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Abstract
We give a number field version of a recent result of Varga on solutions of polynomial
equations with binary input variables and relaxed output variables.

1. Introduction

This note gives a contribution to the study of solution sets of systems of polynomial
equations over finite local principal rings in the restricted input / relaxed output
setting. The following recent result should help to explain the setting and scope.

Let n, a1, . . . , an 2 Z+ and 1  N 
Pn

i=1 ai. Put

m(a1, . . . , an;N) =

(
1 if N < n

min
Qn

i=1 yi if n  N 
Pn

i=1 ai
;

the minimum is over (y1, . . . , yn) 2 Zn with 1  yi  ai for all i and
Pn

i=1 yi = N .

Theorem 1. ([6, Thm. 1.7]) Let R be a Dedekind domain, and let p be a maxi-
mal ideal in R with finite residue field R/p ⇠= Fq. Let n, r, v1, . . . , vr 2 Z+. Let
A1, . . . , An, B1, . . . , Br ⇢ R be nonempty subsets each having the property that
no two distinct elements are congruent modulo p. Let r, v1, . . . , vr 2 Z+. Let
P1, . . . , Pr 2 R[t1, . . . , tn] be nonzero polynomials, and put

zB
A := #{x 2

nY
i=1

Ai | 81  j  m Pj(x) 2 Bj (mod pvj )}.
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Then zB
A = 0 or

zB
A � m

0
@#A1, . . . ,#An;

nX
i=1

#Ai �
rX

j=1

(qvj �#Bj) deg(Pj)

1
A .

Remark 1. In the notation of Theorem 1, put v := max1jr vj . Then Theorem 1
may be viewed as a result on polynomials with coe�cients in the residue ring R/pv

(cf. [6, Thm. 1.6]), a finite, local principal ring. For every finite local principal ring
r, there is a number field K, a prime ideal p of the ring of integers ZK of K, and
v 2 Z+ such that r ⇠= ZK/pv ([7, Thm. 2], [2, Thm. 1.12]). Henceforth we will
work in the setting of residue rings of ZK .

If in Theorem 1 we take v1 = · · · = vr = 1, Ai = Fq for all i and Bj = {0} for all j,
then we recover a result of E. Warning.

Theorem 2. (Warning’s Second Theorem [9])
Let P1, . . . , Pr 2 Fq[t1, . . . , tn] be nonzero polynomials, and let

z = #{x = (x1, . . . , xn) 2 Fn
q | P1(x) = · · · = Pr(x) = 0}.

Then z = 0 or z � qn�
Pn

j=1 deg(Pj).

By Remark 1, we may write Fq as ZK/p for some maximal ideal p in the ring
of integers ZK of a suitable number field K. Having done so, Theorem 2 can be
interpreted in terms of solutions to a congruence modulo p, whereas Theorem 1
concerns congruences modulo powers of p. At the same time, we are restricting the
input variables x1, . . . , xn to lie in certain subsets A1, . . . , An and also relaxing the
output variables: we do not require that Pj(x) = 0 but only that Pj(x) lies in a
certain subset Bj modulo pvj .

There is however a tradeo↵: Theorem 1 contains the hypothesis that no two
elements of any Ai (resp. Bj) are congruent modulo p. Thus, whereas when vj = 1
for all j we are restricting variables by choice – e.g. we could take each Ai to be a
complete set of coset representatives for p in ZK as done above – when vj > 1 we
are restricting variables by necessity – we cannot take Ai to be a complete set of
coset representatives for pvj in ZK .

We would like to have a version of Theorem 1 in which the Ai’s can be any
nonempty finite subsets of ZK , and the Bj can be any nonempty finite subsets of
ZK containing {0}. However, to do so the degree conditions need to be modified in
order to take care of the “arithmetic” of the rings ZK/pdj . In general this seems
like a di�cult – and worthy – problem.

An interesting special case was resolved in recent work of L. Varga [8]. His degree
bound comes in terms of a new invariant of a subset B ⇢ Z/pdZ \ {0} called the
price of B and denoted pr(B) that makes connections to the theory of integer-valued
polynomials.
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Theorem 3. (Varga [8, Thm. 6]) Let P1, . . . , Pr 2 Z[t1, . . . , tn]\{0} be polynomials
without constant terms. For 1  j  r, let dj 2 Z+, and let Bj ⇢ Z/pdj Z be a
subset containing 0. If

rX
j=1

deg(Pj) pr(Z/pdj Z \Bj) < n,

then
#{x 2 {0, 1}n | 81  j  r, Pj(x) 2 Bj (mod pdj )} � 2.

In this note we will revisit and extend Varga’s work. Here is our main result.

Theorem 4. Let K be a number field of degree N , and let e1, . . . , eN be a Z-
basis for ZK . Let p be a nonzero prime ideal of ZK , and let d1, . . . , dr 2 Z+. Let
P1, . . . , Pr 2 ZK [t1, . . . , tn] be nonzero polynomials without constant terms. For
each 1  j  r, there are unique {'j,k}1kN 2 Z[t1, . . . , tn] such that

Pj(t) =
NX

k=1

'j,kej . (1)

For 1  j  r, let Bj be a subset of ZK/pdj that contains 0 (mod pdj ). Let

S :=
rX

j=1

 
NX

k=1

deg('j,k)

!
pr(ZK/pdj \Bj).

Then
#{x 2 {0, 1}n | 81  j  r, Pj(x) (mod pdj ) 2 Bj} � 2n�S .

Thus we extend Varga’s Theorem 3 from Z to ZK and refine the bound on the
number of solutions.

In Section 2 we discuss the price of a subset of ZK/pd. It seems to us that Varga’s
definition of the price has minor technical flaws: as we understand it, he tacitly
assumes that for an integer-valued polynomial f 2 Q[t] and m,n 2 Z, the output
f(n) modulo m depends only on the input modulo m. This is not true: for instance
if f(t) = t(t�1)

2 , then f(n) modulo 2 depends on n modulo 4, not just modulo 2. So
we take up the discussion from scratch, in the context of residue rings of ZK .

The proof of Theorem 4 occupies Section 3. After setting notation in Section 3.1
and developing some preliminaries on multivariate Gregory-Newton expansions in
Section 3.2, the proof proper occurs in Section 3.3.
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2. The Price

Consider the ring of integer-valued polynomials

Int(ZK , ZK) = {f 2 K[t] | f(ZK) ⇢ ZK}.

We have inclusions of rings

ZK [t] ⇢ Int(ZK , ZK) ⇢ K[t].

Let
m(p, 0) := {f 2 Int(ZK , ZK) | f(0) ⌘ 0 (mod p)}.

Observe that m(p, 0) is the kernel of a ring homomorphism Int(ZK , ZK) ! ZK/p:
first evaluate f at 0 and then reduce modulo p. So m(p, 0) is a maximal ideal of
Int(ZK , ZK). We put

U(p, 0) := Int(ZK , ZK) \m(p, 0) = {f 2 Int(ZK , ZK) | f(0) /2 p}.

Let d 2 Z+, and let B be a subset of ZK/pd. We say that h 2 U(p, 0) covers B if:
for all b 2 ZK such that b (mod pd) 2 B, we have h(b) 2 p. The price of B, denoted
pr(B), is the least degree of a polynomial h 2 U(p, 0) that covers B, or 1 if there
is no such polynomial.

Remark 2. a) If B1, B2 are subsets of ZK/pd \ {0}, then

pr(B1 [B2)  pr(B1) + pr(B2) :

If for i = 1, 2 the polynomial hi 2 U(p, 0) covers Bi and has degree di, then h1h2 2
U(p, 0) covers B1 [B2 and has degree d1 + d2.
b) If 0 (mod pd) 2 B, then pr(B) = 1:
Since 0 2 B we need h(0) 2 p, contradicting h 2 U(p, 0).
c) If d = 1, then for any subset B ⇢ ZK/p \ {0}, we have pr(B)  #B:
Let B̃ be any lift of B to ZK . Then

h =
Y
x2B̃

(t� x) 2 ZK [t] ⇢ Int(ZK , ZK)

covers B and has degree #B. Note that here we use polynoimals with ZK-coe�cients.
It is clear that #B is the minimal degree of a covering polynomial h with ZK-
coe�cients: we can then reduce modulo p to get a polynomial in Fq[t] that we want
to be 0 at the points of B and nonzero at 0, so of course it must have degree at
least #B.
d) If we assume no element of B is 0 modulo p, let B be the image of B under
the natural map ZK/pd ! ZK/p ⇠= Fq; then our assumption gives 0 /2 B. Above
we constructed a polynomial h 2 ZK [t] of degree #B such that h(0) /2 p and for
all x 2 ZK such that x (mod p) 2 B, we have h(x) 2 p. This same polynomial h
covers B and shows that pr(B)  pr(B)  #B.
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For B ⇢ ZK/pd \ {0} we define (B) 2 Z+, as follows. For 1  i  d we will
recursively define Bi ⇢ ZK/pi \ {0} and ki�1 2 N.
• Put Bd = B, and let kd�1 be the number of elements of Bd that lie in pd�1.
• Having defined Bi and ki�1, we let Bi�1 be the set of x 2 ZK/pi�1 such that there
are more than ki�1 elements of Bi mapping to x under reduction modulo pi�1. We
let ki�2 be the number of elements of Bi�1 that lie in pi�2.

Notice that 0 /2 Bi for all i: indeed, Bi is defined as the set of elements x such
that the fiber under the map ZK/pi+1 ! ZK/pi has more elements of Bi+1 than
does the fiber over 0. We put

(B) :=
d�1X
i=0

kiq
i.

Lemma 3. We have (B)  qd � 1.

Proof. Each ki is a set of elements in a fiber of a q-to-1 map, so certainly ki  q.
In order to have ki = q, then Bi+1 would need to contain the entire fiber over
0 2 ZK/pi, but this fiber includes 0 2 ZK/pi+1, which as above does not lie in
Bi+1. So

(B) =
d�1X
i=0

kiq
i 

d�1X
i=0

(q � 1)qi = qd � 1.

Theorem 5. For any subset B ⇢ ZK/pd \ {0}, we have pr(B)  (B).

Proof. Step 1: For r � 1, let A = {a1, . . . , aqd�1} ⇢ ZK/pd be a complete residue
system modulo pd�1 none of whose elements lie in pd. We will show how to cover
A with f 2 U(p, 0) of degree qd�1. We denote by vp the p-adic valuation on K. Let
� 2 ZK be an element with vp(�) =

Pd�2
j=0 qj , and let � 2 ZK be an element such

that vp(�) = 0 and, for all nonzero prime ideals q 6= p of ZK , we have vq(�) � vq(�).
(Such elements exist by the Chinese Remainder Theorem.) Put

gA(t) :=
qd�1Y
j=1

(t� aj) 2 ZK [t], hA(t) :=
�

�
gA(t) 2 K[t].

For all x 2 ZK , {x � a1, . . . , x � aqd�1} is a complete residue system modulo
pd�1, so in

Qqd�1

j=1 (x � aj), for all 0  j  d � 1 there are qd�1�j factors in pj , so
vp(gA(x)) �

Pd�2
j=0 qj and thus vp(hA(x)) � 0. For any prime ideal q 6= p of ZK ,

both vq(gA(x)) and vq(�
� ) are non-negative, so vq(hA(x)) � 0. Thus hA 2 Int ZK .

Moreover, the condition that no aj lies in pd ensures that vp(gA(0)) =
Pd�2

j=0 qj , so
hA 2 U(p, 0). If x 2 ZK is such that x ⌘ aj (mod pd) for some j, then vp(x�aj) �
d. Since in the above lower bounds of vp(gA(x)) we obtained a lower bound of at
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most d�1 on the p-adic valuation of each factor, this gives an extra divisibility and
shows that vp(hA(x)) � 0. Thus hA covers A with price at most qd�1.
Step 2: Now let B ⇢ ZK/pd \ {0}. The number of elements of B that lie in pd�1 is
kd�1. For each of these elements xi we choose a complete residue system Ai modulo
pd�1 containing it; since no xi lies in pd this system satisfies the hypothesis of Step
1, so we can cover each Ai with price at most qd�1 and thus (using Remark (2a))
all of the Ai’s with price at most kd�1qd�1. However, by suitably choosing the
Ai’s we can cover many other elements as well. Indeed, because we are choosing
kd�1 complete residue systems modulo pd�1, we can cover every element x that is
congruent modulo pd�1 to at most kd�1 elements of B. By definition of Bd�1, this
means that we can cover all elements of B that do not map modulo pd�1 into Bd�1.
Now suppose that we can cover Bd�1 by h 2 U(p, 0) of degree 0. This means that
for every x 2 ZK such that x (mod pd�1) lies in Bd�1, h(x) 2 p. But then every
element of B whose image in pd�1 lies in Bd�1 is covered by h, so altogether we get

pr(B)  kd�1q
d�1 + pr(Bd�1).

Now applying the same argument successively to Bd�1, . . . , B1 gives

pr(Bi)  ki�1q
i�1 + pr(Bi�1),

and thus

pr(B) 
d�1X
i=0

kiq
i = (B).

3. Proof of the Main Theorem

3.1. Notation

Let K be a number field of degree N , and let e1, . . . , eN be a Z-basis for ZK . A
Z-basis for ZK [t1, . . . , tn] is given by ejtI as j ranges over elements of {1, . . . , N}
and I ranges over elements of Nn. So for any f 2 ZK [t1, . . . , tn], we may write

f = '1(t1, . . . , tn)e1 + . . . + 'N (t1, . . . , tn)eN , 'i 2 Z[t1, . . . , tn]. (2)

Then we have
deg f = max

i
deg 'i.

For a subset B ⇢ ZK/pd, we put

B = ZK/pd \B.
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3.2. Multivariable Newton Expansions

Lemma 4.
If f 2 Q[t] is a polynomial and f(N) ⇢ Z, then f(Z) ⇢ Z.

Proof. See e.g. [3, p. 2].

Theorem 6.
Let f 2 K[t].
a) There is a unique function ↵•(f) : NN ! K, r 7! ↵r(f) such that
(i) we have ↵r(f) = 0 for all but finitely many r 2 NN , and
(ii) for all x = x1e1 + . . . + xNeN 2 ZK , we have

f(x) =
X

r2NN

↵r(f)
✓

x1

r1

◆
· · ·
✓

xN

rN

◆
. (3)

b) The following are equivalent:
(i) We have f 2 Int(ZK , ZK).
(ii) For all r 2 NN , ↵r(f) 2 ZK .
We call the ↵r(f) the Gregory-Newton coe�cients of f .

Proof. Step 1: Let f 2 K[t]. Let e1, . . . , eN be a Z-basis for ZK . We introduce new
independent indeterminates t1, . . . , tN and make the substitution

t =
NX

k=1

ektk

to get a polynomial
f̃ 2 K[t].

This polynomial induces a map KN ! K hence, by restriction, a map ZN ! K.
For x = (x1, . . . , xN ) 2 ZN , write x = x1e1 + . . . + xNeN 2 ZK . Then we have

f̃(x) = f(x).

Let M = Maps(ZN ,K) be the set of all such functions, and let P be the K-subspace
of M consisting of functions obtained by evaluating a polynomial in K[t] on ZN , as
above. By the CATS Lemma [5, Thm. 12], the map K[t] ! P is an isomorphism
of K-vector spaces. Henceforth we will identify K[t] with P inside M.
Step 2: For all 1  k  N , we define a K-linear endomorphism �k of M, the kth
partial di↵erence operator :

�k(g) : x 2 ZN 7! g(x + ek)� g(x).

These endomorphisms all commute with each other:

(�i ��j)(g) = g(x + ei + ej)� g(x + ej)� g(x + ei) + g(x) = (�j ��i)(g).
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Let �0
k be the identity operator on M, and for i 2 Z+, let �i

k be the i-fold compo-
sition of �k. For I = (i1, . . . , iN ) 2 NN , put

�I = �i1 � . . . ��iN 2 EndK(M).

When we apply �k to a monomial tI , we get another polynomial. More precisely,
if degtk

(tI) = 0 then �ktI is the zero polynomial; otherwise

degtk
(�ktI) = (degtk

tI)� 1; 8l 6= k,degtl
(�ktI) = degtl

tI .

Thus for each f 2 P, for all but finitely many I 2 NN , we have that �I(f) = 0.
For the one variable di↵erence operator, we have

�
✓

x

r

◆
=
✓

x + 1
r

◆
�
✓

x

r

◆
=
✓

x

r � 1

◆
.

From this it follows that for I, r 2 NN we have

�I

✓✓
x1

r1

◆
· · ·
✓

xN

rN

◆◆
(0) =

✓
0

r1 � i1

◆
· · ·
✓

0
rN � iN

◆
= �r,I . (4)

So if �• : NN ! K is any finitely nonzero function then for all I 2 NN we have

�I(
X

r2NN

�r

✓
x1

r1

◆
· · ·
✓

xN

rN

◆
)(0) = �I , (5)

and thus there is at most one such function satisfying (3), namely

↵•(f) : r 7! �r(f)(0).

So for any f 2M and r 2 NN , we define the Gregory-Newton coe�cient

↵r(f) := �r(f)(0) 2 K.

We may view the assignment of the package {↵r(f)}r2NN of Gregory-Newton coef-
ficients to f 2M as a K-linear mapping

M! KNN

.

If we put M+ = Maps(NN ,K), then we get a factorization

M!M+ ↵! KNN

,

where the first map restricts from ZN to NN , and the factorization occurs because
the Gregory-Newton coe�cients depend only on the values of f on NN . We make
several observations.
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First Observation: The map ↵ is an isomorphism. Indeed, knowing all the succes-
sive di↵erences at 0 is equivalent to knowing all the values on NN , and all possible
packages of Gregory-Newton coe�cients arise. Namely, let Sn be the assertion that
for all x 2 NN with

P
k xk = n and all f 2M, then f(x) is a Z-linear combination

of its Gregory-Newton coe�cients. The case n = 0 is clear: f(0) = ↵0(f). Suppose
Sn holds for n, let x 2 NN be such that

P
k xk = n + 1, and choose k such that

x = y + ek; thus
P

k yk = n. Then

f(x) = f(y) +�kf(y).

By induction, f(y) is a Z-linear combination of the Gregory-Newton coe�cients of
f and �kf(y) is a Z-linear combination of the Gregory-Newton coe�cients of �kf .
But every Gregory-Newton coe�cient of �kf is also a Gregory-Newton coe�cient
of f , completing the induction.
Second Observation: The composite map

K[t] !M!M+ ↵! KNN

is an injection. Indeed, the kernel of M! KNN
is the set of functions that vanish on

ZN \NN . In particular, any element of the kernel vanishes on the infinite Cartesian
subset (Z<0)N and thus by the CATS Lemma is the zero polynomial.
Third Observation: For a subring R ⇢ K and f 2 M, we have f(NN ) ⇢ R
i↵ all of the Gregory-Newton coe�cients of f lie in R. This is a consequence of
the First Observation: the Gregory-Newton coe�cients are Z-linear combinations
of the values of f on NN and conversely.
Step 3: For F 2 K[t], we define the Newton expansion

T (F ) =
X

r2NN

↵r(F )
✓

t1
r1

◆
· · ·
✓

tN
rN

◆
2 K[t].

This is a finite sum. Moreover, by definition of ↵r(F ) and by (5) we get that for all
r 2 NN ,

↵r(T (F )) = ↵r(F ).

It now follows from Step 2 that T (F ) = F 2 K[t]. Applying this to the f̃ associated
to f 2 K[t] in Step 1 completes the proof of part a).
Step 4: If we assume that f 2 Int(ZK , ZK) then f̃(ZN ) ⇢ ZK , so all the Gregory-
Newton coe�cents lie in ZK . Conversely, if all the Gregory-Newton coe�cients of
f̃ lie in ZK , then for x = x1e1 + . . . + xNeN 2 ZK , by Lemma 4 and (3) we have
f(x) = f̃(x1, . . . , xN ) 2 ZK , so f 2 Int(ZK , ZK).

3.3. Proof of Theorem 4

We begin by recalling the following result.



INTEGERS: 18 (2018) 10

Theorem 7. Let F be a field, and let P 2 F [t1, . . . , tn] be a polynomial. Let

U := {x 2 {0, 1}n | P (x) 6= 0}.

Then either #U = 0 or #U � 2n�deg(P ).

Proof. This is a special case of a result of Alon-Füredi [1, Thm. 5].

We now turn to the proof of Theorem 4. Put

Z := {x 2 {0, 1}n | 81  j  r, Pj(x) (mod pdj ) 2 Bj}.

Step 0: If q = #ZK/p is a power of p, then we have pd 2 pd. Therefore in (1) if we
modify any coe�cient of 'j,k(t) by a multiple of pd, it does not change Pj modulo
pd and thus does not change the set Z. We may thus assume that every coe�cient
of every 'j,k is non-negative.
Step 1: For w =

Pk
i=1 tIi a sum of monomials and 0  r  k, we put

 r(w) :=
X

1i1<i2<...<irk

tIi1 · · · tIir .

For x 2 {0, 1}n, we have w(x) = #{1  i  k | xIi = 1}, so

 r(w)(x) =
✓

w(x)
r

◆
.

For f 2 ZK [t1, . . . , tn], write f =
PN

k=1 'k(t)ek and suppose that all the coe�cients
of each 'k are non-negative – equivalently, each 'k(t) is a sum of monomials. For
r 2 NN , we put

 r(f) :=  r1('1) · · · rN ('N ) 2 Z[t].

For h 2 Int(ZK , ZK) with Gregory-Newton coe�cients ↵r, we put

 h(f) :=
X

r2NN

↵r r(f) 2 ZK [t].

For x 2 {0, 1}n, we have

 r(x) =
NY

k=1

✓
'k(x)

rk

◆
,

so using (2) we get

 h(f)(x) =
X

r

↵r r(f)(x) =
X

r

↵r

✓
'1(x)

r1

◆
· · ·
✓

'N (x)
rN

◆

= h('1(x)e1 + . . . + 'N (x)eN ) = h(f(x)).
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Step 2: For 1  j  r, let hj 2 Int(ZK , ZK) have degree pr(Bj) and cover Bj . Put

F :=
rY

j=1

 hj (Pj) (mod p) 2 ZK/p[t] = Fq[t].

Note that

deg(F ) 
rX

j=1

deg hj (Pj) 
rX

j=1

 
deg(hj)

nX
k=1

deg('j,k)

!
= S.

Here is the key observation: for x 2 {0, 1}n, if F (x) 6= 0, then for all 1  j  r we
have p -  hj (Pj)(x) = hj(Pj(x)), so Pj(x) (mod pdj ) /2 Bj , and thus x 2 Z.
Step 3: For all 1  j  r we have Pj(0) = 0 and hj 2 U(p, 0), so hj(0) /2 p, so

F (0) =
rY

j=1

 h
j (Pj(0)) =

rY
j=1

hj(Pj(0)) (mod p) =
rY

j=1

hj(0) (mod p) 6= 0.

Applying Alon-Füredi to F , we get

#Z � #{x 2 {0, 1}n | F (x) 6= 0} � 2n�deg F � 2n�S ,

completing the proof of Theorem 4.
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