ON RELATED BINOMIAL HARMONIC IDENTITIES

Anthony Sofo
College of Engineering and Science, Victoria University, Melbourne, Australia
anthony.sofo@vu.edu.au

Received: 10/20/17, Revised: 5/10/18, Accepted: 7/24/18, Published: 8/17/18

Abstract
We develop new closed form representation of a positive sum of reciprocal binomial coefficients and its alternating counterpart. We also identify new integral and hypergeometric representations for the binomial-harmomic number sums.

1. Introduction
In this paper we are interested in the closed form expressions of the two related binomial sums

\[S(j, k, q) = \sum_{n=1}^{\infty} \frac{1}{(qkn + j \choose k)}, \]

and its alternating counterpart

\[A(j, k, q) = \sum_{n=1}^{\infty} \frac{(-1)^n}{(qkn + j \choose k)}. \]

The results in this paper add to the literature and are sums that are not considered in the recently published research results of [1] and [2]. Moreover, the work in this paper generalizes and extends the work of [10]. First we recall some definitions of some special functions that will be useful throughout this paper. The Gamma function, for \(z \in \mathbb{C} \), as given by Euler in integral form, is

\[\Gamma(z) = \int_{0}^{\infty} e^{-t} t^{z-1} dt, \quad \Re(z) > 0, \]

where the special case for \(z \in \mathbb{N} \) reduces to, from the recurrence relation, \(\Gamma(n + 1) = n\Gamma(n) = n! \). The Pochhammer, or shifted factorial, is defined by \((\lambda)_n = \frac{\Gamma(\lambda+n)}{\Gamma(\lambda)}\).
The Beta function, or Euler integral of the first kind, is

$$B(z, w) = \frac{1}{\Gamma(z) \Gamma(w)} \int_0^1 t^{z-1} (1 - t)^{w-1} \, dt, \quad \Re(z) > 0, \Re(w) > 0.$$

Let

$$H_n = \sum_{r=1}^{n} \frac{1}{r} = \int_0^1 \frac{1 - t^n}{1 - t} \, dt = \gamma + \psi(n + 1) = \sum_{j=1}^{\infty} \frac{n}{j(j+n)}, \quad H_0 := 0$$

be the nth harmonic number, where γ denotes the Euler-Mascheroni constant, $H_n^{(m)} = \sum_{r=1}^{n} \frac{1}{r^m}$ is the mth order harmonic number, and $\psi(z)$ is the Digamma (or Psi) function defined by

$$\psi(z) := \frac{d}{dz} \{\log \Gamma(z)\} = \frac{\Gamma'(z)}{\Gamma(z)} \quad \text{and} \quad \psi(1 + z) = \psi(z) + \frac{1}{z}.$$

Moreover

$$\psi(z) = -\gamma + \sum_{n=0}^{\infty} \left(\frac{1}{n + 1} - \frac{1}{n + z} \right).$$

A generalized hypergeometric function is defined by

$$p_{Fq} [z] = p_{Fq} \left[\begin{array}{c} a_1, a_2, \ldots, a_p \n b_1, b_2, \ldots, b_q \end{array} \right] \left(z \right) = p_{Fq} [(a_p) ; (b_q) \mid z]$$

$$= \sum_{n \geq 0} (a_1)_n \ldots (a_p)_n \frac{z^n}{(b_1)_n \ldots (b_q)_n \ n!} = \sum_{n \geq 0} \frac{\prod_{j=1}^{p} (a_j)_n \ z^n}{\prod_{j=1}^{q} (b_j)_n \ n!}$$

(1)

for b_j non-negative integers or zero. When $p \leq q$, $p_{Fq} [z]$ converges for all complex values of z, $p_{Fq} [z]$ is an entire function. When $p > q + 1$, $p_{Fq} [z]$ converges for $z = 0$ if it terminates, which it does when one of the parameters a_j is a negative integer, and hence $p_{Fq} [z]$ is a polynomial in z. When $p = q + 1$ the series converges in the unit disc $|z| < 1$, and also for $|z| = 1$ provided that $\Re \left(\sum_{j=1}^{p} b_j - \sum_{j=1}^{p} a_j \right) > 0.$

When $p = 2, q = 1$ we have the familiar Gauss hypergeometric function

$$2_{F1} \left[\begin{array}{c} a, b
 c \end{array} \right] \left(z \right) = \frac{\Gamma(c)}{\Gamma(b) \Gamma(c - b)} \int_0^1 t^{b-1} (1 - t)^{c-b-1} (1 - zt)^{-1} \, dt,$$

where $|z| < 1, \Re (c - b) > 0$ and $\Re (b) > 0$. In the subsequent analysis we shall also employ the consecutive derivative operator of the inverse binomial,

$$\frac{d^{(m)}}{dz^{(m)}} \left(\binom{q k n + j}{k} \right)^{-1},$$
and investigate the resulting binomial harmonic sum

\[S^{(m)}(j,k,q) = \sum_{n=1}^{\infty} \frac{d(j)}{d(j)^{(m)}} \left(\frac{q kn + j}{k} \right)^{-1} \]

and its alternating counterpart

\[A^{(m)}(j,k,q) = \sum_{n=1}^{\infty} (-1)^n \frac{d(j)}{d(j)^{(m)}} \left(\frac{q kn + j}{k} \right)^{-1} \].

The following lemma will be useful in the development of the main theorem.

Lemma 1. Let \(p(n) \) and \(q(n) \) be polynomials in \(n \) where all the roots of \(q(n) \) are simple. Assume no root of \(q(n) \) is in \(\mathbb{N} \) and let \(\deg(p(n)) \leq \deg(q(n) - 2) \). Let \(v_n = \frac{p(n)}{q(n)} \). Then

\[\sum_{n=0}^{\infty} v_n = -\sum_{r=1}^{k} \alpha_r \psi(\beta_r) \tag{2} \]

where

\[v_n = \frac{p(n)}{q(n)} = \sum_{r=1}^{k} \frac{\alpha_r}{n + \beta_r}. \tag{3} \]

Proof. From \(v_n = \frac{p(n)}{q(n)} \) we have \(\sum_{n=0}^{\infty} v_n = \sum_{n=0}^{\infty} \frac{p(n)}{q(n)} \). By partial fraction expansion, \(v_n = \sum_{r=1}^{k} \frac{\alpha_r}{n + \beta_r} \) since all the roots of \(q(n) \) are simple. For the series \(\sum_{n=0}^{\infty} v_n \) to converge it suffices to have \(\lim_{n \to \infty} n v_n = 0 \), in which case \(\sum_{r=1}^{k} \alpha_r = 0 \). Now

\[\sum_{n=0}^{\infty} v_n = \sum_{n=0}^{\infty} \sum_{r=1}^{k} \frac{\alpha_r}{n + \beta_r} = \sum_{n=0}^{\infty} \sum_{r=1}^{k} \alpha_r \left(\frac{1}{n + \beta_r} - \frac{1}{n + 1} \right) \]

\[= \sum_{r=1}^{k} \alpha_r \sum_{n=0}^{\infty} \left(\frac{1}{n + \beta_r} - \frac{1}{n + 1} \right) \]

\[= -\sum_{r=1}^{k} \alpha_r \left(\gamma + \psi(\beta_r) \right) \]

\[= -\sum_{r=1}^{k} \alpha_r \psi(\beta_r) \]

and the lemma is proved. \(\square \)
2. Closed Form Summation

We now prove the following theorems.

Theorem 1. Let $k \in \mathbb{N} \setminus \{1\}$, $j \in (-1, \infty)$ and $q \in R^+$, then we have the novel representation

\[
S(j, k, q) = \sum_{n=1}^{\infty} \frac{1}{q^{kn} + j} = \frac{1}{q} \sum_{r=1}^{k} (-1)^{r+k+1} \binom{k-1}{r-1} \psi\left(\frac{q^k + 1 - r + j}{qk}\right).
\]

(4)

The case $j = 0$ reduces to

\[
S(0, k, q) = \sum_{n=1}^{\infty} \frac{1}{q^{kn}} = \frac{1}{q} \sum_{r=1}^{k} (-1)^{r+k+1} \binom{k-1}{r-1} \psi\left(\frac{q^k + 1 - r}{qk}\right).
\]

(5)

Also

\[
S(0, k, q) = \frac{1}{q} \sum_{r=1}^{k} (-1)^{r+k+1} \binom{k-1}{r-1} \left(\psi\left(\frac{r-1}{qk}\right) + \pi \cot\left(\frac{\pi(r-1)}{qk}\right)\right).
\]

(6)

Proof. Consider the expansion,

\[
S(j, k, q) = \sum_{n=1}^{\infty} \frac{1}{q^{kn} + j} = \frac{1}{q!} \sum_{n=1}^{\infty} \frac{1}{(qn+j)!} \psi\left(\frac{q^k + 1 - r + j}{qk}\right).
\]

(4)

\[
= k! \sum_{n=1}^{\infty} \frac{1}{qn + j + 1 - r} = k! \sum_{n=1}^{\infty} \frac{1}{(qn + j + 1 - k)_k}
\]

where Pochhammer’s symbol $(x)_n = \frac{\Gamma(x+n)}{\Gamma(x)}$. By partial fraction decomposition we have

\[
S(j, k, q) = \frac{1}{q} \sum_{r=1}^{k} (-1)^{r+k+1} \binom{k-1}{r-1} \sum_{n=0}^{\infty} \left(\frac{1}{n+1} - \frac{1}{n + \frac{q^k + 1 + j + r}{qk}}\right),
\]

\[
= \frac{1}{q} \sum_{r=1}^{k} (-1)^{r+k+1} \binom{k-1}{r-1} \sum_{n=0}^{\infty} \left(\frac{1}{n+1} - \frac{1}{n + \frac{q^{k+1+j+r}}{qk}}\right).
\]

(6)
and applying Lemma 1 we conclude
\[
S(j, k, q) = \frac{1}{q} \sum_{r=1}^{k} (-1)^{r+k+1} \binom{k-1}{r-1} \psi\left(\frac{qk+1+j-r}{qk}\right)
\]
and (4) follows. For \(j = 0 \) (5) follows. By the reflection formula of the Digamma function \(\psi(1-z) = \psi(z) + \pi \cot \pi z \), then (6) follows. Utilizing the definition (1), for the hypergeometric function, we can write
\[
S(j, k, q) = \frac{1}{kq+j} F_{kq} \left[\begin{array}{c} kq+j+1-k, kq+j+2-k, \ldots, 2qk-j-k \\ kq-kq, kq+1-kq, \ldots, kq+j-kq \end{array} \middle| 1 \right].
\]

\(\square \)

We remark that in the interesting paper [10], Nimbran considers the representation of
\[
\frac{1}{k!} S(0, k, 1) = \sum_{n=1}^\infty \frac{(nk-k)!}{(nk)!},
\]
for \(k \in \mathbb{N} \setminus \{1\} \), in closed form and evaluates \(S(0, k, 1) \) for \(k = \{2, 3, 4, 5, 6, 8, 10, 12\} \). In particular \(S(0, 2, 1) = \ln 2 \) is listed in [7], \(S(0, 3, 1) = \frac{\sqrt{3}}{12} - \frac{1}{2} \ln 3 \) and \(S(0, 4, 1) = \frac{1}{4} \ln 2 - \frac{\pi}{24} \) are listed in [9]. Nimbran’s search of the literature yields no other evaluation of \(S(0, k, 1) \) for \(k \geq 5 \) and then sets out to evaluate \(S(0, k, 1) \) for \(k = \{5, 6, 8, 10, 12\} \). Nimbran claims \(S(0, 10, 1) \) is difficult to evaluate and finds it impossible to evaluate \(S(0, k, 1) \) for any other values of \(k \). Nimbran’s method of evaluating \(S(0, k, 1) \) is indeed ingenious and relies on the representation
\[
\ln p = \sum_{m=1}^{p} \left(\sum_{r=1}^{m-1} \left(\frac{1}{mp+r-m} - \frac{1}{mp} \right) \right),
\]
which is a generalization of an identity given by Euler in 1734 [6]. We therefore see that the representation (4) gives a general identity for \(S(j, k, q) \) for every \(k \in \mathbb{N} \setminus \{1\} \). Also recently [11], using a generalized binomial theorem in terms of Bell polynomials, evaluates some sums involving inverse binomial coefficients. The same technique is also used to calculate a class of hypergeometric transformation formulas, hence, there is still interest in evaluating binomial sums.

The following corollary applies.

Corollary 1. Let \(k \in \mathbb{N} \setminus \{1\}, \ j \in (-1, \infty) \) and \(q \in R^+ \), then we have the representation
\[
T(j, k, q) = \sum_{n=1}^\infty \frac{1}{2qkn+j} = \frac{1}{2q} \sum_{r=1}^{k} (-1)^{r+k+1} \binom{k-1}{r-1} \psi\left(\frac{2qk+1+j-r}{2qk}\right).
\]
The case \(j = 0 \) reduces to

\[
T(0, k, q) = \sum_{n=1}^{\infty} \frac{1}{2q kn} = \frac{1}{2q} \sum_{r=1}^{k} (-1)^{r+k+1} \binom{k-1}{r-1} \psi\left(\frac{2qk+1-r}{2qk}\right).
\]

Also

\[
T(0, k, q) = \frac{1}{2q} \sum_{r=1}^{k} (-1)^{r+k+1} \binom{k-1}{r-1} \begin{pmatrix} \psi\left(\frac{r-1}{2qk}\right) \\ +\pi \cot\left(\frac{\pi(r-1)}{2qk}\right) \end{pmatrix}.
\]

Proof. The proof follows directly from Theorem 1. \(\square\)

Now we investigate \(A(j, k, q) \).

Theorem 2. Under the assumptions of Theorem 1,

\[
A(j, k, q) = \sum_{n=1}^{\infty} \frac{(-1)^n}{q kn + j} = \frac{1}{q} \sum_{r=1}^{k} (-1)^{r+k+1} \binom{k-1}{r-1} \begin{pmatrix} \psi\left(\frac{2qk+r+j}{2qk}\right) \\ -\psi\left(\frac{qk+r+j}{qk}\right) \end{pmatrix}.
\]

The case \(j = 0 \) reduces to

\[
A(0, k, q) = \sum_{n=1}^{\infty} \frac{(-1)^n}{q kn} = \frac{1}{q} \sum_{r=1}^{k} (-1)^{r+k+1} \binom{k-1}{r-1} \begin{pmatrix} \psi\left(\frac{r-1}{2qk}\right) - \psi\left(\frac{r-1}{qk}\right) \\ +\pi \cot\left(\frac{\pi(r-1)}{2qk}\right) - \pi \cot\left(\frac{\pi(r-1)}{qk}\right) \end{pmatrix}.
\]

Also,

\[
A(0, k, q) = \frac{1}{q} \sum_{r=1}^{k} (-1)^{r+k+1} \binom{k-1}{r-1} \begin{pmatrix} \psi\left(\frac{r-1}{2qk}\right) - \psi\left(\frac{r-1}{qk}\right) \\ +\pi \cot\left(\frac{\pi(r-1)}{2qk}\right) - \pi \cot\left(\frac{\pi(r-1)}{qk}\right) \end{pmatrix}.
\]

Proof. We begin by noticing that

\[
S(j, k, q) + A(j, k, q) = 2T(j, k, q).
\]
from which $A(j, k, q)$ follows directly, as does $A(0, k, q)$. The identity (9) follows from an application of the Digamma reflection formula. Utilizing the definition (1), for the hypergeometric function, we can write

$$A(j, k, q) = -\frac{1}{\binom{kq + j}{k}} k_{q+1} F_{kq} \left[\begin{array}{c} \frac{kq+j+1-k}{kq} \frac{kq+j+2-k}{kq} \cdots, \frac{2kq+j-k}{kq} \\ \frac{kq+j+1}{kq} \frac{kq+j+2}{kq} \cdots, \frac{2kq+j}{kq} \end{array} \right] - 1 \right].$$

\[\square\]

Remark 1. The other notable case is for the situation of $j = qk$, from which we ascertain, in a straightforward manner, the following results:

\[S(qk, k, q) = S(0, k, q) - \frac{1}{\binom{qk}{k}},\]

\[A(qk, k, q) = -A(0, k, q) - \frac{1}{\binom{qk}{k}}\]

and

\[S(qk, k, q) - A(qk, k, q) = S(0, k, q) - A(0, k, q) = 2T(0, k, q).\]

Example 1. Some examples follow:

$$S\left(j, k, \frac{1}{k}\right) = \frac{j + 1}{(k - 1) \binom{j + 1}{k}},$$

$$S(2, 2, 6) = \frac{\pi}{6} - 1 - \frac{1}{\sqrt{3}} \ln\left(\sqrt{3} - 1\right) + \frac{\sqrt{3} + 1}{6} \ln 2,$$

$$S\left(\frac{1}{8}, 3, \frac{1}{4}\right) = \frac{496}{55} + 12 \ln 3, \quad T\left(\frac{3}{2}, 4, \frac{1}{4}\right) = 8\pi - \frac{64}{3},$$

$$T\left(0, 2, \frac{3}{4}\right) = \ln 3 - \frac{\sqrt{3} \pi}{9}, \quad T(4, 2, 3) = \frac{1}{2} \ln 2 - \frac{1}{4} \ln 3 + \frac{\sqrt{3} - 1}{12\sqrt{3}} \pi - \frac{1}{6};$$
A(4, 3, 2) = \frac{2 - \sqrt{3}}{2\sqrt{3}} \pi - \frac{1}{4}, \quad A\left(-\frac{1}{2}, 2, 1\right) = -2\sqrt{2} \ln \left(\sqrt{2} + 1\right),

A\left(j, 2, \frac{1}{4p}\right) = 4p \left(H_{jp} - H_{jp-p} - (H_{2jp} - H_{2jp-2p})\right), \quad p \in \mathbb{R}^+.

In the next section we give an extension to Theorem 1 by incorporating harmonic numbers to the sums \(S(j, k, q), \ A(j, k, q) \) and associating the sum with hypergeometric and integral representation.

3. Extension

We begin with the proof of the following Theorem.

Theorem 3. Let the assumptions of Theorem 1 apply and let \(m \in \mathbb{N} \). Then,

\[
S^{(m)}(j, k, q) = \sum_{n=1}^{\infty} \frac{d^{(m)}}{dj^{(m)}} \left(\frac{qkn + j}{k} \right)^{-1} = \sum_{n=1}^{\infty} Q^{(m)}(j, k, q)
\]

\[= \frac{1}{k^m q^{m+1}} \sum_{r=1}^{k} (-1)^{r+k+1} \left(\frac{k-1}{r-1} \right) \psi^{(m)} \left(\frac{qk+1+j-r}{qk} \right)\]

\[= \frac{m!}{k^m q^{m+1}} \sum_{r=1}^{k} (-1)^{r+m+k+1} \left(\frac{k-1}{r-1} \right) H^{(m+1)}_{\frac{j-r}{qk}}\] \hspace{1cm} (10)

where

\[
Q^{(m)}(j, k, q) = \frac{d^{(m)}}{dj^{(m)}} \left(\frac{qkn + j}{k} \right)^{-1}.
\] \hspace{1cm} (12)

Proof. From the identity (4) we differentiate both sides \("m" \) times with respect to \(j \) so that,

\[
S^{(m)}(j, k, q) = \sum_{n=1}^{\infty} \frac{d^{(m)}}{dj^{(m)}} \left(\frac{qkn + j}{k} \right)^{-1} = \sum_{n=1}^{\infty} Q^{(m)}(j, k, q)
\]

\[= \frac{1}{k^m q^{m+1}} \sum_{r=1}^{k} (-1)^{r+k+1} \left(\frac{k-1}{r-1} \right) \psi^{(m)} \left(\frac{qk+1+j-r}{qk} \right)\]

and (10) follows. From the known identity relating polygamma functions with harmonic numbers,

\[
\psi^{(m)}(1 + z) = (-1)^m m! \left(H^{(m+1)}_z - \zeta(1 + m) \right),
\] \hspace{1cm} (13)
we have
\[S^{(m)}(j, k, q) = \frac{m!}{k^m q^{m+1}} \sum_{r=1}^{k} (-1)^{r+m+k+1} \binom{k-1}{r-1} H_{\frac{r}{q}}^{(m+1)} \]

since
\[\sum_{r=1}^{k} (-1)^{r} \binom{k-1}{r-1} = 0, \text{ for } k \geq 2, \]
and hence (11) follows. For completeness we detail some values of \(Q^{(m)}(j, k, q) \):
\[Q^{(1)}(j, k) = \frac{1}{\binom{q kn+j}{k}} \left(H_{q kn+j-k} - H_{q kn+j} \right) \]
and
\[Q^{(2)}(j, k, q) = \frac{1}{\binom{q kn+j}{k}} \left((H_{q kn+j} - H_{q kn+j-k})^2 + (H_{q kn+j}^{(2)} - H_{q kn+j-k}^{(2)}) \right). \]

Some more details on the function \(Q^{(m)}(j, k, q) \) are given in the paper [13]. □

Next we investigate \(A^{(m)}(j, k, q) \) as described below.

Theorem 4. Let the assumptions of Theorem 1 apply and let \(m \in \mathbb{N} \). Then,
\[A^{(m)}(j, k, q) = \sum_{n=1}^{\infty} (-1)^{n} \frac{d^{(m)}}{dj^{(m)}} \left(\frac{q kn+j}{k} \right)^{-1} = \sum_{n=1}^{\infty} (-1)^{n} Q^{(m)}(j, k, q) \]
\[= \frac{1}{k^m q^{m+1}} \sum_{r=1}^{k} (-1)^{r+m+k+1} \binom{k-1}{r-1} \left(\frac{1}{2^m} \psi^{(m)}(\frac{2k+1+j-r}{qk}) \right. \]
\[- \left. \psi^{(m)}(\frac{2k+1+j-r}{qk}) \right) \]
\[= \frac{m!}{k^m q^{m+1}} \sum_{r=1}^{k} (-1)^{r+m+k+1} \binom{k-1}{r-1} \left(\frac{1}{2^m} H_{\frac{r}{q}+1}^{(m+1)} - H_{\frac{r}{q}}^{(m+1)} \right), \]
where \(Q^{(m)}(j, k, q) \) is given by (12).
Proof. From the identity (7) we differentiate both sides ”m” times with respect to j so that,
\[A^{(m)}(j, k, q) = \sum_{n=1}^{\infty} (-1)^n \frac{d^{(m)}}{d(j)^n} \left(\left(\frac{qkn + j}{k} \right)^{-1} \right) = \sum_{n=1}^{\infty} (-1)^n Q^{(m)}(j, k, q) \]

\[= \frac{1}{km^{q+1}} \sum_{r=1}^{k} (-1)^{r+k+1} \left(\begin{array}{c} k - 1 \\ r - 1 \end{array} \right) \left(\frac{k}{2n} \psi^{(m)} \left(\frac{2qk+1+j-r}{2qk} \right) - \psi^{(m)} \left(\frac{qk+r}{qk} \right) \right), \]

and (15) follows. From the known identity (13), relating polygamma functions with harmonic numbers, then
\[A^{(m)}(j, k, q) = \frac{m!}{km^{q+1}} \sum_{r=1}^{k} (-1)^{r+m+k+1} \left(\begin{array}{c} k - 1 \\ r - 1 \end{array} \right) \left(\frac{1}{2n} H_{1}^{(m+1)}_{1+j-r} - H_{1}^{(m+1)}_{qk+r} \right) \]

since,
\[\sum_{r=1}^{k} (-1)^{r} \left(\begin{array}{c} k - 1 \\ r - 1 \end{array} \right) = 0, \text{ for } k \geq 2 \]

and (16) is attained. \(\Box \)

The cases \(j = 0 \) and \(j = kq \) are interesting and the results are given in the next corollary.

Corollary 2. For \(j = 0 \),
\[S^{(m)}(0, k, q) = \sum_{n=1}^{\infty} \lim_{j \to 0} \left(\frac{d^{(m)}}{d(j)^n} \left(\left(\frac{kqn + j}{k} \right)^{-1} \right) \right) = \sum_{n=1}^{\infty} Q^{(m)}(0, k, q) \]

\[= \frac{(-1)^{k+m+1} m!}{km^{q+1} \zeta(m+1)} \]

\[+ \frac{1}{km^{q+1}} \sum_{r=1}^{k-1} (-1)^{r+k} \left(\begin{array}{c} k - 1 \\ r \end{array} \right) \psi^{(m)} \left(\frac{qk-r}{qk} \right). \] \hspace{1cm} (17)

For \(j = kq \),
\[S^{(m)}(kq, k, q) = \sum_{n=1}^{\infty} \lim_{j \to kq} \left(\frac{d^{(m)}}{d(j)^n} \left(\left(\frac{kqn + j}{k} \right)^{-1} \right) \right) \]

\[= \frac{(-1)^{k+m} m!}{km^{q+1}} (1 - \zeta(m+1)) \]

\[+ \frac{1}{km^{q+1}} \sum_{r=1}^{k-1} (-1)^{r+k} \left(\begin{array}{c} k - 1 \\ r \end{array} \right) \psi^{(m)} \left(\frac{2qk-r}{qk} \right) \] \hspace{1cm} (18)
Proof. From (10) we have
\[
S^{(m)}(0,k,q) = \sum_{n=1}^{\infty} \lim_{j \to 0} \left(\frac{d^{(m)}}{d^{j(m)}} \left((-kqn + j) \right) \right) \\
= \sum_{r=1}^{k} \sum_{r=1}^{k} (-1)^{r+k+1} \left(\frac{k-1}{r-1} \right) \psi^{(m)}(1 + \frac{1-r}{qk}).
\]

At \(r = 1 \), we notice that \(\psi^{(m)}(1) = (-1)^{m+1} m! \zeta(m+1) \) and hence
\[
S^{(m)}(0,k,q) = \frac{(-1)^{k+m+1} m!}{k^{m}q^{m+1}} \zeta(m+1) \\
+ \frac{1}{k^{m}q^{m+1}} \sum_{r=2}^{k} (-1)^{r+k+1} \left(\frac{k-1}{r-1} \right) \psi^{(m)}(1 + \frac{1-r}{qk}).
\]

and, making a change in the summation index, then (17) follows. For the case \(j = qk \),
\[
S^{(m)}(kq,k,q) = \sum_{n=1}^{\infty} \lim_{j \to kq} \left(\frac{d^{(m)}}{d^{j(m)}} \left((-kqn + j) \right) \right) \\
= \sum_{r=1}^{k} \sum_{r=1}^{k} (-1)^{r+k+1} \left(\frac{k-1}{r-1} \right) \psi^{(m)}(2qk + 1 - r).
\]

At \(r = 1 \), we notice that \(\psi^{(m)}(2) = (-1)^{m} m!(1 - \zeta(m+1)) \) Hence
\[
S^{(m)}(kq,k,q) = \frac{(-1)^{k+m} m!}{k^{m}q^{m+1}} (1 - \zeta(m+1)) \\
+ \frac{1}{k^{m}q^{m+1}} \sum_{r=2}^{k} (-1)^{r+k+1} \left(\frac{k-1}{r-1} \right) \psi^{(m)}(2 + \frac{1-r}{qk}),
\]

and making a change in the summation index, then (18) follows. \(\square \)

The following corollary refers to the \(A^{(m)}(j,k,q) \), for the two special cases of \(j = 0 \) and \(j = qk \).

Corollary 3. For \(j = 0 \),
\[
A^{(m)}(0,k,q) = \sum_{n=1}^{\infty} (-1)^{n} \lim_{j \to 0} \left(\frac{d^{(m)}}{d^{j(m)}} \left((-kqn + j) \right) \right) = \sum_{n=1}^{\infty} Q^{(m)}(0,k,q) \\
= \frac{(-1)^{k+m+1} m!}{q(2kq)^{m}} (1 - 2^{m}) \zeta(m+1)
\]
\[+ \frac{1}{k^m q^{m+1}} \sum_{r=1}^{k-1} (-1)^{r+k} \left(\frac{k - 1}{r} \right) \left(\frac{1}{2m} \psi^{(m)} (\frac{2qk - r}{2qk}) - \psi^{(m)} (\frac{qk - r}{qk}) \right). \]

For \(j = qk \),
\[A^{(m)} (kq, k, q) = \sum_{n=1}^{\infty} (-1)^n \lim_{j \to kq} \left(\frac{d^{(m)}}{dj^{(m)}} \left(\left(\frac{kqn + j}{k} \right)^{-1} \right) \right) \]
\[= \frac{(-1)^{k+m}}{k^m q^{m+1}} (1 + (2^{-m} - 1) \zeta (m + 1)) \]
\[+ \frac{1}{k^m q^{m+1}} \sum_{r=1}^{k-1} (-1)^{r+k} \left(\frac{k - 1}{r} \right) \left(\frac{1}{2m} \psi^{(m)} (\frac{3qk - r}{2qk}) - \psi^{(m)} (\frac{2qk - r}{qk}) \right). \]

Proof. The proof follows the same pattern as the proof in the previous corollary. \(\square \)

Example 2. Some illustrative examples follow:
\[S^{(2)} (j, 3, q) = \sum_{n=1}^{\infty} \frac{(H_{3qn+j} - H_{3qn+j-3})^2 + (H_{3qn+j}^{(2)} - H_{3qn+j-3}^{(2)})}{3qn + j} \]
\[= -\frac{1}{9q^2} \left(\psi^{(2)} \left(\frac{j - 2 + 3q}{3q} \right) - 2 \psi^{(2)} \left(\frac{j - 1 + 3q}{3q} \right) + \psi^{(2)} \left(\frac{j + 3q}{3q} \right) \right), \]
\[S^{(m)} (j, 2, q) = \sum_{n=1}^{\infty} \frac{d^{(m)}}{dj^{(m)}} \left(\frac{2qn + j}{2} \right)^{-1} \]
\[= \frac{1}{2m q^{m+1}} \left(\psi^{(m)} \left(\frac{2q + j}{2q} \right) - \psi^{(m)} \left(\frac{2q + j - 1}{2q} \right) \right). \]

By the Leibniz rule of differentiation, we can also write,
\[S^{(m)} (j, 2, q) = 2 \sum_{n=1}^{\infty} \sum_{t=0}^{m} \frac{(-1)^m m!}{(2qn + j)^{m+1}} \frac{(-1)^m}{(2qn + j - 1)^{m-t+1}}. \]

Using the recurrence relation of the polygamma function,
\[\psi^{(m)} (1 + z) = \psi^{(m)} (z) + \frac{(-1)^m m!}{z^{m+1}}, \]
from then (21) we have
\[
S^{(m)}(j, 2, q) = 2 \sum_{n=1}^{\infty} \sum_{t=0}^{m} \frac{(-1)^m m!}{(2qn + j)^{t+1}(2qn + j - 1)^{m-t+1}}
\]
\[
= \frac{1}{2mq^{m+1}} \left(\psi^{(m)} \left(\frac{j}{2q} \right) - \psi^{(m)} \left(\frac{j-1}{2q} \right) \right) + 2 (-1)^m m! \left(\frac{1}{j+1} - \frac{1}{(j-1)^{m+1}} \right),
\]
from which
\[
S^{(4)}(4, 2, 6) = 2 \sum_{n=1}^{\infty} \sum_{t=0}^{4} \frac{4!}{(12n + 4)^{t+1}(12n + 3)^{5-t}}
\]
\[
= \frac{125}{1728} \zeta(5) + \frac{(15 - 2\sqrt{3})}{4656} \pi^5 - \frac{781}{5184}.
\]
We also have
\[
S^{(m)}(2q, 2, q) = \sum_{n=1}^{\infty} \lim_{j \to 2q} \left(\frac{d^{(m)}}{d_j^{(m)}} \left(\begin{array}{c} 2qn + j \nonumber \end{array} \right)^{-1} \right)
\]
\[
= \frac{(-1)^m m!}{2mq^{m+1}} (1 - \zeta(m+1)) - \frac{1}{2mq^{m+1}} \psi^{(m)} \left(\frac{4q - 1}{2q} \right)
\]
\[
= 2 \sum_{n=1}^{\infty} \sum_{t=0}^{m} \frac{(-1)^m m!}{(2qn + 2q)^{t+1}(2qn + 2q - 1)^{m-t+1}}.
\]
\[
A^{(m)}(0, 2, q) = \sum_{n=1}^{\infty} (-1)^n \lim_{j \to 0} \left(\frac{d^{(m)}}{d_j^{(m)}} \left(\begin{array}{c} 2qn + j \nonumber \end{array} \right)^{-1} \right)
\]
\[
= \frac{(-1)^{m+1} m!}{4mq^{m+1}} (1 - 2^m - \zeta(m+1)) - \frac{1}{4mq^{m+1}} \psi^{(m)} \left(\frac{4q - 1}{4q} \right)
\]
\[
+ \frac{1}{2mq^{m+1}} \psi^{(m)} \left(\frac{2q - 1}{2q} \right)
\]
\[
A^{(m)}(2q, 2, q) = \frac{(-1)^m m! (1 + (2^m - 1) \zeta(m+1))}{2mq^{m+1}} - \frac{1}{4mq^{m+1}} \psi^{(m)} \left(\frac{6q - 1}{4q} \right)
\]
\[
+ \frac{1}{2mq^{m+1}} \psi^{(m)} \left(\frac{4q - 1}{2q} \right)
\]
\[
= 2 \sum_{t=0}^{m} \sum_{n=1}^{\infty} \frac{(-1)^n + m}{(2qn + 2q)^{t+1}(2qn + 2q - 1)^{m-t+1}}.
\]
The expression \(S^{(m)}(j, k, q) \) and \(A^{(m)}(j, k, q) \) can also be represented in integral and hypergeometric form and for completeness the following is recorded.

Theorem 5. Let the assumptions of Theorem 1 apply. Then,

\[
S^{(m)}(j, k, q) = k \int_0^1 \frac{x^{kq+j-k} (1-x)^{k-1} \ln^m x}{1-x^{kq}} dx, \tag{22}
\]

\[
A^{(m)}(j, k, q) = -k \int_0^1 \frac{x^{kq+j-k} (1-x)^{k-1} \ln^m x}{1+x^{kq}} dx. \tag{23}
\]

Proof. Consider

\[
S(j, k, q) = \sum_{n=1}^{\infty} \frac{1}{kqn+j} = \sum_{n=1}^{\infty} \frac{\Gamma(kqn+j-k+1) \Gamma(k+1)}{\Gamma(kqn+j+1)}
\]

\[
= k \sum_{n=1}^{\infty} B(k, kqn-k+j+1),
\]

where \(\Gamma(\cdot) \) is the gamma function and \(B(\cdot, \cdot) \) is the beta function. Now

\[
S(j, k, q) = k \int_0^1 \frac{x^j (1-x)^{k-1}}{x^k} \sum_{n=1}^{\infty} (x^{kq})^n dx.
\]

Differentiating \(m \) times with respect to \(j \) results in

\[
S^{(m)}(j, k, q) = k \int_0^1 \frac{x^{kq+j-k} (1-x)^{k-1} \ln^m x}{1-x^{kq}} dx,
\]

and hence (22). The result (23) follows by the same analysis. \(\square \)

Remark 2. It is straightforward to see, from (17), (22) and (23), that

\[
S^{(m)}(2q, 2, q) = \frac{(-1)^m m!}{2^m q^{m+1}} (1 - \zeta(m+1)) - \frac{1}{2^m q^{m+1} \psi^{(m)}(4q-1)} \frac{4q-1}{2q}
\]

\[
= 2 \int_0^1 \frac{x^{2q-2} (1-x) \ln^m x}{1-x^{2q}} dx,
\]

\[
A^{(m)}(2q, 2, q) = \frac{(-1)^m m! (1 + (2m-1) \zeta(m+1))}{2^m q^{m+1}} - \frac{1}{4^m q^{m+1} \psi^{(m)}(4q-1)} \frac{6q-1}{4q}
\]

\[
+ \frac{1}{2^m q^{m+1} \psi^{(m)}(4q-1)} \frac{4q-1}{2q}
\]

\[
= -2 \int_0^1 \frac{x^{2q-2} (1-x) \ln^m x}{1+x^{2q}} dx.
\]
Many other examples of binomial sums, harmonic number sums, integral representations and hypergeometric summation are available in [3], [4], [5], [8], [12], [14], [15], [16], [17], [18] and [19].

Acknowledgement. I thank the referees for the careful reading of the paper.

References

