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Abstract
Almost balancing numbers were introduced by Panda and Panda as a certain gen-
eralization of balancing numbers. In this paper, we extend this notion to gap
balancing numbers. Additionally, we establish a balancer duality theorem which
generalizes the relationship observed between balancing and cobalancing numbers
by Panda and Ray.

1. Introduction

Let ⌫ and w be integers with ⌫ � 0. A positive integer B is called an almost gap
balancing number with gap ⌫ and weight w, or an A(⌫, w)-balancing number, if
B � ⌫ and

1 + 2 + 3 + · · · + (B � ⌫) + w = (B + 1) + · · · + (B + r) (1)

for some integer r � 0. Panda and Panda [5] introduced almost balancing numbers
as a generalization of balancing numbers [4, A001109] and cobalancing numbers
[4, A053141] when studying (1) with ⌫ = 1 and w = ±1. We extend their results
to A(⌫, w)-balancing numbers. Additionally, we establish a balancer duality theo-
rem which generalizes the relationship observed between balancing and cobalancing
numbers by Panda and Ray [7].
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2. A(⌫, w)-balancing Numbers

In this section, we define almost gap balancing numbers and give several examples.

Definition 1. Let ⌫ and w be integers with ⌫ � 0. Define an integer B to be
an almost gap balancing number with gap ⌫ and weight w, or an A(⌫, w)-balancing
number, if B � ⌫ and

1 + 2 + 3 + · · · + (B � ⌫) + w = (B + 1) + · · · + (B + r)

for some integer r � 0. We refer to r as the A(⌫, w)-balancer corresponding to the
A(⌫, w)-balancing number B.

It follows from (1) that B is an A(⌫, w)-balancing number if and only if

T (B � ⌫) + T (B) + w = T (B + r) (2)

where T (n) = n(n+1)
2 is the nth triangular number. Solving (2) for r gives

r =
�(2B + 1) +

p
8B2 + 8(1� ⌫)B + (2⌫ � 1)2 + 8w

2

where we take the positive square root so that r � 0. Thus B is an A(⌫, w)-balancing
number if and only if 8B2 + 8(1 � ⌫)B + (2⌫ � 1)2 + 8w is a perfect square. The
latter expression occurs frequently so we make the following definition.

Definition 2. Let B be an A(⌫, w)-balancing number. Define its corresponding
A(⌫, w)-Lucas balancing number to be

C =
p

8B2 + 8(1� ⌫)B + (2⌫ � 1)2 + 8w.

For brevity we say the pair (B,C) is an A(⌫, w)-balancing pair.
Definition 2 implies that the A(⌫, w)-balancing pair (B,C) is a solution to the

Pell-like equation

y2 = 8x2 + 8(1� ⌫)x + (2⌫ � 1)2 + 8w. (3)

Equation (3) can be rewritten as

y2 � 2z2 = 2⌫2 + 8w � 1 (4)

where z = 2x + 1� ⌫.

Definition 3. Given integers ⌫ and w with ⌫ � 0, we refer to the Pell-like equation

y2 � 2z2 = 2⌫2 + 8w � 1

as the A(⌫, w)-companion equation. For later convenience let N(⌫, w) = 2⌫2+8w�1.
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In particular, an integral solution (y, z) to the A(⌫, w)-companion equation cor-
responds to an A(⌫, w)-balancing pair (B,C) where B = z+⌫�1

2 and C = y provided
y > 0, z � ⌫ + 1, and z ⌘ 1� ⌫ (mod 2).

Example 1. Since T (6) + T (6) + 3 = T (9) and T (38) + T (38) + 3 = T (54),
the numbers 6 and 38 are A(0, 3)-balancing numbers with balancers 3 and 16, re-
spectively. The corresponding A(0, 3)-Lucas balancing numbers are 19 and 109.
Similarly, 3 and 16 are A(1,�3)-balancing numbers with balancers 0 and 6 since
T (2)+T (3)�3 = T (3) and T (15)+T (16)�3 = T (22). Their A(1,�3)-Lucas balanc-
ing numbers are 7 and 45. Additional examples of A(1,�3)- and A(0, 3)-balancing
numbers are given in Tables 1 and 2, respectively.

Example 2. The A(⌫, 0)-balancing numbers are the upper gap balancing numbers
[1]. In particular, the A(0, 0)- and A(1, 0)-balancing numbers are cobalancing [7] and
balancing numbers [2], respectively. The A(1, 1)- and A(1,�1)-balancing numbers
are the almost balancing numbers of the first and second kind, respectively, studied
by Panda and Panda [5]. Lastly, the A(1,�k2)-balancing numbers are the k-circular
balancing numbers [6].

Example 3. For ⌫ � 0, a class of A(⌫,�1)-balancing numbers is generated from the
seed (1, |2⌫�3|). The initial A(1,�1)-balancing pairs are (1, 1), (4, 11), and (23, 65).
For ⌫ 6= 1, the initial A(⌫,�1)-balancing pairs are (⌫ +1, 2⌫ +3), (4⌫ +7, 10⌫ +21),
and (21⌫ + 43, 58⌫ + 123).

The last example is a special case of the following result.

Theorem 1. Let k � 0 be an integer and w = �T (k). Then there exists A(⌫, w)-
balancing numbers for every ⌫ � 0.

Proof. Observe B = ⌫ +k is an A(⌫, w)-balancing number with balancer r = 0.

Remark 1. The existence of A(⌫, w)-balancing numbers is not always guaran-
teed. More specifially, A(⌫, w)-balancing numbers exist if and only if the A(⌫, w)-
companion equation y2 � 2z2 = N(⌫, w) has integral solutions. From Pell equation
theory [3, pp. 205–207] the latter can be determined by searching for solutions in
a certain finite interval. For example, there do not exist A(1, 2)-balancing numbers
since its companion equation, y2 � 2z2 = 15, does not have any integral solutions.
In fact, this argument proves that there are no A(⌫, w)-balancing numbers whenever
N(⌫, w) = 15.

3. Functions Involving A(⌫, w)-balancing Numbers

We present several functions which generate A(⌫, w)-balancing numbers from known
A(⌫, w)-balancing numbers. These functions are derived using A(⌫, w)-companion
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equations and linear substitutions.

3.1. Functions Generating A(⌫, w)-balancing Numbers

From the theory of Pell equations, integral solutions to (4), if they exist, oc-
cur in a finite number of cyclic classes. That is, if (yi, zi) is a solution of the
A(⌫, w)-companion equation corresponding to an A(⌫, w)-balancing pair, then so is
(yi+1, zi+1) where

yi+1 + zi+1

p
2 = (3 + 2

p
2)(yi + zi

p
2)

or equivalently in matrix form

V :

yi+1

zi+1

�
=


3 4
2 3

� 
yi

zi

�
. (5)

To see this, suppose (yi, zi) satisfies yi > 0, zi � ⌫ + 1, and zi ⌘ 1 � ⌫ (mod 2).
Clearly yi+1 > 0 and zi+1 � ⌫ + 1. Lastly zi+1 ⌘ zi ⌘ 1 � ⌫ (mod 2) which
establishes the claim. Throughout this paper we freely use functional notation
V (y, z) for the map given in (5) and use similar notation for other such maps.

The relations yi = Ci and zi = 2Bi + 1 � ⌫ can be expressed as the a�ne
transformations

S⌫,w :

yi

zi

�
=


0 1
2 0

� 
Bi

Ci

�
+


0

1� ⌫

�
(6)

and
S�1

⌫,w :

Bi

Ci

�
=


0 1

2
1 0

� 
yi

zi

�
+


⌫�1
2
0

�
. (7)

Using (6) and (7), equation (5) can be expressed in terms of A(⌫, w)-balancing
pairs as

J⌫,w = S�1
⌫,wV S⌫,w :


Bi+1

Ci+1

�
=


3 1
8 3

� 
Bi

Ci

�
+


1� ⌫
4� 4⌫

�
. (8)

Noting (3 + 2
p

2)�1 = 3� 2
p

2 we similarly see

yi�1 + zi�1

p
2 = (3� 2

p
2)(yi + zi

p
2)

and
J�1

⌫,w = S�1
⌫,wV �1S⌫,w :


Bi�1

Ci�1

�
=


3 �1
�8 3

� 
Bi

Ci

�
+


1� ⌫
4⌫ � 4

�
.

We summarize the observations above in the following result.

Theorem 2. If (x, y) is an A(⌫, w)-balancing pair, then so is J⌫,w(x, y) where

J⌫,w


x
y

�
=


3 1
8 3

� 
x
y

�
+


1� ⌫
4� 4⌫

�
.
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i 0 1 2 3 4 5 6 7
B 3 9 16 52 93 303 542 1766
C 7 25 45 147 263 857 1533 4995
r 0 3 6 21 38 125 224 731
r̂ 5 11 19 61 109 355 635 2069

m 3 12 22 73 131 428 766 2497

Table 1: Initial A(1,�3)-balancing numbers and associated sequences.

i 0 1 2 3 4 5 6 7
B 0 3 6 21 38 125 224 731
C 5 11 19 61 109 355 635 2069
r 2 2 3 9 16 52 93 303
r̂ 3 3 7 25 45 147 263 857

m 2 5 9 30 54 177 317 1034

Table 2: Initial A(0, 3)-balancing numbers and associated sequences.

Recall y =
p

8x2 + 8(1� ⌫)x + (2⌫ � 1)2 + 8w. Since the components of J⌫,w

viewed as functions of x are strictly increasing on [⌫,1), their inverses exist and

J�1
⌫,w


x
y

�
=


3 �1
�8 3

� 
x
y

�
+


1� ⌫
4⌫ � 4

�
.

Given an A(⌫, w)-balancing pair (x0, y0) the functions J⌫,w and J�1
⌫,w can be

applied iteratively to form a class of solutions ((xi, yi))i2Z to (3) via (xi+1, yi+1) =
J⌫,w(xi, yi). It is always possible to reindex so that the minimal A(⌫, w)-balancing
pair corresponds to (x0, y0). Then ((xi, yi))i2Z is a class of solutions to (3) such that
the nonnegative indexed terms correspond to A(⌫, w)-balancing pairs. We tacitly
assume that a class of A(⌫, w)-balancing pairs are indexed in this manner unless
stated otherwise.

Example 4. There are two classes of A(1,�3)-balancing pairs whose initial terms
are (3, 7) and (9, 25), respectively. The initial A(1,�3)-balancing numbers and
associated sequences are given in Table 1. There are also two classes of A(0, 3)-
balancing pairs and their initial terms are (0, 5) and (3, 11), respectively. The initial
A(0, 3)-balancing numbers and associated sequences are given in Table 2.

The next two theorems are generalizations of results of upper gap balancing
numbers [1] extended to A(⌫, w)-balancing numbers using Theorem 2. The proofs
are straightforward modifications and omitted here.

Theorem 3. Suppose ((Bi, Ci))i�0 is a class of A(⌫, w)-balancing pairs. Then for
i � 1

Bi+1 = 6Bi �Bi�1 + 2� 2⌫
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and
Ci+1 = 6Ci � Ci�1.

Theorem 4. Let ((Bi, Ci))i�0 be a class of A(⌫, w)-balancing pairs. The generating
function for its A(⌫, w)-balancing numbers is

G(s) =
(2� 2⌫ �B1 + 6B0)s2 + (B1 � 7B0)s + B0

(1� s)(1� 6s + s2)
.

Example 5. There are two classes of A(0, 3)-balancing numbers whose generating
functions are

G1(s) =
�4s2 + 6s

(1� s)(1� 6s + s2)
and G2(s) =

�s2 + 3
(1� s)(1� 6s + s2)

.

These can be combined to obtain the generating function for all A(0, 3)-balancing
numbers, namely

G(s) =
s4 + 3s3 � 3s2 � 3s

(s� 1)(s2 � 2s� 1)(s2 + 2s� 1)
.

3.2. Transition Functions

In this section, we present functions which map A(⌫, w)-balancing numbers to
A(⌫0, w0)-balancing numbers.

Lemma 1. Let N and N 0 be integers. Suppose (y0, z0) and (y00, z00) are solutions
to the equations y2 � 2z2 = N and y2 � 2z2 = N 0, respectively. Let

H =
1
N


y0 2z0

�z0 �y0

� 
y00 2z00
�z00 �y00

�
.

Then 
y00
z00

�
= H


y0

z0

�
.

Proof. Since y2
0 � 2z2

0 = N we see

H


y0

z0

�
=

1
N


y00(y2

0 � 2z2
0)

z00(y2
0 � 2z2

0)

�
=


y00
z00

�
.

Lemma 2. Let H be as defined in Lemma 1. Then HV = V H.

Proof. Suppress the naughts in H and observe

HV =
1
N


3yy0 � 6zz0 + 4yz0 � 4zy0 6yz0 � 6zy0 + 4yy0 � 8zz0

2yy0 + 3yz0 � 3zy0 � 4zz0 3yy0 + 4yz0 � 4zy0 � 6zz0

�
= V H.
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Using Lemmas 1 and 2 we construct a function T which maps a given class
of A(⌫, w)-balancing numbers ((Bi, Ci))i�0 to a given class of A(⌫0, w0)-balancing
numbers ((B0i, C0i))i�0. In terms of the notation used above define

T := S�1
⌫0,w0HS⌫,w

as the composition of a�ne transformations where (y0, z0) and (y00, z00) used in H are
solutions of the companion equations corresponding to the balancing pairs (B0, C0)
and (B00, C00), respectively.

Observe that T is an a�ne transformation and (B0, C0) 7! (B00, C00) by Lemma
1 and construction. To see that (Bi, Ci) 7! (B0i, C0i) for all i, observe using (8) and
Lemma 2 that

J⌫0,w0T = S�1
⌫0,w0V S⌫0,w0S�1

⌫0,w0HS⌫,w

= S�1
⌫0,w0V HS⌫,w

= S�1
⌫0,w0HV S⌫,w

= S�1
⌫0,w0HS⌫,wS�1

⌫,wV S⌫,w

= TJ⌫,w.

It follows that J i
⌫0,w0T = TJ i

⌫,w which implies (Bi, Ci) 7! (B0i, C0i) for all i.
It is straightforward to give the following explicit presentation of T .

Theorem 5. Let ((Bi, Ci))i�0 and ((B0i, C0i))i�0 be classes of A(⌫, w) and A(⌫0, w0)-
balancing pairs, respectively. Then the transition function T given by

T


x
y

�
=


a b
8b a

� 
x
y

�
+


c

(4� 4⌫)b

�

where

a = �8B0B00 + 4(1� ⌫0)B0 + 4(1� ⌫)B00 + 2(1� ⌫)(1� ⌫0)� C0C00
2⌫2 � 1 + 8w

b =
2(C0B00 �B0C00) + (1� ⌫0)C0 � (1� ⌫)C00

2(2⌫2 � 1 + 8w)

c =
(1� ⌫) [C0C00 � 8B0B00 � 4(1� ⌫)B00] + (1� ⌫0)

⇥
8B2

0 + 4(1� ⌫)B0 � C2
0

⇤

2(2⌫2 � 1 + 8w)
.

maps (Bi, Ci) to (B0i, C0i) for all i.

Example 6. Consider the transition function from the A(1, 0)-balancing pairs
((Bi, Ci))i�0 to the A(0, 0)-balancing pairs ((B0i, C0i))i�0. Recall (B0, C0) = (1, 3)
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and (B00, C00) = (0, 1). Then (y0, z0) = (3, 2), (y00, z00) = (1, 1),

H =

�1 2

1 �1

�

and
T


x
y

�
=


�1 1

2
4 �1

� 
x
y

�
+


�1

2
0

�
.

Observe H2 = V �1. This plays a key role in the balancer duality result in section
5.

4. Balancers, Related Sequences, and Their Functions

In this section we investigate the sequence of A(⌫, w)-balancers associated to A(⌫, w)-
balancing numbers and related sequences. Recall that an integer r � 0 is a A(⌫, w)-
balancer of the A(⌫, w)-balancing number B provided it satisfies T (B�⌫)+T (B)+
w = T (B + r). Solving for B gives

B =
(2r + 2⌫ � 1) +

p
8r2 + 8⌫r � 8w + 1
2

(9)

where we take the positive square root so that B � 0. Thus r is an A(⌫, w)-balancer
if and only if 8r2 + 8⌫r � 8w + 1 is a perfect square. Due to the latter expression
we make the following definition.

Definition 4. Let r be an A(⌫, w)-balancer. Define its A(⌫, w)-Lucas balancer to
be

r̂ =
p

8r2 + 8⌫r � 8w + 1.

We refer to (r, r̂) as an A(⌫, w)-balancer pair.

Equation (9) can be reformulated as r̂ = 2B � 2r � 2⌫ + 1. Definition 4 implies
that the A(⌫, w)-balancer pair (r, r̂) is a solution to the equation

y2 = 8x2 + 8⌫x� 8w + 1. (10)

Alternatively (10) can be rewritten as

y2 � 2z2 = �N(⌫, w) (11)

where y = r̂ and z = 2r + ⌫. We refer to (11) as the A(⌫, w)-balancer companion
equation. An integral solution of (11) corresponds to an A(⌫, w)-balancer pair (r, r̂)
where r = z�⌫

2 and r̂ = y provided z ⌘ ⌫ (mod 2), z � ⌫, and y > 0.
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Again applying the theory of Pell equations, solutions to (11), if they exist, occur
in a finite number of cyclic classes. Moreover, if (yi, zi) is a solution of the A(⌫, w)-
balancer companion equation corresponding to an A(⌫, w)-balancer pair, then it is
straightforward using techniques as before to see that (yi+1, zi+1) = V (yi, zi) is also
a solution.

The relations yi = r̂i and zi = 2ri + ⌫ can be expressed as the a�ne transforma-
tions

M⌫,w :

yi

zi

�
=


0 1
2 0

� 
ri

r̂i

�
+


0
⌫

�
(12)

and
M�1

⌫,w :

ri

r̂i

�
=


0 1

2
1 0

� 
yi

zi

�
+


�⌫

2
0

�
. (13)

Using (12) and (13), (yi+1, zi+1) = V (yi, zi) can be expressed as the a�ne trans-
formation

L⌫,w = M�1
⌫,wV M⌫,w :


ri+1

r̂i+1

�
=


3 1
8 3

� 
ri

r̂i

�
+


⌫
4⌫

�
.

We summarize these observations in the following result.

Theorem 6. If (x, y) is an A(⌫, w)-balancer pair, then so is L⌫,w(x, y) where

L⌫,w


x
y

�
=


3 1
8 3

� 
x
y

�
+


⌫
4⌫

�
.

Put y =
p

8x2 + 8⌫x� 8w + 1. Since the component functions of L⌫,w viewed as
a function of x are strictly increasing on [⌫,1), their inverses exist and

L�1
⌫,w


x
y

�
=


3 �1
�8 3

� 
x
y

�
+


⌫

�4⌫

�
.

We also have the following results which extends the analogous results for upper
gap balancing numbers [1]. We omit the proofs since each is a straightforward
adaptation.

Theorem 7. If (r, r̂) is the A(⌫, w)-balancer pair for the A(⌫, w)-balancing pair
(B,C), then L⌫,w(r, r̂) is the A(⌫, w)-balancer pair for the A(⌫, w)-balancing pair
J⌫,w(B,C).

Definition 5. The counterbalancer m of an A(⌫, w) balancing number B with
A(⌫, w)-balancer r is defined to be m = B + r.

Theorem 8. Suppose (B,C) is an A(⌫, w)-balancing pair with (r, r̂) its associated
A(⌫, w)-balancer pair and m its counterbalancer. Then

(a) r = �2B+C�1
2 ;
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(b) r̂ = 2B � 2r � 2⌫ + 1;

(c) r̂ = 4B � C + 2� 2⌫;

(d) m = C�1
2 .

Theorem 9. Let ((Bi, Ci))i�0 be a class of A(⌫, w)-balancing pairs, ((ri, r̂i))i�0 its
A(⌫, w)-balancer pairs, and (mi)i�0 the associated counterbalancers. Then

(a) ri+1 = 6ri � ri�1 + 2⌫;

(b) r̂i+1 = 6r̂i � r̂i�1;

(c) mi+1 = 6mi �mi�1 + 2.

Theorem 10. Let ((Bi, Ci))i�0 be a class of A(⌫, w)-balancing pairs, ((ri, r̂i))i�0

its A(⌫, w)-balancer pairs, and (mi)i�0 the associated counterbalancers. Then

lim
i!1

Bi+1

Bi
= lim

i!1

Ci+1

Ci
= lim

i!1

ri+1

ri
= lim

i!1

r̂i+1

r̂i
= lim

i!1

mi+1

mi
= 3 +

p
8.

5. A(⌫, w)-balancer Duality

Panda and Ray [7, p. 1196] showed that the balancer of an A(1, 0)-balancing number
is an A(0, 0)-balancing number, and the balancer of an A(0, 0)-balancing number is
an A(1, 0)-balancing number. Moreover, the balancer of a balancer of an A(⌫, 0)-
balancing number is the previous A(⌫, 0)-balancing number for ⌫ = 0, 1. We refer to
this phenomena as balancer duality and say A(1, 0)-balancing numbers and A(0, 0)-
balancing numbers are balancer dual to each other. In this section we extend this
result to A(⌫, w)-balancing numbers.

As motivation, we recall the similarities between (4) and (11) as well as observe
the transition function from Example 3.2 sends an A(1, 0)-balancing pair to its
A(1, 0)-balancer pair. The choice of H in this particular transition function plays a
key role in balancer duality, so we designate it as

H0 =

�1 2

1 �1

�
.

Observe that solutions of y2 � 2z2 = M and y2 � 2z2 = N can be used to form
a solution of y2 � 2z2 = MN using Brahmagupta’s identity

(a2 � 2b2)(c2 � 2d2) = (ac + 2bd)2 � 2(ad + bc)2.

In particular, take a solution (yi, zi) to y2 � 2z2 = N where N = N(⌫, w) and
the solution (�1, 1) to y2 � 2z2 = M where M = �1. Then we see that

(yi + zi

p
2)(�1 +

p
2) = (�yi + 2zi) + (yi � zi)

p
2
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which shows (�yi + 2zi, yi � zi) = H0(yi, zi) is a solution to y2 � 2z2 = �N(⌫, w).
Define the a�ne transformation D⌫,w = S�1

⌫0,w0H0S⌫,w and let (Bi, Ci) be an
A(⌫, w)-balancing pair. To extend balancer duality between A(1, 0)-balancing pairs
and A(0, 0)-balancing pairs, we would like D⌫0,w0D⌫,w = J�1

⌫,w. This requires ⌫0 =
1� ⌫ and w0 = �⌫2�⌫

2 �w. Using the matrix representations, it is straightforward
to see with these choices of ⌫0 and w0 that

D⌫,w


Bi

Ci

�
=


�1 1

2
4 �1

� 
Bi

Ci

�
+


�1

2
2� 2⌫

�

so that
D⌫,w(Bi) = �Bi +

Ci � 1
2

= �Bi + mi = ri

and
D⌫,w(Ci) = 4Bi � Ci + 2� 2⌫ = r̂i.

This sets the stage for the next theorem.

Theorem 11 (A(⌫, w)-Balancer duality). Let D⌫,w = S�1
⌫0,w0H0S⌫,w where ⌫0 =

1� ⌫ and w0 = �⌫2�⌫
2 � w. Then D⌫0,w0D⌫,w = J�1

⌫,w.

Proof. The discussion above shows that D⌫,w maps an A(⌫, w)-balancing pair to its
A(⌫, w)-balancer pair. To complete the proof, note that

⌫00 = (⌫0)0 = 1� (1� ⌫) = ⌫

and
w00 = (w0)0 = �(1� ⌫)2 � (1� ⌫)

2
�

✓
�⌫2 � ⌫

2
� w

◆
= w.

We have

D⌫0,w0D⌫,w = S�1
⌫00,w00H0S⌫0,w0S�1

⌫0,w0H0S⌫,w

= S�1
⌫00,w00H2

0S⌫,w

= S�1
⌫,wV �1S⌫,w

= J�1
⌫,w.

Since ⌫ � 0 we can summarize Theorem 11 as follows.

Corollary 1. The A(1, w)-balancing numbers and A(0,�w)-balancing numbers are
balancer dual to each other.

Example 7. The A(1,�3)- and A(0, 3)-balancing numbers are balancer dual to
each other. This is illustrated in Tables 1 and 2. Note that the A(0, 3)-balancer pairs
of the initial A(0, 3)-balancing pairs of each class correspond to the pair obtained
by applying J1,�3 to the initial A(1,�3)-balancing pair in the corresponding class.
This o↵set always occurs for the initial pairs.



INTEGERS: 18 (2018) 12

References

[1] J. Bartz, B. Dearden, and J. Iiams, Classes of gap balancing numbers, submitted.

[2] A. Behera and G. K. Panda, On the square roots of triangular numbers, Fibonacci Quart. 37
(1999), 98-105.

[3] T. Nagell, Introduction to Number Theory, Wiley, 1951.

[4] OEIS Foundation Inc. (2017), The On-Line Encyclopedia of Integer Sequences, http://oeis.
org.

[5] G. K. Panda and A. K. Panda, Almost balancing numbers, J. Indian Math. Soc. (N.S.) 82
(2015), 147-156.

[6] G. K. Panda and A. K. Panda, Circular balancing numbers, Fibonacci Quart. 55 (2017),
309-314.

[7] G. K. Panda and P. K. Ray, Cobalancing numbers and cobalancers, Int. J. Math. Math. Sci.
8 (2005), 1189-1200.


