

ROBIN'S INEQUALITY FOR NEW FAMILIES OF INTEGERS

Alexander Hertlein Ludwig-Maximilians-Universität, München, Germany

Received: 10/21/16, Revised: 1/8/18, Accepted: 8/11/18, Published: 8/17/18

Abstract

Robin's criterion states that the Riemann Hypothesis is true if and only if Robin's inequality $\sigma(n) := \sum_{d|n} d < e^{\gamma} n \log \log n$ is satisfied for each n > 5040, where γ denotes the Euler-Mascheroni constant. We show that if a positive integer n satisfies either $\nu_2(n) \leq 19$, $\nu_3(n) \leq 12$, $\nu_5(n) \leq 7$, $\nu_7(n) \leq 6$ or $\nu_{11}(n) \leq 5$ then Robin's inequality is satisfied, where $\nu_p(n)$ is the p-adic order of n. In the end we show that $\sigma(n)/n < 1.0000005645 \ e^{\gamma} \log \log n$ holds unconditionally for n > 5040.

1. Introduction

Let *n* be an integer satisfying $\sigma(n) := \sum_{d|n} d < e^{\gamma} n \log \log n$, where γ denotes the Euler-Mascheroni constant. This inequality is called *Robin's inequality*. Robin [8] proved that the Riemann Hypothesis (RH) is true if and only if his inequality holds for every integer n > 5040. So far Robin's inequality has been proven unconditionally for families of integers that are

- odd and greater than 9 [5]
- square-free and greater than 30 [5]
- a sum of two squares and greater than 720 [2]
- not divisible by the fifth power of a prime [5]
- not divisible by the seventh power of a prime [9]
- not divisible by the eleventh power of a prime [4].

Here, we extend Robin's inequality. We first provide a modified algorithm of the one obtained by Akbary et al. [1] to establish the exceptions to the inequality $n/\varphi(n) < (1771561/1771560)e^{\gamma} \log \log n$, where φ stands for Euler's totient function. With this we then show that if n has a 2-adic order smaller or equal to 19 or satisfies either $\nu_3(n) \leq 12$, $\nu_5(n) \leq 7$, $\nu_7(n) \leq 6$ or $\nu_{11}(n) \leq 5$ then Robin's inequality holds.

Then we find that $\sigma(n)/n < 1.0000005645 \ e^{\gamma} \log \log n$ holds unconditionally for all n > 5040.

2. Theorems

We first want to show the case where we know that the 2-adic order of n is lower or equal to 19.

Theorem 1. Robin's inequality holds for n > 5040 when $\nu_2(n) \le 19$.

We then go on to partially prove a result of Choie et. al [5].

Theorem 2. Consider those integers n which satisfy $\nu_3(n) \leq 12$, $\nu_5(n) \leq 7$, $\nu_7(n) \leq 6$ or $\nu_{11}(n) \leq 5$. Then, Robin's inequality holds for all such integers n > 5040.

An improved unconditional upper bound of $\sigma(n)/n$ is provided by the following.

Theorem 3. The inequality

$$\sigma(n)/n < 1.0000005645 \ e^{\gamma} \log \log n \tag{1}$$

holds for all n > 5040.

3. Proofs

Lemma 1. Let $\prod_{i=1}^{r} q_i^{a_i}$ be the representation of n as a product of primes $q_1 < ... < q_r$ with positive exponents $a_1 < ... < a_r$. Then

$$\frac{\sigma(n)}{n} = \frac{n}{\varphi(n)} \prod_{i=1}^{r} \left(1 - \frac{1}{q_i^{a_i+1}} \right). \tag{2}$$

Proof. This is Lemma 2 in [6].

We now take a look at a way to establish a new upper bound for $n/\varphi(n)$. First we provide an algorithm which is derived from Akbary et al. [1]. They developed an algorithm that calculates the exceptions to the following inequality where $0 < \epsilon < 1$ and $\omega(n)$ is the number of distinct prime divisors of n:

$$f(n) := \prod_{\substack{p \le p_{\omega(n)} \\ p \ prime}} \frac{p}{p-1} < e^{\gamma} (1+\epsilon) \log \log n.$$
(3)

For an integer n and an integer $\beta \ge \omega(n) \ge 2$ they showed that if

$$n > n_{\beta} := \exp\left(\exp\left(\frac{1}{(1+\epsilon)e^{\gamma}}\prod_{p \le p_{\beta}}\frac{p}{p-1}\right)\right)$$
(4)

then inequality (3) is satisfied. According to Lemma 3.4 in [1], we only need to find the first β for a given ϵ for which $\prod_{p \le p_{\beta}} p < n_{\beta}$ does not hold in order to get

to the largest possible exception of (3). We call this largest possible exception of inequality (3) $n_{\beta_{max}}$. We can now describe the modified algorithm which is proven to be correct by Lemma 3.4 in [1].

Algorithm	1	Largest	possible exc	eption	to j	f(n)	$) < e^{\gamma}$	$(1+\epsilon)\log\log n$

Require: $0 < \epsilon < 1$ **Ensure:** Largest possible exception to the inequality. **while** $\prod_{p \le p_{\beta}} p < n_{\beta}$ **do** $\beta \rightarrow \beta + 1$ **end while** $\beta_{max} \rightarrow \beta$ $n_{\beta_{max}} \rightarrow n_{\beta}$

We can now go on to find an upper bound for $n/\varphi(n)$.

Lemma 2. The inequality

$$\frac{n}{\varphi(n)} < \frac{1771561}{1771560} e^{\gamma} \log \log n \tag{5}$$

is satisfied for all $n > c_0 := e^{e^{23.762143}}$.

Proof. On noting that

$$\frac{n}{\varphi(n)} \le \prod_{p \le p_{\beta}} \frac{p}{p-1} < e^{\gamma}(1+\epsilon) \log \log n, \tag{6}$$

we run the algorithm from Lemma 3 with $\epsilon = 1/1771560$ such that the RHS of (6) matches the RHS of (5). The result of the algorithm, namely β_{max} and $n_{\beta_{max}}$, is

$$\beta_{max} = 919356257 \qquad n_{\beta_{max}} < e^{e^{23.762143}}$$

We note that $n_{\beta_{max}}$ cannot be exactly numerically calculated to integer precision, which is mainly due to the sheer size of the number. Fortunately, this is not necessary, since we can bound $n_{\beta_{max}}$ from above in our numerical calculation and still maintain the correctness of the algorithm. This is why we limit the numerical computation of the exponent of $n_{\beta_{max}}$ to 200 digits and then use the exponent 23.762143. Since this calculated bound is important throughout our proofs we set $c_0 := e^{e^{23.762143}}$.

The algorithm guarantees that all exceptions to inequality (3) are below c_0 , which allows us to conclude that for all $n > c_0$ the inequality (5) holds.

Lemma 3. Robin's inequality is true for all $5040 < n \le 10^{10^{10}}$.

Proof. Robin showed in [8], Prop.1, p.192 that if Robin's inequality holds for consecutive colossally abundant numbers n_1 and n_2 then it also holds for all $n \in [n_1, n_2]$. By definition an integer n is colossally abundant if there exists a positive ϵ for which $\sigma(n)/n^{1+\epsilon} \geq \sigma(k)/k^{1+\epsilon}$ for all k > 1. Briggs [3] showed that Robin's inequality holds for all colossally abundant numbers between 5040 and $10^{10^{10}}$. We may therefore conclude that Robin's inequality is also satisfied for all integers $5040 < n < 10^{10^{10}}$.

We are now ready to prove Theorem 1.

Proof of Theorem 1. We now let n have a 2-adic order of $\nu_2(n) \leq 19$. From Lemma 1 we note that

$$\frac{\sigma(n)}{n} = \frac{n}{\varphi(n)} \prod_{i=1}^{r} \left(1 - \frac{1}{q_i^{a_i+1}} \right) \le \frac{n}{\varphi(n)} \left(1 - \frac{1}{2^{\nu_2(n)+1}} \right).$$
(7)

We only need to look at the case where $\nu_2(n) = 19$ since the weaker cases follow because

$$\left(1 - \frac{1}{2^{1+1}}\right) < \left(1 - \frac{1}{2^{1+2}}\right) < \dots < \left(1 - \frac{1}{2^{1+19}}\right).$$

With Lemma 2 we have for $n > c_0$

$$\frac{\sigma(n)}{n} \stackrel{\nu_2(n)=19}{\leq} \frac{n}{\varphi(n)} \left(1 - \frac{1}{2^{1+19}}\right) = \frac{1048575}{1048576} \frac{n}{\varphi(n)} \\
< \frac{1048575}{1048576} \frac{1771561}{1771560} e^{\gamma} \log \log n < e^{\gamma} \log \log n.$$
(8)

In light of Lemma 3 and the fact that $c_0 < 10^{10^{10}}$ we then conclude that Robin's inequality is true for those n > 5040 for which $\nu_2(n) \le 19$.

Our proof of Theorem 2 is now done with other p-adic orders used to partially prove Theorem 6 of [5].

Proof of Theorem 2. We now consider n with an 11-adic order satisfying $\nu_{11}(n) \leq 5$. The cases for the 3-adic, 5-adic or 7-adic order follow directly since

$$\left(1 - \frac{1}{5^{1+7}}\right) < \left(1 - \frac{1}{7^{1+6}}\right) < \left(1 - \frac{1}{3^{1+12}}\right) < \left(1 - \frac{1}{11^{1+5}}\right).$$

With Lemma 1 and 2 we then have for $n > c_0$

$$\frac{\sigma(n)}{n} \stackrel{\nu_{11}(n)=5}{\leq} \frac{n}{\varphi(n)} \left(1 - \frac{1}{11^{1+5}} \right) = \frac{1771560}{1771561} \frac{n}{\varphi(n)} \\
< \frac{1771560}{1771561} \frac{1771561}{1771560} e^{\gamma} \log \log n = e^{\gamma} \log \log n.$$
(9)

By invoking Lemma 3 and noting that $c_0 < 10^{10^{10}}$ we then conclude that Robin's inequality is true for those integers n > 5040 for which $\nu_3(n) \le 12$, $\nu_5(n) \le 7$, $\nu_7(n) \le 6$ or $\nu_{11}(n) \le 5$.

With these results, we can now also improve the unconditional bound for $\sigma(n)/n$ from Akbary et al. [1].

Proof of Theorem 3. First, note that $1771561/1771560 = 1.000000\overline{564474248684775}$. Then similar to Theorem 1, it follows from Lemma 2 that for $n > c_0$,

$$\frac{\sigma(n)}{n} \le \frac{n}{\varphi(n)} < \frac{1771561}{1771560} e^{\gamma} \log \log n < 1.0000005645 \ e^{\gamma} \log \log n \tag{10}$$

On invoking Lemma 3 we then find that the above inequality holds unconditionally for n > 5040.

Acknowledgement. The author thanks Friedrich Hertlein, Felix Palm, Patrick Solé, Lucas Kimmig and the referee for useful suggestions. All calculations were done with Mathematica 10 on a 6-core Xeon processor with 200 digit precision.

References

- Akbary, A., Friggstad, Z. and Juricevic, R., Explicit upper bounds for Π_{p_{ω(n)} p/(p-1)}, Contrib. Discrete Math. 2(2) (2007), 153-160.
- [2] Banks, W. D., Hart, D. N., Moree, P., Nevans, C. W. and Wesley, C., The Nicolas and Robin inequalities with sums of two squares, *Monatsh. Math.* 157(4) (2009), 303-322.
- [3] Briggs, K., 'Abundant numbers and the Riemann hypothesis', Exp. Math. 15(2) (2006), 251-256.
- Broughan, K. and Trudgian, T., Robin's inequality for 11-free integers, *Integers* 15 (2015), Article ID A12, 5 pages.

- [5] Choie, Y.-J., Lichiardopol, N., Moree, P. and Solé, P., On Robin's criterion for the Riemann hypothesis, J. Théor. Nombres Bordeaux 19(2) (2007), 357-372.
- [6] Grytczuk, A., Upper bound for sum of divisors function and the Riemann hypothesis, *Tsukuba J. Math.* 31(1) (2007), 67-75.
- [7] Ramanujan, S., Highly composite numbers, annotated and with a foreword by Nicolas and Robin, Ramanujan J. 1(2) (1997), 119-153.
- [8] Robin, G., Grandes valeurs de la fonction somme des diviseurs et hypothése de Riemann, J. Math. Pures Appl. 63(2) (1984), 187-213.
- [9] Solé, P. and Planat, M., The Robin inequality for 7-free integers, Integers $\mathbf{12}(2)$ (2012), 301-309