x> + 2y* + 322 with x,y,z € Z if
and only if n # 4%(161 4 10) with k,1 € Ny.

(2) A nonnegative integer n can be written as 2+ 2(y? +yz + 22) with x,y,z € Z
if and only if n # 4% (81 + 5) with k, 1 € N.
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From Lemma 3, we obtain the following proposition:

Proposition 2. A nonnegative integer n can be written as 2z2 + (y* + yz + 2?)
with z,y,z € Z if and only if n # 4% (161 + 10) with k, 1 € Np.

Proof. By multiplying both sides of (1) by ¢(¢?), we have that

a) =¢(¢*)alq") + 6q0(q*)v(a*) ¥ (q°),
) =p(g®)alg*) + 2q0(¢*)¥(a*)(d°),

which implies that

S Bt =3 AN + 60 S mias(N)gY, (4)
n=0 n=0 N=0
> riaan)g” =Y ASN)PN +2¢ Y miaa(N)g®N. (5)
n=0 N=0 N=0

Suppose that n is even and n = 2N. In our notation, Lemma 3 states that
n # 4%(161 4 10), (k,1 € Np) if and only if 71 2 3(n) > 0. By equating coefficients in
(5), we see that Lemma 3 is equivalent to A3(N) > 0, which in turn is equivalent to
A3(n) > 0 from (4). Therefore, as A%(n) is the number of ways n can be represented
by 222 + (y? + yz + 22), the proposition follows.

Suppose that n is odd and n = 2N + 1. In the same way, Lemma 3 states that
n # 4%(161 4 10), (k,1 € Np) if and only if 71 2 3(n) > 0. By equating coefficients in
(5), we see that Lemma 3 is equivalent to mi.1,3(IN) > 0, which in turn is equivalent
to A2(n) > 0 from (4). Therefore, the proposition follows. O

From Proposition 2, we obtain the following theorem:

Theorem 3. Suppose that 2 < b. Then, f12’b can represent all the nonnegative
integers if and only if b=2,3,4,5,6,7,8,9, or 10.

Proof. We first treat the “only if” direction. From the supposition, n = 10 can be
represented by

10 = 222 + by? + (22 + 2w + w?), x,y, 2,w € Z.

Proposition 2 shows that n = 10 cannot be written as 222 + (22 + zw + w?), which
implies that 2 < b < 10.

In order to establish the “if” direction, we need only prove that f12 ° represents
n = 16! 4+ 10 with [ € Ny.

When b # 2 or 10, we can take y = 1 to obtain that

n—by® =161+ 10 —b- 12 # 0,8, 10 mod 16,
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which can be written as 222 + (22 + zw + w?) with x, z,w € Z.
When b = 2, we take y = 2 to obtain that

n—2-22=160+10 — 8 = 16l + 2,

which can be represented as 222 + (22 + zw + w?) with z,z,w € Z.
Finally, suppose that b = 10. If n = 10 or 26, then setting y = 1 yields that

n—10-12=0 or 16,

which can be written as 222 + (22 + zw + w?) with x, z,w € Z.
If [ > 2, then by taking y = 2 we have that

n—10-2% =16 + 10 — 40 = 16(1 — 2) + 2,

which can be represented as 222 + (22 + zw + w?) with z,z,w € Z. O

3.3. Summary
From Theorems 2 and 3 and their proofs, we obtain the following theorem:
Theorem 4. Let a and b be positive integers with a < b.

(1) Any nonnegative integer can be represented by ff’b if and only if the pair (a,b)
is given by one of the following:

(a b) _ (17b) (b: 172733435,6)7
O (@2,0) (b=2,3,4,5,6,7,8,9,10).

(2) If fla’b represents 1,2,6, and 10, then it can represent all the nonnegative
integers.
Furthermore, we obtain the following theorem:

Theorem 5. For fized positive integers a and c, set
[z, y,2) = ax® + c(y® + yz + 2%) with z,y,z € Z.

Then, there exist no positive integers a and c such that f¢ can represent all the
nonnegative integers.

Proof. Suppose that there exist such positive integers a and c. By taking n = 1, we
have that a =1 or ¢ = 1.

Suppose that a = 1. Then, the choice of n = 2 implies that ¢ = 1 or 2. On the
other hand, if (a,c) = (1,1) or (1, 2), then it follows from Proposition 1 and Lemma
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3 that there exist positive integers that cannot be expressed by fi or fi, which is
contradiction.

Suppose that ¢ = 1. Then, the choice of n = 2 implies that a = 1 or 2. If
(a,¢) = (1,1),(2,1), then it follows from Propositions 1 and 2 that there exist
positive integers that cannot be expressed by fi or fi, which is contradiction. [J

Remark. In [3, pp.104], Dickson proved that there exist no positive integers a,b
and c such that ax? 4 by? + cz2, with x,y, z € Z, can represent all the nonnegative
integers.

4. The Case Where ¢ = 2

From Lemma 3 (2), we can obtain the following theorem:

Theorem 6. Suppose that 1 < a < b. Then, fga’b can represent all the nonnegative
integers if and only if a =1 and b=1,2,3,4, or 5.

Proof. We first deal with the “only if” direction. By choosing n = 1, we see that
a = 1. By taking n = 5, we find that

5=a% 4+ by? +2(2% + 2w + w?), (2,9,2,w € 7).

Lemma 3 (2) states that n = 5 cannot be written as 22 + 2(22 + zw + w?), which
implies that 1 < b < 5.

In order to establish the “if” direction, we need only prove that f21 ° represents
n =8l + 5, with [ € Ng.

We first consider the case that b = 1. By taking y = 2, we obtain that

n—1-22=81+5—-4=8l+1,

which can be represented as x? + 2(22 + zw + w?) with z, 2z, w € Z.
When b= 2,3, or 4, we set y = 1 to obtain that

n—by?=81+5—-b-12=3,2, or 1 mod8,

which can be written as 2% + 2(22 + zw + w?) with =, z,w € Z.
Finally, we suppose that b = 5. If [ = 0 or 1, then by taking y = 1 we obtain that

n—5-12=8l+5—-5=0or 8,

which can be represented as 22 + 2(22 + zw + w?) with x, z,w € Z.
If [ > 2, then by taking y = 2 we have that

n—>5-22=814+5-20=8(1-2)+1,

which can be written as 22 + 2(2% + zw + w?) with x, z,w € Z. O
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From the proof of Theorem 6, we obtain the following theorem:

Theorem 7. If fg’b represents 1 and 5, then it can represent all the nonnegative
integers.

5. The Case Where ¢ = 3

We use the following result, which was given by Dickson [3, pp. 112-113]:

Lemma 4. A nonnegative integer n can be written as v+ 3y%+92% with x,y,z € Z
if and only if n # 31 + 2 or 9%(91 + 6), with k,1 € Ny.

Using Lemma 4, we obtain the following proposition:

Proposition 3. A nonnegative integer n can be written as x? + 3(y* + yz + 2?)
with z,y,z € Z if and only if n # 31+ 2 or 9%(91 + 6), with k, 1 € N.

Proof. By replacing ¢ with ¢® in (1), we have that

a(q®) =a(q"?) + 6¢*(¢°)v(q"®),
o(*)e(q”) =alq™) + 2¢°%(°)(¢"®).

By multiplying both sides of these equations by ¢(g), we obtain that

o(q)a(q®) =p(q)a(q™) + 64°0(q)v(¢°)¥(q"®),
o(@)e(d*)e(q”) =p(@)a(q™?) + 2¢°0(q) v (¢°)v(q"®),
which implies that
Z Az(n)g" = Z Aly(n)g" + 6¢° Z mi-6,18(n)q", (6)
n=0 n=0 n=0
D rise(m)g” = Alb()g" +2¢° > magas(n)g™ (7)
n=0 n=0 n=0

In our notation, Lemma 4 states that n # 31 + 2, 9%(91 + 6), (k,l € Ny) is
equivalent to 71 39(n) > 0. By equating coefficients in (7), we see that Lemma 4
is equivalent to Al,(n) > 0 or mig1s(n — 3) > 0, which in turn is equivalent to
Al(n) > 0 from (6). Therefore, as A}(n) is the number of ways n can be represented
by 2% + 3(y? + yz + 2?), the proposition follows. O

Noting that a = 1 if fy * can represent all the nonnegative integers, we obtain
the following theorem:
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Theorem 8. Suppose that 1 < a < b. Then, fg’b can represent all the nonnegative
integers if and only if a =1 and b = 2.

Proof. First, let us prove the “only if” direction. The choice of n = 1 implies that
a = 1. Proposition 3 implies that b = 1 or 2. Assume that b = 1, and

6 = 2% + 9% + 3(22 + 2w + w?) with z,y, z,w € Z,

which implies that 22 + zw+w? = 1, # 0, 2. Then, it follows that 22 +y? = 3, which
is impossible.

In order to establish the “if” direction, we need only prove that fé ? can represent
n =30+ 2 or 9] + 6, with [ € Nj.

Suppose that n = 31 4+ 2. We first consider the case where [ = Omod 3. It is
obvious that f§’2 can represent n = 2. When [ > 1 and [ = O0mod 3, we obtain that

n—2-22=314+2-8=3(-2),

which can be written as 22 + 3(22 + zw + w?) with x, z,w € Z.
When [ = 1 mod 3, by taking y = 1, we have that

n—2y?=31+2-2=3l,

which can be written as 22 + 3(22 + zw + w?) with =, z,w € Z.
Assume that [ = 2mod 3. For [ = 2,5, or 8, we set y = 2 to obtain that

n—2-22=314+2-2-22=0,9,9-2,

which can be represented as z? + 3(2% + 2w + w?) with z, z,w € Z. If | > 11 and
l =3L + 2 with L € Ny, then by taking y = 4 we have that

n—2-42=314+2-2-4>=3{3(L - 3) + 1},

which can be written as 2% + 3(22 + zw + w?) with z, z,w € Z.
Finally, we suppose that n = 9] + 6. By taking y = 1, we have that

n—2y>=91+6-2=9+4=1mod3,
which can be represented as 2% + 3(22 + zw + w?) with z, z,w € Z. O

From the proof of Theorem 8, we obtain the following theorem:

Theorem 9. If fg’b represents 1,2, and 6, then it can represent all the nonnegative
integers.
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6. The Case Where ¢ = 4

We use the following result that was proved by Dickson [3, pp. 112-113]:

Lemma 5. A nonnegative integer n can be written as 2 +4y>+1222 with x,y, 2z € Z
if and only if n # 41 + 2, 41 + 3, or 9%(91 + 6), with k,l € Ny.

Using Lemma 5, we obtain the following proposition:

Proposition 4. A nonnegative integer n can be written as x + 4(y? + yz + 22)
with x,y, z € Z if and only if n # 41 + 2, 41 + 3, or 9%(91 + 6), with k,l € Ny.

Proof. By replacing ¢ by ¢* in (1), we have that

a(q') =a(q"®) + 64" (¢*)y(¢**),
o(q") (") =a(q"%) + 24" () (™).

By multiplying both sides of these equations by ¢(g), we obtain that

e(q)alq*) =p(q)a(q"®) + 6q*0(q)v(¢*)Y(¢**),

p(@)v(a)e(a'?) =p(9)alq"®) + 24" ¢(0)(¢*)¥(4*),
which implies that
D Al =) Als(n)g" + 64" > migau(N)g", (8)
n=0 n=0 N=0
D riana(n)g” =Y Alg(n)q" +24" Y masaa(N)g". (9)
n=0 n=0 N=0

In our notation, Lemma 5 states that n # 4l + 2, 41 + 3, 9%(91 + 6), (k,l € Ny)
if and only if 71 4,12(n) > 0. By equating coefficients in (9), we see that Lemma 5
is equivalent to Aig(n) > 0 or myg24(n —4) > 0, which in turn is equivalent to
Al(n) > 0 from (8). Therefore, as A}(n) is the number of ways n can be represented
by 22 + 4(y? + yz + 2?), the proposition follows. O

Noting that a = 1 and b = 2 if fy b can represent all the nonnegative integers,
we obtain the following theorem:

Theorem 10. Any nonnegative integer n can be represented by ff’b if and only if
a=1andb=2.

Proof. We first treat the “only if” direction. By choosing n = 1, we see that a = 1.
By taking n = 2, we find that b = 1,2. Moreover, by choosing n = 3, we see that
b=2.
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In order to establish the “if” direction, we need only prove that fi 2 represents
n=4l+ 2, 41+ 3, and 9] + 6, with [ € Ny.
Suppose that n =4l 4+ 2. If [ £ 0 or 6 mod 9, then by taking y = 1 we have that

n—2y2=4l+2—-2=4l,

which can be represented as 2% + 4(2% + zw + w?), with z,z,w € Z. If | = 0 or
6 mod 9, then by taking y = 3 we obtain that

n—2y?=4l+2-2-3%=4(1—4),

which can be represented as 2% + 4(2% + 2w + w?) with z, 2, w € Z.
Suppose that n =41 + 3. If | # 2 or 8mod 9, then by taking y = 1 we have that

n—2y2=44+3-2=41+1%0,6mod9,

which can be represented as z? + 4(2? + 2w + w?) with z,z,w € Z. If | = 2 or
8 mod 9, then by taking y = 3 we obtain that

n—2y*=4+3-2-3=4(1-4)+1=2,8mod9,

which can be represented as 22 + 4(2% + 2w + w?) with z,z,w € Z. It is easy to
check that fi’Z can represent n = 11.

Suppose that n =90+ 6. If ] = 0mod 4 and [ = 4L with L € Ny, then by taking
y = 5 we have that

n—2y>=91+6-2-5%=4{9(L —2) + 7},

which can be written as 22 + 4(z? + zw + w?) with z, z,w € Z. It is easy to check
that fi’Q can represent n = 6 or 42.
If [ = 1mod 4, then by taking y = 1 we have that

n—2y2=914+6-2-12=9/+4 = 1mod4,

which can be represented as 2% + 4(2% + 2w + w?) with z, 2, w € Z.
If l=2mod4 and | = 4L + 2 with L € Ny, then by taking y = 4 we have that

n—2y*=91+6—2-4% = 4(9L — 2),

which can be written as 22 + 4(2% + zw + w?) with z, z,w € Z. It is easy to check
1,2
that f,’* can represent n = 24.
If [ = 3mod 4, then by taking y = 2 we have that

n—2y2=914+6-2-22=9]—2=1mod4,
which can be represented as 2% + 4(2% + zw + w?) with z,z,w € Z. O

From the proof of Theorem 10, we obtain the following result:

Theorem 11. If ff’b represents 1,2, and 3, then it can represent all the nonnegative
inlegers.
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7. The Case Where ¢ > 5

7.1. The Case Where ¢ =5

Theorem 12. There exist no positive integers a and b such that 1 < a < b and

b o
=" can represent all the nonnegative integers, where

by, z,w) = ax® + by? + 5(2% + 2w + w?).

Proof. Suppose that there exist such positive integers a and b. By considering n = 1,
we have that a = 1. Taking n = 2, we obtain that b = 1 or 2. Considering n = 3,
we have that (a,b) = (1,2).

Take n = 10. Then, n = 10 cannot be written as 2% + 2y? with z,y € Z, which
implies that 22 + zw + w? = 1, because 2 cannot be represented as 22 + zw + w?
with z,w € Z. Therefore, it follows that 5 = 10 — 5 - 1 can be written as 22 + 212
with x,y € Z, which is impossible. O

7.2. The Case Where c > 6

Theorem 13. There exist no positive integers a,b, and ¢ such that 1 < a < b,
c>6, and f&° can represent all the nonnegative integers.

Proof. Suppose that there exist such positive integers a,b, and c¢. By considering
n = 1, we have that a = 1. Taking n = 2, we obtain that b = 1 or 2. Considering
n = 3, we have that (a,b) = (1,2). On the other hand, n = 5 cannot be written as
x2 + 292 with z,y € Z. O

8. Proof of Theorem 1

Proof. Suppose that f&° can represent all the nonnegative integers. Then, Theo-
rems 12 and 13 show that ¢ =1,2,3,4. If ¢ = 1, Theorem 4 implies that

(a b) _ (lab) (b: 132737475a6)7
) (@2,0) (b=2,3,4,5,6,7,8,9,10).

If ¢ = 2, Theorem 6 shows that
(a,b) = (1,1),(1,2),(1,3),(1,4),(1,5).

If ¢ = 3, Theorem 8 implies that (a,b) = (1,2). If ¢ = 4, Theorem 10 implies that
(a,b) = (1,2). Therefore, the “only if ” direction of Theorem 1 (1) follows. The “if”
direction follows from Theorems 4, 6, 8, and 10.

We next prove Theorem 1 (2). From the proofs of Theorems 12, and 13, taking
n=1,2,3,5,10, we see that 1 < ¢ < 4.
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If ¢ = 1, from Theorem 4, choosing n = 1, 2,6, 10 implies that ff’b represents all
the nonngative integers. If ¢ = 2, from Theorem 7, taking n = 1,5 shows that fy b
represents all the nonngative integers. If ¢ = 3, from Theorem 9, choosingn =1, 2,6
implies that f3 b represents all the nonngative integers. If ¢ = 4, from Theorem 11,
taking n = 1, 2, 3 shows that ff’b represents all the nonngative integers. Therefore,
Theorem 1 (2) follows. O
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