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Abstract
In this paper, we determine all triplets of positive integers a, b, and c such that
every nonnegative integer can be represented as

fa,b
c (x, y, z, w) = ax2 + by2 + c(z2 + zw + w2) with x, y, z, w 2 Z.

Furthermore, we prove that fa,b
c can represent all the nonnegative integers if it

represents 1, 2, 3, 5, 6, and 10.

1. Introduction

Throughout this paper, we set N = {1, 2, 3, . . .} and N0 = {0, 1, 2, 3, . . .}, and Z
denotes the set of rational integers. In addition, the triangular numbers are tx =
x(x + 1)/2, (x 2 N0). Furthermore, a, b and c are fixed positive integers with 1 
a  b.

More than 200 years ago, Lagrange [4, pp. 279] proved one of the most celebrated
theorems in number theory, the Four Squares Theorem, which states that every
positive integer can be expressed as a sum of four squares. Since then, the universal
representability by a quadratic form has been becoming one of the most interesting
problems in number theory. Incredibly, Ramanujan [8] extended Lagrange’s theorem
to other positive definite quaternary quadratic forms ax2 + by2 + cz2 + du2, and
determined all of the positive integers a, b, c and d such that ax2 + by2 + cz2 + du2

can represent positive integers universally, totally 54 cases. Unlike Jacobi’s “proof”
to Lagrange’s theorem, which follows directly from his beautiful formula,

|{(x, y, z, u) 2 Z4 |n = x2 + y2 + z2 + u2}| = 8�(n)� 32�(n/4) > 0,

where �(n) =
P

d|n d, Ramanujan’s proofs rely on the representability of ternary
quadratic forms and their relations to the quaternary quadratic forms under inves-
tigation. For example, for Lagrange’s Four Squares Theorem, one first shows [3]
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that a positive integer n can be expressed as a sum of three squares if and only if
n 6= 4k(8l + 7) for any nonnegative integers k and l. Then if n 6= 4k(8l + 7), one
has n = x2 + y2 + z2 + 02; if n = 4k(8l + 7), then n = 4k(8l + 6) + (2k)2, where
n = 4k(8l + 6) is representable by a sum of three squares.

Inspired by Ramanujan’s proofs, in our recent work [7], using a similar strategy,
the author succeeded in extending his results to the quaternary quadratic poly-
nomials atx + bty + c(z2 + zw + w2). In this work, we aim to further extend the
previous work of Ramanujan to another type of quaternary quadratic forms, namely,
ax2 + by2 + c(z2 + zw + w2). We conclude this section by summarizing our main
results in the following theorem:

Theorem 1. For positive integers a, b, and c with a  b, set

fa,b
c (x, y, z, w) = ax2 + by2 + c(z2 + zw + w2), (x, y, z, w 2 Z).

(1) Every nonnegative integer can be represented by fa,b
c if and only if

(a, b, c) =

8>>>>>><
>>>>>>:

(1, b, 1) (b = 1, 2, 3, 4, 5, 6),
(2, b, 1) (b = 2, 3, 4, 5, 6, 7, 8, 9, 10),
(1, b, 2) (b = 1, 2, 3, 4, 5),
(1, 2, 3),
(1, 2, 4).

(2) If fa,b
c represents 1, 2, 3, 5, 6, and 10, then it can represent all the nonnegative

integers.

2. Notations and Preliminaries

To prove Theorem 1, we follow Ramanujan by introducing

'(q) =
X
n2Z

qn2
,  (q) =

1X
n=0

q
n(n+1)

2 , a(q) =
X

m,n2Z
qm2+mn+n2

, (q 2 C, |q| < 1),

and we apply the following identities:

a(q) = a(q4) + 6q (q2) (q6), '(q)'(q3) = a(q4) + 2q (q2) (q6). (1)

For the proofs of these formulas, see Berndt [1, pp. 232] and Hirschhorn et al. [5].
For fixed positive integers a and c, and for each n 2 N0, we define

Aa
c (n) = ]

�
(x, y, z) 2 Z3 |n = fa

0,c(x, 0, y, z)
 

.
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Moreover, for fixed positive integers a, b, and c, and for each n 2 N0, we set

ra,b(n) =]
�
(x, y) 2 Z2 |n = ax2 + by2

 
,

ta,b(n) =]
�
(x, y) 2 N2

0 |n = atx + bty
 

,

ra,b,c(n) =]
�
(x, y, z) 2 Z3 |n = ax2 + by2 + cz2

 
,

ma-b,c(n) =]
�
(x, y, z) 2 Z⇥ N2

0 |n = ax2 + bty + ctz
 

.

3. The Case Where c = 1

Lemma 1. Suppose that 1  a  b, c = 1, and fa,b
c can represent all the nonnega-

tive integers. Then, a = 1 or 2.

Proof. From the supposition, n = 2 can be written as

2 = ax2 + by2 + (z2 + zw + w2), (x, y, z, w 2 Z).

On the other hand, n = 2 cannot be written as z2 + zw + w2 with z, w 2 Z, which
implies that a = 1, 2.

3.1. The Case Where a = 1

We use the following result, which was introduced by Dickson [3, pp. 112-113]:

Lemma 2. A nonnegative integer n can be written as x2 +y2 +3z2 with x, y, z 2 Z
if and only if n 6= 9k(9l + 6), (k, l 2 N0).

As a consequence of Lemma 2, we have the following proposition:

Proposition 1. A nonnegative integer n can be written as x2 +(y2 + yz + z2) with
x, y, z 2 Z if and only if n 6= 9k(9l + 6), (k, l 2 N0).

Proof. By multiplying both sides of (1) by '(q), we have that

'(q)a(q) ='(q)a(q4) + 6q'(q) (q2) (q6),
'(q)2'(q3) ='(q)a(q4) + 2q'(q) (q2) (q6),

which implies that
1X

n=0

A1
1(n)qn =

1X
n=0

A1
4(n)qn + 6q

1X
n=0

m1-2,6(n)qn, (2)

1X
n=0

r1,1,3(n)qn =
1X

n=0

A1
4(n)qn + 2q

1X
n=0

m1-2,6(n)qn. (3)
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In our present notation, Lemma 2 states that n 6= 9k(9l + 6), (k, l 2 N0) if and only
if r1,1,3(n) > 0. By equating coe�cients in (3), we see that Lemma 2 is equivalent
to A1

4(n) > 0 orm1-2,6(n�1) > 0, which in turn is equivalent to A1
1(n) > 0 from (2).

Therefore, as A1
1(n) is the number of ways n can be represented as x2+(y2+yz+z2),

the proposition follows.

By Proposition 1, we obtain the following theorem:

Theorem 2. Any nonnegative integer n can be represented by f1,b
1 if and only if

b = 1, 2, 3, 4, 5, or 6.

Proof. We first prove the “only if” direction. Therefore, n = 6 can be represented
by

6 = x2 + by2 + (z2 + zw + w2), x, y, z, w 2 Z.

On the other hand, Proposition 1 shows that n = 6 cannot be written as x2 +(z2 +
zw + w2), which implies that b = 1, 2, 3, 4, 5, 6.

In order to establish the “if” direction, we need only prove that f1,b
1 represents

n = 9l + 6 with l 2 N0.

When b = 1, 2, 3, 4 or 5, we can set y = 1 to obtain that

n� by2 = 9l + 6� b · 12 ⌘ 5, 4, 3, 2, 1 mod 9,

which can be written as x2 + (z2 + zw + w2) with x, z, w 2 Z.

Suppose that b = 6. Then, if n = 6 or 15, or l ⌘ 2 or 8mod 9, we can set y = 1
to obtain that

n� 6 · 12 = 9l, (l = 0, 1 or l ⌘ 2, 8mod 9),

which can be represented as x2 + (z2 + zw + w2) with x, z, w 2 Z.

If l � 2 and l 6⌘ 2 or 8mod 9, then by taking y = 2 we have that

n� 6 · 22 = 9l + 6� 24 = 9(l � 2),

which can be written as x2 + (z2 + zw + w2) with x, z, w 2 Z.

3.2. The Case Where a = 2

We use the following result, which was proved by Dickson [2]:

Lemma 3.

(1) A nonnegative integer n can be written as x2 + 2y2 + 3z2 with x, y, z 2 Z if
and only if n 6= 4k(16l + 10) with k, l 2 N0.

(2) A nonnegative integer n can be written as x2 +2(y2 +yz +z2) with x, y, z 2 Z
if and only if n 6= 4k(8l + 5) with k, l 2 N0.
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From Lemma 3, we obtain the following proposition:

Proposition 2. A nonnegative integer n can be written as 2x2 + (y2 + yz + z2)
with x, y, z 2 Z if and only if n 6= 4k(16l + 10) with k, l 2 N0.

Proof. By multiplying both sides of (1) by '(q2), we have that

'(q2)a(q) ='(q2)a(q4) + 6q'(q2) (q2) (q6),
'(q)'(q2)'(q3) ='(q2)a(q4) + 2q'(q2) (q2) (q6),

which implies that

1X
n=0

A2
1(n)qn =

1X
n=0

A1
2(N)q2N + 6q

1X
N=0

m1-1,3(N)q2N , (4)

1X
n=0

r1,2,3(n)qn =
1X

N=0

A1
2(N)q2N + 2q

1X
N=0

m1-1,3(N)q2N . (5)

Suppose that n is even and n = 2N. In our notation, Lemma 3 states that
n 6= 4k(16l + 10), (k, l 2 N0) if and only if r1,2,3(n) > 0. By equating coe�cients in
(5), we see that Lemma 3 is equivalent to A1

2(N) > 0, which in turn is equivalent to
A2

1(n) > 0 from (4). Therefore, as A2
1(n) is the number of ways n can be represented

by 2x2 + (y2 + yz + z2), the proposition follows.
Suppose that n is odd and n = 2N + 1. In the same way, Lemma 3 states that

n 6= 4k(16l + 10), (k, l 2 N0) if and only if r1,2,3(n) > 0. By equating coe�cients in
(5), we see that Lemma 3 is equivalent to m1-1,3(N) > 0, which in turn is equivalent
to A2

1(n) > 0 from (4). Therefore, the proposition follows.

From Proposition 2, we obtain the following theorem:

Theorem 3. Suppose that 2  b. Then, f2,b
1 can represent all the nonnegative

integers if and only if b = 2, 3, 4, 5, 6, 7, 8, 9, or 10.

Proof. We first treat the “only if” direction. From the supposition, n = 10 can be
represented by

10 = 2x2 + by2 + (z2 + zw + w2), x, y, z, w 2 Z.

Proposition 2 shows that n = 10 cannot be written as 2x2 + (z2 + zw + w2), which
implies that 2  b  10.

In order to establish the “if” direction, we need only prove that f2,b
1 represents

n = 16l + 10 with l 2 N0.

When b 6= 2 or 10, we can take y = 1 to obtain that

n� by2 = 16l + 10� b · 12 6⌘ 0, 8, 10 mod 16,
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which can be written as 2x2 + (z2 + zw + w2) with x, z, w 2 Z.

When b = 2, we take y = 2 to obtain that

n� 2 · 22 = 16l + 10� 8 = 16l + 2,

which can be represented as 2x2 + (z2 + zw + w2) with x, z, w 2 Z.

Finally, suppose that b = 10. If n = 10 or 26, then setting y = 1 yields that

n� 10 · 12 = 0 or 16,

which can be written as 2x2 + (z2 + zw + w2) with x, z, w 2 Z.

If l � 2, then by taking y = 2 we have that

n� 10 · 22 = 16l + 10� 40 = 16(l � 2) + 2,

which can be represented as 2x2 + (z2 + zw + w2) with x, z, w 2 Z.

3.3. Summary

From Theorems 2 and 3 and their proofs, we obtain the following theorem:

Theorem 4. Let a and b be positive integers with a  b.

(1) Any nonnegative integer can be represented by fa,b
1 if and only if the pair (a, b)

is given by one of the following:

(a, b) =

(
(1, b) (b = 1, 2, 3, 4, 5, 6),
(2, b) (b = 2, 3, 4, 5, 6, 7, 8, 9, 10).

(2) If fa,b
1 represents 1, 2, 6, and 10, then it can represent all the nonnegative

integers.

Furthermore, we obtain the following theorem:

Theorem 5. For fixed positive integers a and c, set

fa
c (x, y, z) = ax2 + c(y2 + yz + z2) with x, y, z 2 Z.

Then, there exist no positive integers a and c such that fa
c can represent all the

nonnegative integers.

Proof. Suppose that there exist such positive integers a and c. By taking n = 1, we
have that a = 1 or c = 1.

Suppose that a = 1. Then, the choice of n = 2 implies that c = 1 or 2. On the
other hand, if (a, c) = (1, 1) or (1, 2), then it follows from Proposition 1 and Lemma
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3 that there exist positive integers that cannot be expressed by f1
1 or f1

2 , which is
contradiction.

Suppose that c = 1. Then, the choice of n = 2 implies that a = 1 or 2. If
(a, c) = (1, 1), (2, 1), then it follows from Propositions 1 and 2 that there exist
positive integers that cannot be expressed by f1

1 or f1
2 , which is contradiction.

Remark. In [3, pp.104], Dickson proved that there exist no positive integers a, b
and c such that ax2 + by2 + cz2, with x, y, z 2 Z, can represent all the nonnegative
integers.

4. The Case Where c = 2

From Lemma 3 (2), we can obtain the following theorem:

Theorem 6. Suppose that 1  a  b. Then, fa,b
2 can represent all the nonnegative

integers if and only if a = 1 and b = 1, 2, 3, 4, or 5.

Proof. We first deal with the “only if” direction. By choosing n = 1, we see that
a = 1. By taking n = 5, we find that

5 = x2 + by2 + 2(z2 + zw + w2), (x, y, z, w 2 Z).

Lemma 3 (2) states that n = 5 cannot be written as x2 + 2(z2 + zw + w2), which
implies that 1  b  5.

In order to establish the “if” direction, we need only prove that f1,b
2 represents

n = 8l + 5, with l 2 N0.

We first consider the case that b = 1. By taking y = 2, we obtain that

n� 1 · 22 = 8l + 5� 4 = 8l + 1,

which can be represented as x2 + 2(z2 + zw + w2) with x, z, w 2 Z.

When b = 2, 3, or 4, we set y = 1 to obtain that

n� by2 = 8l + 5� b · 12 ⌘ 3, 2, or 1 mod 8,

which can be written as x2 + 2(z2 + zw + w2) with x, z, w 2 Z.

Finally, we suppose that b = 5. If l = 0 or 1, then by taking y = 1 we obtain that

n� 5 · 12 = 8l + 5� 5 = 0 or 8,

which can be represented as x2 + 2(z2 + zw + w2) with x, z, w 2 Z.

If l � 2, then by taking y = 2 we have that

n� 5 · 22 = 8l + 5� 20 = 8(l � 2) + 1,

which can be written as x2 + 2(z2 + zw + w2) with x, z, w 2 Z.
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From the proof of Theorem 6, we obtain the following theorem:

Theorem 7. If fa,b
2 represents 1 and 5, then it can represent all the nonnegative

integers.

5. The Case Where c = 3

We use the following result, which was given by Dickson [3, pp. 112-113]:

Lemma 4. A nonnegative integer n can be written as x2+3y2+9z2 with x, y, z 2 Z
if and only if n 6= 3l + 2 or 9k(9l + 6), with k, l 2 N0.

Using Lemma 4, we obtain the following proposition:

Proposition 3. A nonnegative integer n can be written as x2 + 3(y2 + yz + z2)
with x, y, z 2 Z if and only if n 6= 3l + 2 or 9k(9l + 6), with k, l 2 N0.

Proof. By replacing q with q3 in (1), we have that

a(q3) =a(q12) + 6q3 (q6) (q18),
'(q3)'(q9) =a(q12) + 2q3 (q6) (q18).

By multiplying both sides of these equations by '(q), we obtain that

'(q)a(q3) ='(q)a(q12) + 6q3'(q) (q6) (q18),
'(q)'(q3)'(q9) ='(q)a(q12) + 2q3'(q) (q6) (q18),

which implies that

1X
n=0

A1
3(n)qn =

1X
n=0

A1
12(n)qn + 6q3

1X
n=0

m1-6,18(n)qn, (6)

1X
n=0

r1,3,9(n)qn =
1X

n=0

A1
12(n)qn + 2q3

1X
n=0

m1-6,18(n)qn. (7)

In our notation, Lemma 4 states that n 6= 3l + 2, 9k(9l + 6), (k, l 2 N0) is
equivalent to r1,3,9(n) > 0. By equating coe�cients in (7), we see that Lemma 4
is equivalent to A1

12(n) > 0 or m1-6,18(n � 3) > 0, which in turn is equivalent to
A1

3(n) > 0 from (6). Therefore, as A1
3(n) is the number of ways n can be represented

by x2 + 3(y2 + yz + z2), the proposition follows.

Noting that a = 1 if fa,b
3 can represent all the nonnegative integers, we obtain

the following theorem:
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Theorem 8. Suppose that 1  a  b. Then, fa,b
3 can represent all the nonnegative

integers if and only if a = 1 and b = 2.

Proof. First, let us prove the “only if” direction. The choice of n = 1 implies that
a = 1. Proposition 3 implies that b = 1 or 2. Assume that b = 1, and

6 = x2 + y2 + 3(z2 + zw + w2) with x, y, z, w 2 Z,

which implies that z2 +zw+w2 = 1, 6= 0, 2. Then, it follows that x2 +y2 = 3, which
is impossible.

In order to establish the “if” direction, we need only prove that f1,b
3 can represent

n = 3l + 2 or 9l + 6, with l 2 N0.

Suppose that n = 3l + 2. We first consider the case where l ⌘ 0mod 3. It is
obvious that f1,2

3 can represent n = 2. When l � 1 and l ⌘ 0mod 3, we obtain that

n� 2 · 22 = 3l + 2� 8 = 3(l � 2),

which can be written as x2 + 3(z2 + zw + w2) with x, z, w 2 Z.

When l ⌘ 1mod 3, by taking y = 1, we have that

n� 2y2 = 3l + 2� 2 = 3l,

which can be written as x2 + 3(z2 + zw + w2) with x, z, w 2 Z.

Assume that l ⌘ 2mod 3. For l = 2, 5, or 8, we set y = 2 to obtain that

n� 2 · 22 = 3l + 2� 2 · 22 = 0, 9, 9 · 2,

which can be represented as x2 + 3(z2 + zw + w2) with x, z, w 2 Z. If l � 11 and
l = 3L + 2 with L 2 N0, then by taking y = 4 we have that

n� 2 · 42 = 3l + 2� 2 · 42 = 3{3(L� 3) + 1},

which can be written as x2 + 3(z2 + zw + w2) with x, z, w 2 Z.

Finally, we suppose that n = 9l + 6. By taking y = 1, we have that

n� 2y2 = 9l + 6� 2 = 9l + 4 ⌘ 1mod 3,

which can be represented as x2 + 3(z2 + zw + w2) with x, z, w 2 Z.

From the proof of Theorem 8, we obtain the following theorem:

Theorem 9. If fa,b
3 represents 1, 2, and 6, then it can represent all the nonnegative

integers.
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6. The Case Where c = 4

We use the following result that was proved by Dickson [3, pp. 112-113]:

Lemma 5. A nonnegative integer n can be written as x2+4y2+12z2 with x, y, z 2 Z
if and only if n 6= 4l + 2, 4l + 3, or 9k(9l + 6), with k, l 2 N0.

Using Lemma 5, we obtain the following proposition:

Proposition 4. A nonnegative integer n can be written as x2 + 4(y2 + yz + z2)
with x, y, z 2 Z if and only if n 6= 4l + 2, 4l + 3, or 9k(9l + 6), with k, l 2 N0.

Proof. By replacing q by q4 in (1), we have that

a(q4) =a(q16) + 6q4 (q8) (q24),
'(q4)'(q12) =a(q16) + 2q4 (q8) (q24).

By multiplying both sides of these equations by '(q), we obtain that

'(q)a(q4) ='(q)a(q16) + 6q4'(q) (q8) (q24),
'(q)'(q4)'(q12) ='(q)a(q16) + 2q4'(q) (q8) (q24),

which implies that

1X
n=0

A1
4(n)qn =

1X
n=0

A1
16(n)qn + 6q4

1X
N=0

m1-8,24(N)qN , (8)

1X
n=0

r1,4,12(n)qn =
1X

n=0

A1
16(n)qn + 2q4

1X
N=0

m1-8,24(N)qN . (9)

In our notation, Lemma 5 states that n 6= 4l + 2, 4l + 3, 9k(9l + 6), (k, l 2 N0)
if and only if r1,4,12(n) > 0. By equating coe�cients in (9), we see that Lemma 5
is equivalent to A1

16(n) > 0 or m1-8,24(n � 4) > 0, which in turn is equivalent to
A1

4(n) > 0 from (8). Therefore, as A1
4(n) is the number of ways n can be represented

by x2 + 4(y2 + yz + z2), the proposition follows.

Noting that a = 1 and b = 2 if fa,b
4 can represent all the nonnegative integers,

we obtain the following theorem:

Theorem 10. Any nonnegative integer n can be represented by fa,b
4 if and only if

a = 1 and b = 2.

Proof. We first treat the “only if” direction. By choosing n = 1, we see that a = 1.
By taking n = 2, we find that b = 1, 2. Moreover, by choosing n = 3, we see that
b = 2.
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In order to establish the “if” direction, we need only prove that f1,2
4 represents

n = 4l + 2, 4l + 3, and 9l + 6, with l 2 N0.

Suppose that n = 4l + 2. If l 6⌘ 0 or 6mod 9, then by taking y = 1 we have that

n� 2y2 = 4l + 2� 2 = 4l,

which can be represented as x2 + 4(z2 + zw + w2), with x, z, w 2 Z. If l ⌘ 0 or
6mod 9, then by taking y = 3 we obtain that

n� 2y2 = 4l + 2� 2 · 32 = 4(l � 4),

which can be represented as x2 + 4(z2 + zw + w2) with x, z, w 2 Z.

Suppose that n = 4l + 3. If l 6⌘ 2 or 8mod 9, then by taking y = 1 we have that

n� 2y2 = 4l + 3� 2 = 4l + 1 6⌘ 0, 6mod 9,

which can be represented as x2 + 4(z2 + zw + w2) with x, z, w 2 Z. If l ⌘ 2 or
8mod 9, then by taking y = 3 we obtain that

n� 2y2 = 4l + 3� 2 · 32 = 4(l � 4) + 1 ⌘ 2, 8mod 9,

which can be represented as x2 + 4(z2 + zw + w2) with x, z, w 2 Z. It is easy to
check that f1,2

4 can represent n = 11.
Suppose that n = 9l + 6. If l ⌘ 0mod 4 and l = 4L with L 2 N0, then by taking

y = 5 we have that

n� 2y2 = 9l + 6� 2 · 52 = 4{9(L� 2) + 7},

which can be written as x2 + 4(z2 + zw + w2) with x, z, w 2 Z. It is easy to check
that f1,2

4 can represent n = 6 or 42.
If l ⌘ 1mod 4, then by taking y = 1 we have that

n� 2y2 = 9l + 6� 2 · 12 = 9l + 4 ⌘ 1mod 4,

which can be represented as x2 + 4(z2 + zw + w2) with x, z, w 2 Z.

If l ⌘ 2mod 4 and l = 4L + 2 with L 2 N0, then by taking y = 4 we have that

n� 2y2 = 9l + 6� 2 · 42 = 4(9L� 2),

which can be written as x2 + 4(z2 + zw + w2) with x, z, w 2 Z. It is easy to check
that f1,2

4 can represent n = 24.
If l ⌘ 3mod 4, then by taking y = 2 we have that

n� 2y2 = 9l + 6� 2 · 22 = 9l � 2 ⌘ 1mod 4,

which can be represented as x2 + 4(z2 + zw + w2) with x, z, w 2 Z.

From the proof of Theorem 10, we obtain the following result:

Theorem 11. If fa,b
4 represents 1, 2, and 3, then it can represent all the nonnegative

integers.
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7. The Case Where c � 5

7.1. The Case Where c = 5

Theorem 12. There exist no positive integers a and b such that 1  a  b and
fa,b
5 can represent all the nonnegative integers, where

fa,b
5 (x, y, z, w) = ax2 + by2 + 5(z2 + zw + w2).

Proof. Suppose that there exist such positive integers a and b. By considering n = 1,
we have that a = 1. Taking n = 2, we obtain that b = 1 or 2. Considering n = 3,
we have that (a, b) = (1, 2).

Take n = 10. Then, n = 10 cannot be written as x2 + 2y2 with x, y 2 Z, which
implies that z2 + zw + w2 = 1, because 2 cannot be represented as z2 + zw + w2

with z, w 2 Z. Therefore, it follows that 5 = 10 � 5 · 1 can be written as x2 + 2y2

with x, y 2 Z, which is impossible.

7.2. The Case Where c � 6

Theorem 13. There exist no positive integers a, b, and c such that 1  a  b,
c � 6, and fa,b

c can represent all the nonnegative integers.

Proof. Suppose that there exist such positive integers a, b, and c. By considering
n = 1, we have that a = 1. Taking n = 2, we obtain that b = 1 or 2. Considering
n = 3, we have that (a, b) = (1, 2). On the other hand, n = 5 cannot be written as
x2 + 2y2 with x, y 2 Z.

8. Proof of Theorem 1

Proof. Suppose that fa,b
c can represent all the nonnegative integers. Then, Theo-

rems 12 and 13 show that c = 1, 2, 3, 4. If c = 1, Theorem 4 implies that

(a, b) =

(
(1, b) (b = 1, 2, 3, 4, 5, 6),
(2, b) (b = 2, 3, 4, 5, 6, 7, 8, 9, 10).

If c = 2, Theorem 6 shows that

(a, b) = (1, 1), (1, 2), (1, 3), (1, 4), (1, 5).

If c = 3, Theorem 8 implies that (a, b) = (1, 2). If c = 4, Theorem 10 implies that
(a, b) = (1, 2). Therefore, the “only if ” direction of Theorem 1 (1) follows. The “if”
direction follows from Theorems 4, 6, 8, and 10.

We next prove Theorem 1 (2). From the proofs of Theorems 12, and 13, taking
n = 1, 2, 3, 5, 10, we see that 1  c  4.
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If c = 1, from Theorem 4, choosing n = 1, 2, 6, 10 implies that fa,b
1 represents all

the nonngative integers. If c = 2, from Theorem 7, taking n = 1, 5 shows that fa,b
2

represents all the nonngative integers. If c = 3, from Theorem 9, choosing n = 1, 2, 6
implies that fa,b

3 represents all the nonngative integers. If c = 4, from Theorem 11,
taking n = 1, 2, 3 shows that fa,b

4 represents all the nonngative integers. Therefore,
Theorem 1 (2) follows.

Acknowledgments. We are grateful to Professor K.S. Williams, Professor Kato,
and the referee for their useful suggestions. This work was supported by JSPS
KAKENHI Grant Number JP17K14213.

References

[1] B. C. Berndt, Ramanujan’s Notebooks. Part III, Springer-Verlag, New York, 1991.

[2] L. E. Dickson, Integers represented by positive ternary quadratic forms, Bull. Amer. Math.
Soc. 33 (1927), 63-70.

[3] L. E. Dickson, Modern Elementary Theory of Numbers, University of Chicago Press, Chicago,
1939.

[4] L. E. Dickson, History of the Theory of Numbers. Vol. II: Diophantine Analysis. Dover
Publications, New York, 2005.

[5] M. Hirschhorn, F. Garvan, and J. Borwein, Cubic analogues of the Jacobian theta function
✓(z, q), Canad. J. Math. 45 (1993), 673-694.

[6] C. G. J. Jacobi, Fundamenta Nova Theoriae Functionum Ellipticarum, Bornträger, Re-
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