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Abstract
Robin’s criterion states that the Riemann Hypothesis is true if and only if Robin’s
inequality o(n) := Zdlnd < e'nloglogn is satisfied for each n > 5040, where ~
denotes the Euler-Mascheroni constant. We show that if a positive integer n satisfies
either v5(n) < 19, v3(n) < 12, v5(n) < 7, v7(n) < 6 or v11(n) < 5 then Robin’s
inequality is satisfied, where v, (n) is the p-adic order of n. In the end we show that
o(n)/n < 1.0000005645 €7 loglog n holds unconditionally for n > 5040.

1. Introduction

Let n be an integer satisfying o(n) := Zd‘nd < e'nloglogn, where v denotes
the Euler-Mascheroni constant. This inequality is called Robin’s inequality. Robin
[8] proved that the Riemann Hypothesis (RH) is true if and only if his inequal-
ity holds for every integer n > 5040. So far Robin’s inequality has been proven
unconditionally for families of integers that are

e odd and greater than 9 [5]
e square-free and greater than 30 [5]

e a sum of two squares and greater than 720 [2]

not divisible by the fifth power of a prime [5]
e not divisible by the seventh power of a prime [9]
e not divisible by the eleventh power of a prime [4].

Here, we extend Robin’s inequality. We first provide a modified algorithm of the one
obtained by Akbary et al. [1] to establish the exceptions to the inequality n/p(n) <
(1771561/1771560)e” log log n, where ¢ stands for Euler’s totient function. With
this we then show that if n has a 2-adic order smaller or equal to 19 or satisfies
either v3(n) <12, v5(n) <7, v7(n) <6 or v11(n) < 5 then Robin’s inequality holds.



Then we find that o(n)/n < 1.0000005645 e” log log n holds unconditionally for all
n > 5040.

2. Theorems

We first want to show the case where we know that the 2-adic order of n is lower
or equal to 19.

Theorem 1. Robin’s inequality holds for n > 5040 when vo(n) < 19.
We then go on to partially prove a result of Choie et. al [5].

Theorem 2. Consider those integers n which satisfy vs(n) < 12, vs(n) < 7,
vr(n) < 6 or v11(n) < 5. Then, Robin’s inequality holds for all such integers
n > 5040.

An improved unconditional upper bound of o(n)/n is provided by the following.

Theorem 3. The inequality
o(n)/n < 1.0000005645 €7 loglogn (1)

holds for all n > 5040.

3. Proofs

T
Lemma 1. Let H g be the representation of n as a product of primes ¢1 < ... < gy
i=1
with positive exponents a; < ... < a,. Then

(- ). @

e(n) -4
Proof. This is Lemma 2 in [6]. O

We now take a look at a way to establish a new upper bound for n/¢(n). First
we provide an algorithm which is derived from Akbary et al. [1]. They developed an
algorithm that calculates the exceptions to the following inequality where 0 < € < 1
and w(n) is the number of distinct prime divisors of n:

f(n):= H %1 < €e7(1+¢e)loglogn. (3)

P<Pw(n)
p prime



For an integer n and an integer 8 > w(n) > 2 they showed that if

1 D
n>ng:=ex ex 4
g =oxp | exp (1+6)€”,,1<_,£P—1 (4)

then inequality (3) is satisfied. According to Lemma 3.4 in [1], we only need to

find the first § for a given e for which H p < ng does not hold in order to get
p<pg

to the largest possible exception of (3). We call this largest possible exception of

inequality (3) ng,,,,. We can now describe the modified algorithm which is proven

to be correct by Lemma 3.4 in [1].

Algorithm 1 Largest possible exception to f(n) < e7(1 + €) loglogn
Require: 0 <e <1
Ensure: Largest possible exception to the inequality.
while ] p <ns do
P<ps
B—pB+1

end while

Bmax - ﬂ

We can now go on to find an upper bound for n/p(n).

Lemma 2. The inequality

n 1771561
I IO gt 5
o(n) S 1771560° 808" ®)

. . 23.762143
is satisfied for all n > ¢y := e

Proof. On noting that

< H P < €e’(1+¢)loglogn, (6)
p(n) = 2o p—1
=Ps

we run the algorithm from Lemma 3 with e = 1/1771560 such that the RHS of (6)
matches the RHS of (5). The result of the algorithm, namely (3,45 and ng,,,,, is

23.762143

Bmas = 919356257 ng, .. < €

We note that ng, . cannot be exactly numerically calculated to integer precision,
which is mainly due to the sheer size of the number. Fortunately, this is not nec-
essary, since we can bound ng,, . from above in our numerical calculation and still



maintain the correctness of the algorithm. This is why we limit the numerical
computation of the exponent of ng to 200 digits and then use the exponent
23.762143. Since this calculated bound is important throughout our proofs we set

23762143
Co = ¢€

max

The algorithm guarantees that all exceptions to inequality (3) are below ¢y, which
allows us to conclude that for all n > ¢y the inequality (5) holds. O

Lemma 3. Robin’s inequality is true for all 5040 < n < 100",

Proof. Robin showed in [8], Prop.1, p.192 that if Robin’s inequality holds for consec-
utive colossally abundant numbers n; and ns then it also holds for all n € [ny,na].
By definition an integer n is colossally abundant if there exists a positive € for
which o(n)/n'*e > o(k)/k'*t¢ for all k > 1. Briggs [3] showed that Robin’s in-
equality holds for all colossally abundant numbers between 5040 and 1010". We
may therefore conclude that Robin’s inequality is also satisfied for all integers
5040 < n < 10107 m

We are now ready to prove Theorem 1.

Proof of Theorem 1. We now let n have a 2-adic order of v5(n) < 19. From Lemma
1 we note that

R [ P I

=1

We only need to look at the case where vo(n) = 19 since the weaker cases follow

because ) ) )

With Lemma 2 we have for n > ¢y

MW(’ZZW n < 1 )_1048575 n
n ~  p(n) 21419 1048576 ¢(n) ®)
1048575 1771561
1048576 1771560

In light of Lemma 3 and the fact that ¢y < 101°" we then conclude that Robin’s
inequality is true for those n > 5040 for which v(n) < 19. O

e’ loglogn < €7 loglogn.

Our proof of Theorem 2 is now done with other p-adic orders used to partially
prove Theorem 6 of [5].



Proof of Theorem 2. We now consider n with an 11-adic order satisfying v41(n) < 5.
The cases for the 3-adic, 5-adic or 7-adic order follow directly since

1 1 1 1
(o) < (1) < (1) < (1 ).

With Lemma 1 and 2 we then have for n > ¢q

a(n) 1/11(2):5 n ( 1 ) 1771560 n
n o) 11145 1771561 ¢(n) 9)
1771560 1771561
1771561 1771560
By invoking Lemma 3 and noting that ¢y < 101" we then conclude that Robin’s

inequality is true for those integers n > 5040 for which v3(n) < 12, vs(n) < 7,
vz(n) <6 or vi1(n) < 5. O

e” loglogn = e” log log n.

With these results, we can now also improve the unconditional bound for o(n)/n
from Akbary et al. [1].

Proof of Theorem 3. First, note that 1771561/1771560 = 1.000000564474248684775.
Then similar to Theorem 1, it follows from Lemma 2 that for n > cg,

o(n) o 1771561
n ~ p(n) 1771560

On invoking Lemma 3 we then find that the above inequality holds unconditionally
for n > 5040. O

e” loglogn < 1.0000005645 € loglogn (10)
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