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Abstract
Robin’s criterion states that the Riemann Hypothesis is true if and only if Robin’s
inequality �(n) :=

P
d|n d < e�n log log n is satisfied for each n > 5040, where �

denotes the Euler-Mascheroni constant. We show that if a positive integer n satisfies
either ⌫2(n)  19, ⌫3(n)  12, ⌫5(n)  7, ⌫7(n)  6 or ⌫11(n)  5 then Robin’s
inequality is satisfied, where ⌫p(n) is the p-adic order of n. In the end we show that
�(n)/n < 1.0000005645 e� log log n holds unconditionally for n > 5040.

1. Introduction

Let n be an integer satisfying �(n) :=
P

d|n d < e�n log log n, where � denotes
the Euler-Mascheroni constant. This inequality is called Robin’s inequality. Robin
[8] proved that the Riemann Hypothesis (RH) is true if and only if his inequal-
ity holds for every integer n > 5040. So far Robin’s inequality has been proven
unconditionally for families of integers that are

• odd and greater than 9 [5]

• square-free and greater than 30 [5]

• a sum of two squares and greater than 720 [2]

• not divisible by the fifth power of a prime [5]

• not divisible by the seventh power of a prime [9]

• not divisible by the eleventh power of a prime [4].

Here, we extend Robin’s inequality. We first provide a modified algorithm of the one
obtained by Akbary et al. [1] to establish the exceptions to the inequality n/'(n) <
(1771561/1771560)e� log log n, where ' stands for Euler’s totient function. With
this we then show that if n has a 2-adic order smaller or equal to 19 or satisfies
either ⌫3(n)  12, ⌫5(n)  7, ⌫7(n)  6 or ⌫11(n)  5 then Robin’s inequality holds.
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Then we find that �(n)/n < 1.0000005645 e� log log n holds unconditionally for all
n > 5040.

2. Theorems

We first want to show the case where we know that the 2-adic order of n is lower
or equal to 19.

Theorem 1. Robin’s inequality holds for n > 5040 when ⌫2(n)  19.

We then go on to partially prove a result of Choie et. al [5].

Theorem 2. Consider those integers n which satisfy ⌫3(n)  12, ⌫5(n)  7,
⌫7(n)  6 or ⌫11(n)  5. Then, Robin’s inequality holds for all such integers
n > 5040.

An improved unconditional upper bound of �(n)/n is provided by the following.

Theorem 3. The inequality

�(n)/n < 1.0000005645 e� log log n (1)

holds for all n > 5040.

3. Proofs

Lemma 1. Let
rY

i=1

qai
i be the representation of n as a product of primes q1 < ... < qr

with positive exponents a1 < ... < ar. Then

�(n)
n

=
n

'(n)

rY
i=1

✓
1� 1

qai+1
i

◆
. (2)

Proof. This is Lemma 2 in [6].

We now take a look at a way to establish a new upper bound for n/'(n). First
we provide an algorithm which is derived from Akbary et al. [1]. They developed an
algorithm that calculates the exceptions to the following inequality where 0 < ✏ < 1
and !(n) is the number of distinct prime divisors of n:

f(n) :=
Y

pp!(n)
p prime

p

p� 1
< e�(1 + ✏) log log n. (3)
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For an integer n and an integer � � !(n) � 2 they showed that if

n > n� := exp

0
@exp

0
@ 1

(1 + ✏)e�

Y
pp�

p

p� 1

1
A

1
A (4)

then inequality (3) is satisfied. According to Lemma 3.4 in [1], we only need to
find the first � for a given ✏ for which

Y
pp�

p < n� does not hold in order to get

to the largest possible exception of (3). We call this largest possible exception of
inequality (3) n�max . We can now describe the modified algorithm which is proven
to be correct by Lemma 3.4 in [1].

Algorithm 1 Largest possible exception to f(n) < e�(1 + ✏) log log n

Require: 0 < ✏ < 1
Ensure: Largest possible exception to the inequality.

while
Y

pp�

p < n� do

� ! � + 1
end while
�max ! �
n�max ! n�

We can now go on to find an upper bound for n/'(n).

Lemma 2. The inequality

n

'(n)
<

1771561
1771560

e� log log n (5)

is satisfied for all n > c0 := ee23.762143
.

Proof. On noting that

n

'(n)


Y
pp�

p

p� 1
< e�(1 + ✏) log log n, (6)

we run the algorithm from Lemma 3 with ✏ = 1/1771560 such that the RHS of (6)
matches the RHS of (5). The result of the algorithm, namely �max and n�max , is

�max = 919356257 n�max < ee23.762143

We note that n�max cannot be exactly numerically calculated to integer precision,
which is mainly due to the sheer size of the number. Fortunately, this is not nec-
essary, since we can bound n�max from above in our numerical calculation and still
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maintain the correctness of the algorithm. This is why we limit the numerical
computation of the exponent of n�max to 200 digits and then use the exponent
23.762143. Since this calculated bound is important throughout our proofs we set
c0 := ee23.762143

.
The algorithm guarantees that all exceptions to inequality (3) are below c0, which

allows us to conclude that for all n > c0 the inequality (5) holds.

Lemma 3. Robin’s inequality is true for all 5040 < n  101010
.

Proof. Robin showed in [8], Prop.1, p.192 that if Robin’s inequality holds for consec-
utive colossally abundant numbers n1 and n2 then it also holds for all n 2 [n1, n2].
By definition an integer n is colossally abundant if there exists a positive ✏ for
which �(n)/n1+✏ � �(k)/k1+✏ for all k > 1. Briggs [3] showed that Robin’s in-
equality holds for all colossally abundant numbers between 5040 and 101010

. We
may therefore conclude that Robin’s inequality is also satisfied for all integers
5040 < n < 101010

.

We are now ready to prove Theorem 1.

Proof of Theorem 1. We now let n have a 2-adic order of ⌫2(n)  19. From Lemma
1 we note that

�(n)
n

=
n

'(n)

rY
i=1

✓
1� 1

qai+1
i

◆
 n

'(n)

✓
1� 1

2⌫2(n)+1

◆
. (7)

We only need to look at the case where ⌫2(n) = 19 since the weaker cases follow
because ✓

1� 1
21+1

◆
<

✓
1� 1

21+2

◆
< ... <

✓
1� 1

21+19

◆
.

With Lemma 2 we have for n > c0

�(n)
n

⌫2(n)=19
 n

'(n)

✓
1� 1

21+19

◆
=

1048575
1048576

n

'(n)

<
1048575
1048576

1771561
1771560

e� log log n < e� log log n.

(8)

In light of Lemma 3 and the fact that c0 < 101010
we then conclude that Robin’s

inequality is true for those n > 5040 for which ⌫2(n)  19.

Our proof of Theorem 2 is now done with other p-adic orders used to partially
prove Theorem 6 of [5].
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Proof of Theorem 2. We now consider n with an 11-adic order satisfying ⌫11(n)  5.
The cases for the 3-adic, 5-adic or 7-adic order follow directly since✓

1� 1
51+7

◆
<

✓
1� 1

71+6

◆
<

✓
1� 1

31+12

◆
<

✓
1� 1

111+5

◆
.

With Lemma 1 and 2 we then have for n > c0

�(n)
n

⌫11(n)=5
 n

'(n)

✓
1� 1

111+5

◆
=

1771560
1771561

n

'(n)

<
1771560
1771561

1771561
1771560

e� log log n = e� log log n.

(9)

By invoking Lemma 3 and noting that c0 < 101010
we then conclude that Robin’s

inequality is true for those integers n > 5040 for which ⌫3(n)  12, ⌫5(n)  7,
⌫7(n)  6 or ⌫11(n)  5.

With these results, we can now also improve the unconditional bound for �(n)/n
from Akbary et al. [1].

Proof of Theorem 3. First, note that 1771561/1771560 = 1.000000564474248684775.
Then similar to Theorem 1, it follows from Lemma 2 that for n > c0,

�(n)
n

 n

'(n)
<

1771561
1771560

e� log log n < 1.0000005645 e� log log n (10)

On invoking Lemma 3 we then find that the above inequality holds unconditionally
for n > 5040.
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