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Abstract
Almost balancing numbers were introduced by Panda and Panda as a certain gen-
eralization of balancing numbers. In this paper, we extend this notion to gap
balancing numbers. Additionally, we establish a balancer duality theorem which

generalizes the relationship observed between balancing and cobalancing numbers
by Panda and Ray.

1. Introduction

Let v and w be integers with v > 0. A positive integer B is called an almost gap
balancing number with gap v and weight w, or an A(v, w)-balancing number, if
B > v and

1+24+3+ -+ B-v)+w=(B+1)+---+(B+r) (1)

for some integer r > 0. Panda and Panda [5] introduced almost balancing numbers
as a generalization of balancing numbers [4, A001109] and cobalancing numbers
[4, A053141] when studying (1) with ¥ = 1 and w = +1. We extend their results
to A(v,w)-balancing numbers. Additionally, we establish a balancer duality theo-
rem which generalizes the relationship observed between balancing and cobalancing
numbers by Panda and Ray [7].
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2. A(v,w)-balancing Numbers

In this section, we define almost gap balancing numbers and give several examples.

Definition 1. Let v and w be integers with v > 0. Define an integer B to be
an almost gap balancing number with gap v and weight w, or an A(v,w)-balancing
number, if B > v and

I+243+---+(B-v)+w=(B+1)+---+(B+r)

for some integer r > 0. We refer to r as the A(v,w)-balancer corresponding to the
A(v,w)-balancing number B.
It follows from (1) that B is an A(v, w)-balancing number if and only if

T(B—v)+T(B)+w=T(B+r) (2)

where T'(n) = w is the nth triangular number. Solving (2) for r gives

_ —(2B+1)++/8B2+8(1—v)B+ (2v —1)2 + 8w
N 2

where we take the positive square root so that » > 0. Thus B is an A(v, w)-balancing
number if and only if 882 + 8(1 — v)B + (2v — 1)? + 8w is a perfect square. The
latter expression occurs frequently so we make the following definition.

Definition 2. Let B be an A(v,w)-balancing number. Define its corresponding
A(v,w)-Lucas balancing number to be

C=+/8B2+8(1—v)B+ (2v—1)2 + 8uw.

For brevity we say the pair (B, C) is an A(v, w)-balancing pair.
Definition 2 implies that the A(v,w)-balancing pair (B, C) is a solution to the
Pell-like equation

y? =822 +8(1 — v)x + (2v — 1)? + 8w. (3)
Equation (3) can be rewritten as
y? — 222 =20° + 8w — 1 (4)

where z =2z +1 — v.

Definition 3. Given integers v and w with v > 0, we refer to the Pell-like equation
=222 =27 + 8w —1

as the A(v, w)-companion equation. For later convenience let N (v, w) = 2v24+8w—1.
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In particular, an integral solution (y, z) to the A(v, w)-companion equation cor-
responds to an A(v, w)-balancing pair (B, C') where B = % and C' = y provided
y>0,z>v+1,and z=1—vr (mod 2).

Example 1. Since T(6) + T(6) + 3 = T(9) and T(38) + T(38) + 3 = T(54),
the numbers 6 and 38 are A(0, 3)-balancing numbers with balancers 3 and 16, re-
spectively. The corresponding A(0, 3)-Lucas balancing numbers are 19 and 109.
Similarly, 3 and 16 are A(1, —3)-balancing numbers with balancers 0 and 6 since
T(2)+T(3)—3 =T(3) and T'(15)+7'(16)—3 = T'(22). Their A(1, —3)-Lucas balanc-
ing numbers are 7 and 45. Additional examples of A(1, —3)- and A(0, 3)-balancing
numbers are given in Tables 1 and 2, respectively.

Example 2. The A(v, 0)-balancing numbers are the upper gap balancing numbers
[1]. In particular, the A(0,0)- and A(1, 0)-balancing numbers are cobalancing [7] and
balancing numbers [2], respectively. The A(1,1)- and A(1,—1)-balancing numbers
are the almost balancing numbers of the first and second kind, respectively, studied
by Panda and Panda [5]. Lastly, the A(1, —k?)-balancing numbers are the k-circular
balancing numbers [6].

Example 3. For v > 0, a class of A(v, —1)-balancing numbers is generated from the
seed (1, |2v—3|). The initial A(1, —1)-balancing pairs are (1, 1), (4,11), and (23, 65).
For v # 1, the initial A(v, —1)-balancing pairs are (v +1,2v+3), (dv+7,10v +21),
and (21v + 43,580 + 123).

The last example is a special case of the following result.

Theorem 1. Let k > 0 be an integer and w = —=T(k). Then there exists A(v,w)-
balancing numbers for every v > 0.

Proof. Observe B = v+ k is an A(v,w)-balancing number with balancer r = 0. O

Remark 1. The existence of A(v,w)-balancing numbers is not always guaran-
teed. More specifially, A(v, w)-balancing numbers exist if and only if the A(v, w)-
companion equation y? — 222 = N(v,w) has integral solutions. From Pell equation
theory [3, pp. 205-207] the latter can be determined by searching for solutions in
a certain finite interval. For example, there do not exist A(1,2)-balancing numbers
since its companion equation, y? — 222 = 15, does not have any integral solutions.
In fact, this argument proves that there are no A(v, w)-balancing numbers whenever
N(v,w) = 15.

3. Functions Involving A (v, w)-balancing Numbers

We present several functions which generate A(v, w)-balancing numbers from known
A(v,w)-balancing numbers. These functions are derived using A(v, w)-companion
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equations and linear substitutions.

3.1. Functions Generating A (v, w)-balancing Numbers

From the theory of Pell equations, integral solutions to (4), if they exist, oc-
cur in a finite number of cyclic classes. That is, if (y;, 2;) is a solution of the
A(v, w)-companion equation corresponding to an A(v, w)-balancing pair, then so is
(Yi+1, zi+1) where

Yir1 + 2i01V2 = (34 2V2) (y; + 2:V2)

or equivalently in matrix form

Y| 3 4 |y
v ] - ] g
To see this, suppose (y;, z;) satisfies y; > 0, z; > v+ 1, and z; = 1 — v (mod 2).
Clearly y;4+1 > 0 and 2,41 > v+ 1. Lastly 2,41 = z; = 1 — v (mod 2) which
establishes the claim. Throughout this paper we freely use functional notation

V(y, z) for the map given in (5) and use similar notation for other such maps.
The relations y; = C; and z; = 2B; + 1 — v can be expressed as the affine

transformations o 118 0
Y| i
s 8] =2 o] [2]+ 1)) ©
o [Bi] [0 3] [w vt
S [C] = {1 0| |z 10 Q

Using (6) and (7), equation (5) can be expressed in terms of A(v,w)-balancing
pairs as

and

_ o-1 . Bi+l o 3 1 Bl 1—v
Jl/,'w - Su,wVSV,’w . |:Ci+1 - 8 3 Cz + 4 _ 41/ . (8)
Noting (3 + 2\/5)_1 = 3 — 21/2 we similarly see

Yic1 +zim1V2 = (3= 2v2)(y; + zV2)

-1 _ o—1y,—1 . Bi,1 o 3 —1 Bz 1—v
e e M 1 e

We summarize the observations above in the following result.

and

Theorem 2. If (z,y) is an A(v, w)-balancing pair, then so is J, . (z,y) where

v DB
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1| 2 3 4 ) 6 7
9116 52| 93 303 | 542 1766
25 |45 147 | 263 857 | 1533 4995
31 6 21| 38 125 | 224 731
11119 611109 355| 635 2069
12122 73| 131 428 | 766 2497

S‘bﬂ Qms
W ot oO g Wwo

Table 1: Initial A(1, —3)-balancing numbers and associated sequences.

1|0 1] 2 3 4 ) 6 7
B0 3| 6 21| 38 125|224 731
C|5 11|19 61|109 355|635 2069

T2 23 9| 16 52| 93 303

713 3| 7 25| 45 147|263 857
m|2 5| 9 30| 54 177|317 1034

Table 2: Initial A(0, 3)-balancing numbers and associated sequences.

Recall y = /822 + 8(1 — v)x + (2v — 1)2 + 8w. Since the components of J,, .,
viewed as functions of z are strictly increasing on [v, 00), their inverses exist and

el =18 SR

Given an A(v,w)-balancing pair (z¢,yo) the functions J,, and Jl,_&, can be
applied iteratively to form a class of solutions ((x;,¥:))icz to (3) via (iq1,Yit1) =
Juw (i, yi)- It is always possible to reindex so that the minimal A(v, w)-balancing
pair corresponds to (2o, yo). Then ((x;,y;))icz is a class of solutions to (3) such that
the nonnegative indexed terms correspond to A(v,w)-balancing pairs. We tacitly
assume that a class of A(v,w)-balancing pairs are indexed in this manner unless
stated otherwise.

Example 4. There are two classes of A(1, —3)-balancing pairs whose initial terms
are (3,7) and (9,25), respectively. The initial A(1,—3)-balancing numbers and
associated sequences are given in Table 1. There are also two classes of A(0, 3)-
balancing pairs and their initial terms are (0,5) and (3, 11), respectively. The initial
A(0, 3)-balancing numbers and associated sequences are given in Table 2.

The next two theorems are generalizations of results of upper gap balancing
numbers [1] extended to A(v,w)-balancing numbers using Theorem 2. The proofs
are straightforward modifications and omitted here.

Theorem 3. Suppose ((B;,C;))i>o is a class of A(v, w)-balancing pairs. Then for
12>1
B1'+1 = GBl — Bi—l +2—-2v
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and

Cit1 =6C; — C;_;.
Theorem 4. Let ((B;, C;))i>o0 be a class of A(v,w)-balancing pairs. The generating
function for its A(v,w)-balancing numbers is
2—2v — Bl -+ 630)82 —+ (Bl — 7B0)8 -+ BO
(1—s)(1—6s+s?) '

G(s) = (

Example 5. There are two classes of A(0, 3)-balancing numbers whose generating
functions are
—45% 4 65 —s24+3
d G = .
A0 -6s1s &= 50 6+

Gi(s) =

These can be combined to obtain the generating function for all A(0, 3)-balancing
numbers, namely

st 4353 — 352 - 3s
(s —1)(s2—2s—1)(s2+2s—1)

G(s) =

3.2. Transition Functions

In this section, we present functions which map A(v,w)-balancing numbers to
A(V', w')-balancing numbers.

Lemma 1. Let N and N' be integers. Suppose (yo,z0) and (y}, z,) are solutions
to the equations y2 — 222 = N and y? — 222 = N’, respectively. Let

1 Yo 220 Yo 2z
H - N _ o ) o .
0 Yo 20 Yo

g-#E)

Proof. Since y2 — 222 = N we see
B-
20

Lemma 2. Let H be as defined in Lemma 1. Then HV =V H.

Then

Proof. Suppress the naughts in H and observe

1 {3yy’ — 622" +4yz’ —4zy' 6y — 62y’ + dyy — 822’

HV =+ 2uy’ + 3y — 32y’ — 422" Byy + 4y — 42y — 622

=VH.
v |-v
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Using Lemmas 1 and 2 we construct a function 7" which maps a given class
of A(v, w)-balancing numbers ((B;, C;))i>0 to a given class of A(v/,w’)-balancing
numbers ((B},C}));>0. In terms of the notation used above define

T:=8,'V HSyw

as the composition of affine transformations where (yo, z0) and (y{, 2;) used in H are
solutions of the companion equations corresponding to the balancing pairs (By, Cp)
and (B, C}), respectively.

Observe that T is an affine transformation and (By, Cy) — (B{, C}) by Lemma
1 and construction. To see that (B;,C;) — (Bj, C}) for all i, observe using (8) and
Lemma 2 that

JorarT =SV Sy S HS,y
=S, VHS,
=S, HV S, 0
=S, HSywS, WV S0

v w’

=Ty

It follows that J!, ,, T = T.J} ,, which implies (B;, C;) — (Bj, C}) for all 4.
It is straightforward to give the following explicit presentation of 7.

, W

Theorem 5. Let ((B;, C;))i>0 and (B}, Cl))i>o be classes of A(v,w) and A(v',w')-
balancing pairs, respectively. Then the transition function T given by

o A 1 ]

where
_8BoBj +4(1 —v)Bo +4(1 —v)By +2(1 —v)(1 — ') — GGy
- 202 — 1+ 8w
- 2(CoBj) — BoCp) + (1 —v")Co — (1 —v)C
B 2(2v2 — 1 + 8w)
(1 —v)[CoCy — 8BB) — 4(1 — v)Bj] + (1 — ') [8BF + 4(1 — v)By — C3]
c= .

2202 — 1+ Sw)
maps (By, C;) to (B, Cl) for alli.

Example 6. Consider the transition function from the A(1,0)-balancing pairs
((Bi, Cy))i>o0 to the A(0,0)-balancing pairs ((Bj, C}))i>0. Recall (By,Cy) = (1,3)
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and (B4, C4) = (0.1). Then (yo, %) = (3,2), (s #0) = (1,1),
me
ofl=[7 AR

Observe H? = V1. This plays a key role in the balancer duality result in section

5.

and

4. Balancers, Related Sequences, and Their Functions

In this section we investigate the sequence of A(v, w)-balancers associated to A(v, w)-
balancing numbers and related sequences. Recall that an integer r > 0 is a A(v, w)-
balancer of the A(v, w)-balancing number B provided it satisfies T(B —v)+T(B) +
w =T(B +r). Solving for B gives

(2r +2v — 1)+ V8r2 + 8vr — 8w + 1 )
2

B =

where we take the positive square root so that B > 0. Thus r is an A(v, w)-balancer
if and only if 872 4+ 8vr — 8w + 1 is a perfect square. Due to the latter expression
we make the following definition.

Definition 4. Let r be an A(v,w)-balancer. Define its A(v,w)-Lucas balancer to
be

P =/82+8ur — 8w+ 1.

We refer to (r,7) as an A(v,w)-balancer pair.

Equation (9) can be reformulated as # = 2B — 2r — 2v + 1. Definition 4 implies
that the A(v,w)-balancer pair (r,#) is a solution to the equation

y? = 82 4 8va — 8w + 1. (10)
Alternatively (10) can be rewritten as
y? — 222 = —N(v,w) (11)

where y = 7 and z = 2r + v. We refer to (11) as the A(v, w)-balancer companion
equation. An integral solution of (11) corresponds to an A(v, w)-balancer pair (r, #)
5% and 7 = y provided z = v (mod 2), z > v, and y > 0.

where r =
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Again applying the theory of Pell equations, solutions to (11), if they exist, occur
in a finite number of cyclic classes. Moreover, if (y;, 2;) is a solution of the A(v, w)-
balancer companion equation corresponding to an A(v, w)-balancer pair, then it is
straightforward using techniques as before to see that (y;y1,2i+1) = V(ys, 2;) is also
a solution.

The relations y; = #; and z; = 2r; + v can be expressed as the affine transforma-

] B
o[- (8]

Using (12) and (13), (¢i+1, zi+1) = V (i, z;) can be expressed as the affine trans-
formation

and

- —1 TS 3 1 T v
R
We summarize these observations in the following result.

Theorem 6. If (z,y) is an A(v,w)-balancer pair, then so is L, ,(x,y) where

nff]= 3] )+ [0)

Put y = V822 + 8vx — 8w + 1. Since the component functions of L, . viewed as
a function of x are strictly increasing on [v, 00), their inverses exist and

wfl=[5 S]] ]

We also have the following results which extends the analogous results for upper
gap balancing numbers [1]. We omit the proofs since each is a straightforward
adaptation.

Theorem 7. If (r,7) is the A(v,w)-balancer pair for the A(v,w)-balancing pair
(B,C), then Ly ,(r,#) is the A(v,w)-balancer pair for the A(v,w)-balancing pair
Jow(B,C).

Definition 5. The counterbalancer m of an A(v,w) balancing number B with
A(v,w)-balancer r is defined to be m = B +r.

Theorem 8. Suppose (B, C) is an A(v,w)-balancing pair with (r,+) its associated
A(v,w)-balancer pair and m its counterbalancer. Then

(a) r= —23-56’—17.
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(b) #=2B —2r —2v+1;
(c) #=4B—-C+2—2v;
(d) m= L.

Theorem 9. Let ((B;, Ci))i>o0 be a class of A(v, w)-balancing pairs, ((r;,7;))i>o its
A(v, w)-balancer pairs, and (m;);>o the associated counterbalancers. Then

(a) ri41 =61y —1im1 +20;
(b) Tip1 =67 —7i_1;
(c) miz1 =6m; —m;—1 +2.

Theorem 10. Let ((B;,C;))i>0 be a class of A(v, w)-balancing pairs, ((r;,7;))i>o0
its A(v, w)-balancer pairs, and (m;);>o the associated counterbalancers. Then

B; C; : iy ;
lim 25 = lim —E =l P = i T i T — 34 R,

i—00 i i—00 C’Z i—oo Ty i—oo Ty i—o00 1Ny

5. A(v,w)-balancer Duality

Panda and Ray [7, p. 1196] showed that the balancer of an A(1,0)-balancing number
is an A(0, 0)-balancing number, and the balancer of an A(0, 0)-balancing number is
an A(1,0)-balancing number. Moreover, the balancer of a balancer of an A(v,0)-
balancing number is the previous A(v, 0)-balancing number for v = 0, 1. We refer to
this phenomena as balancer duality and say A(1, 0)-balancing numbers and A(0, 0)-
balancing numbers are balancer dual to each other. In this section we extend this
result to A(v, w)-balancing numbers.

As motivation, we recall the similarities between (4) and (11) as well as observe
the transition function from Example 3.2 sends an A(1,0)-balancing pair to its
A(1,0)-balancer pair. The choice of H in this particular transition function plays a
key role in balancer duality, so we designate it as

-1 2
m-[ 2]
Observe that solutions of y? — 222 = M and 3% — 222 = N can be used to form
a solution of y? — 222 = M N using Brahmagupta’s identity
(a® — 20*)(c* — 2d?) = (ac + 2bd)* — 2(ad + be)?.

In particular, take a solution (y;,z;) to y?> — 222 = N where N = N(v,w) and
the solution (—1,1) to y? — 222 = M where M = —1. Then we see that

(yi + 2V2) (1 + V2) = (—yi +22) + (i — 2:) V2
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which shows (—y; + 22;,y; — 2;) = Ho(y:, 2;) is a solution to y? — 222 = —N (v, w).

Define the affine transformation D, ,, = S;,}qv,HoSy7q,, and let (B;,C;) be an
A(v, w)-balancing pair. To extend balancer duality between A(1, 0)-balancing pairs
and A(0, 0)-balancing pairs, we would like D,/ D, ., = J;i. This requires v/ =

l/271/

l—vandw =— — w. Using the matrix representations, it is straightforward
to see with these choices of v/ and w’ that

o e e IR A | A e

C;—1
Dy w(B;) = —B; + z2 =—-Bi+mi=r;

so that

and
D%w(Ci) = 4Bz - Ci +2—-2v= fz
This sets the stage for the next theorem.
Theorem 11 (A(v,w)-Balancer duality). Let D, ., = S,,', HoS, ., where v =

,w’
2 _
1—vandw' = —*5% —w. Then Dy y Dy = J; .

Proof. The discussion above shows that D, ,, maps an A(v, w)-balancing pair to its
A(v,w)-balancer pair. To complete the proof, note that

V=0W)=1-(1-v)=v

and ) )
w//:(wl)/zi(]‘*y) 7(17’/) - (V -V ’LU) = w.
2 2
We have
DV’,w’DV,w = S;ulywuHOSV/7w/S;,1w/Hosy7w

= S;”l,w”HgSVyw

=S,V 'S

=J}!

v,w*

Since v > 0 we can summarize Theorem 11 as follows.

Corollary 1. The A(1,w)-balancing numbers and A(0, —w)-balancing numbers are
balancer dual to each other.

Example 7. The A(1,—3)- and A(0, 3)-balancing numbers are balancer dual to
each other. This is illustrated in Tables 1 and 2. Note that the A(0, 3)-balancer pairs
of the initial A(0,3)-balancing pairs of each class correspond to the pair obtained
by applying J;,_3 to the initial A(1, —3)-balancing pair in the corresponding class.
This offset always occurs for the initial pairs.
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