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Abstract
An order-preserving Freiman 2-isomorphism is a map � : X ! R such that (1)
�(a) < �(b) if and only if a < b and (2) �(a) + �(b) = �(c) + �(d) if and only if
a + b = c + d for any a, b, c, d 2 X. We show that for any A ✓ Z, if |A+A|  K|A|,
then there exists a subset A0 ✓ A such that the following holds: |A0| �K |A|, and
there exists an order-preserving Freiman 2-isomorphism � : A0 ! [�c|A|, c|A|] \ Z
where c depends only on K. Several applications are also presented.

1. Introduction

Let G and H be additive groups, and let A ✓ G and B ✓ H. A Freiman k-
homomorphism is a map � : A ! B such that

�(x1) + . . . + �(xk) = �(y1) + . . . + �(yk)

whenever
x1 + . . . + xk = y1 + . . . + yk.

Such a map � is called a Freiman k-isomorphism if the converse holds as well. If A
and B have an ordering, then � is order-preserving when

�(a) < �(b) if and only if a < b.

A Freiman 2-isomorphism will frequently be referred to as just a Freiman isomor-
phism. Freiman isomorphisms are used to transfer an additive set A in some ar-
bitrary abelian group into a more amenable ambient group or set (such as R, ZN ,
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or [1, n]) while preserving the additive structure of A. Previously, finding such a
mapping from Zp to Z was referred to as a ‘rectification’ principle. Rectification
principles were studied in [3] and [7]. However, previous studies were not sensitive
to the ordering since the domain of the mapping was Zp instead of Z, and the
co-domain was not necessarily an interval of size O(|A|). Moreover, such mappings
proceeded by dilating the set in Zp by a residue implicitly coming from Minkowski’s
theorem, a Fourier analytic argument, or a probabilistic argument. Hence, control-
ling the order requires a substantially di↵erent approach. We refer the interested
reader to Chapters 3 and 5 of [10] for a detailed exposition on Freiman isomor-
phisms.

The main tool we introduce in this paper allows one to find an order-preserving
Freiman isomorphism from a set of n integers to the interval [�cn, cn] \ Z where
c is not too large, provided that the original set is additively structured. We call
this tool a ‘Condensing Lemma’ since, in a sense, it allows one to view sets with
small doubling as dense subsets of an interval. Although similar theorems have been
proved before (see theorem 1.4 [7]), we reiterate that previous studies did not take
order-preservation into consideration.

Theorem 1 (Condensing Lemma). For any K > 0, there exists c1, c2 such that
if A ✓ Z is such that |A + A|  K|A| then the following holds: there exists A0 ✓ A
with |A0| � c1|A|, and there exists an order-preserving Freiman 2-isomorphism
� : A0 ! [�c2|A0|, c2|A0|] \ Z.

Since the constants c1 and c2 depend exponentially on K, we do not bother
specifying their exact value. In order to prove the Condensing Lemma, we need
Freiman’s Theorem [5] which guarantees us a large, but low-dimensional generalized
arithmetic progression P containing A when A has a small doubling. There have
been many important improvements to Freiman’s original version, and we refer the
reader to the recent work by Sanders [8] who gives the best-known bounds for the
constants c1 and c2 stated below.

Theorem 2 (Freiman’s Theorem). Suppose A ✓ Z satisfies |A + A|  K|A|.
Then, there exists absolute constants c1, c2 dependent only on K such that A is
contained in a proper, symmetric, generalized arithmetic progression G of dimension
at most c1 and size at most c2|A|.

The proof of the Condensing Lemma consists of first applying Freiman’s theo-
rem so that we may approximate A by a generalized arithmetic progression G =
{
Pk

i=1 xidi : |xi|  Li}. Then, using elementary techniques from convex geometry,
we show that there is a generalized arithmetic progression G0 = {

Pk
i=1 xid0i : |xi| 

Li/4} that shares the additive properties of G, but is contained in an interval of
length O(|G|).

After we prove the Condensing Lemma, we provide some applications. Let A =
{a1 < a2 < . . . < an} be a finite subset of the integers, and denote the indexed
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energy of A as

EI(A) := {(i, j, k, l) : ai + aj = ak + al and i + j = k + l}. (1)

The reader may be more familiar with the additive energy of a set which can be
used to control the size of the sumset:

E(A) = |{(i, j, k, l) : ai + aj = ak + al}| �
|A|4

|A + A| . (2)

We determine the precise relationship between E(A) and EI(A). Although the
indexed energy of a set has not been directly studied, the additive properties of a
set and how they interact with the related indices has appeared in various forms.
Solymosi [9] studied the situation when ai+aj 6= ak+al for i�j = k�l = c for a fixed
constant c, and in particular when a set A has the property that ai+1+ai 6= aj+1+aj

for all pairs i, j. Brown et al [4] asked if one finitely colors the integers {1, . . . , n},
must one be forced to find a monochromatic ‘double’ 3-term arithmetic progression
ai + aj = 2ak where i + j = 2k?

Layout and Notation. In Section 2, we state some basic notions from convex
geometry, and then we prove the Condensing Lemma. In Section 3, we study the
indexed energy of a set, providing both an extremal construction of a set with large
additive energy and small indexed energy as well as proving a Balog-Szemerédi-
Gowers type theorem to find a subset with large indexed energy. Section 4 contains
further applications and conjectures related to the Condensing Lemma as well as
the indexed energy.

The sumset is defined as A + B := {a + b : a 2 A, b 2 B}. We write [a, b]
for [a, b] \ Z, and similarly for [a, b), (a, b), and (a, b]. For two functions f, g, we
write f � g if f(n) � cg(n) for some constant c and n su�ciently large. We write
f �K g if c is allowed to depend on K. The doubling constant of a set A is |A+A|

|A| .
A set has small doubling if its doubling constant is O(1). A generalized arithmetic
progression G is a set {a + x1d1 + . . . xkdk : |xi|  Li}; without loss of generality,
we may assume di > 0 for all i = 1, . . . , k; we call k the dimension of G; |G| is the
volume of G. Moreover, G is proper if the volume of G is maximal –

Q
i(2Li + 1).

2. Condensing Lemma

The following lemma in conjunction with Theorem 2 will allow us to prove Theo-
rem 1.

Lemma 1. Let G be a proper generalized arithmetic progression of the form

G := {
kX

i=1

aidi : |ai|  Li}
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such that

G0 := {
kX

i=1

aidi : |ai|  4Li}

is also a proper generalized arithmetic progression. Then, there exists a constant
c = c(k), d01, . . . , d

0
k, and a map � with the following properties:

1. �(
Pk

i=1 aidi) =
Pk

i=1 aid0i.

2. � is an order-preserving Freiman 2-isomorphism.

3. For any x 2 G, |�(x)|  c|G|.

In order to prove this lemma we need some definitions and results from convex
geometry, from which we refer the reader to [2] as a reference.

2.1. Convex Geometry Preliminaries

Here, we review some basic notions and facts from convex geometry and linear
algebra. Our goal is to prove a version of Siegel’s Lemma, Lemma 2. The familiar
reader is welcome to skip this section.

A set K ⇢ Rn is said to be a convex cone if for all ↵,� � 0 and x,y 2 K we
have ↵x + �y 2 K.

Fact 1. Let ai,j 2 R. Then, the set of solutions to the system of linear inequalities

kX
i=1

ai,jxi > 0 j = 1, . . . , n (3)

is a convex cone.

Proof. Let x and y be solutions to the system of linear inequalities defined above
and let ↵,� � 0. It is trivial to verify that ↵x and x + y are also solutions to
(3).

For points x1, . . . ,xm 2 Rn and non-negative real numbers ↵1, ...,↵m, the point

x =
mX

i=1

↵ixi

is called a conic combination of the points x1, ...,xm. The set co(D) is defined as
all conic combinations of points in D ⇢ Rn and is called the conic hull of the set
D. For a non-zero x 2 Rn the conic hull of x is called a ray spanned by x. A ray R
of the cone K is called an extreme ray if whenever ↵x + �y 2 R for ↵ > 0, � > 0
and x,y 2 K then x,y 2 R. An extreme ray is a 1-dimensional face of the cone. A
set B ⇢ K is called a base of K if 0 /2 B and for every point x 2 K, x 6= 0, there is
a unique representation x = �y with y 2 B and � > 0.
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Fact 2. For i = 1, . . . , k and j = 1, . . . , `, let ai,j 2 R. If

A := {(x1, . . . , xk) 2 Rk :
kX

i=1

ai,jxi > 0 for j = 1, . . . , `}

is nonempty with a solution in the positive quadrant of Rk, then the closure of A
has a compact base.

Proof. Observe that A is an open set, and since there is at least one solution, it is
nonempty. By Fact 1, A is also a convex cone. Let cl(A) be the closure of A, and
let H := {(x1, . . . , xk) 2 Rk : x1 + . . . + xk = 1}. We claim that B := cl(A) \H is
a compact base of cl(A). Clearly B is a subset of cl(A) \ {0}. Let y 2 cl(A) and
consider the line �y. Since A is a convex cone, this line is contained in cl(A) for all
� � 0. If this line intersects B, then B must be a compact base, but clearly it does
at � = 1

y1+...+yk
.

Theorem 3 (Cor. 8.5 [2]). If K is a convex cone with a compact base, then every
point x 2 K can be written as a conic combination

x =
mX

i=1

�ixi, �i � 0, i = 1, ...,m,

where the xi each span an extreme ray of K.

Lastly, we need the well-known linear algebraic result known as Cramer’s rule.

Theorem 4 (Cramer’s Rule). Let A be a k⇥k matrix over a field F with nonzero
determinant. Then, Ax = b has a unique solution given by

xi =
det(Ai)
det(A)

i = 1, . . . , k

where Ai is obtained by replacing the ith column in A with b.

We combine the above tools to prove a standard variant of Siegel’s Lemma.

Lemma 2 (Siegel’s Lemma). Let d1, . . . , dk 2 Z+. If the interior of the convex
cone defined by the system of inequalities

{
kX

i=1

aixi > 0 : a1d1 + . . . + akdk > 0;�Mi  ai  Mi} (4)

is nonempty, then there exists a solution (z1, . . . , zk) 2 Zk to the system satisfying

|zi|  k!
Y
j 6=i

Mj

for all i = 1, . . . , k.
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Proof. Consider the solution space defined by the system of inequalities (4). By
Fact 1 the solution space forms a convex cone. Let K be the closure of the cone
defined by the inequalities in (4). Since di 2 Z+, xi > 0 is one of our inequalities
for all i = 1, . . . , k. Additionally, by the supposition that there is a solution to (4),
we may apply Fact 2 to deduce that K has a compact base. Hence, we may apply
Theorem 3 to conclude that each x 2 K can be represented as a conic combination
of the points on its extreme rays.

Because all extreme rays have dimension 1 in a k-dimensional space, they must
each be intersections of k � 1 linearly independent hyperplanes. Because they are
the extreme rays corresponding to the system of inequalities (4), the intersecting
hyperplanes must correspond to an equation

a1x1 + . . . + akxk = 0.

For each extreme ray, we show how to find an integer point on it; then, taking a
conic combination of these integer points will allow us to find an integer point in
the interior of the cone.

Let the intersection of the following hyperplanes define one of our extreme rays:

{ai,1x1 + . . . + ai,kxk = 0 : i = 1, . . . , k � 1}. (5)

This system of equations will have all the points along our extreme ray as a solution
– in other words, there are infinitely many solutions. Hence, we may treat one of
the variables xi as a free variable while the other variables depend on it. Without
loss of generality, assume that xk is the free variable, and let us solve the system
for the case when xk = 1. We will use Cramer’s rule. Define

� :=

���������

a1,1 . . . a1,k�1

a2,1 . . . a2,k�1
...

ak�1,1 . . . ak�1,k�1

���������
and �i to be the determinant of the same matrix with the ith row and column
replaced by �aj,k for j = 1, . . . , k � 1:

�i :=

�������
a1,1 . . . a1,i�1 �a1,k a1,i+1 . . . a1,k�1
...

. . .
ak�1,1 . . . ak�1,i�1 �ak�1,k ak�1,i+1 . . . ak�1,k�1

������� .

By Cramer’s rule, the solution to the system is given by xi = �i
� for i = 1, . . . , k�1.

By instead choosing xk = c instead of xk = 1, we see that we can require that any
multiple of this is also a solution to (5). Hence, (|�1|, . . . , |�k�1|, |�|) is an integer
solution to our system that lies along our edge. For convenience, let �k := �.
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Now, we may get such an integer solution for each of our extreme rays. Not all
extreme rays belong to the same face since K has interior points. In particular, we
may take a set of k+1 such rays that do not all lie along the same face and get k+1
integer solutions as we did above. Call these solutions p1, . . . ,pk+1. We can bound
the entries of pi by using a trivial bound on the determinant of our matrices formed
above. We have that for i = 1, . . . , k, since each entry |ai,j |  Mj , the determinant
is bounded as follows:

|�i|  k!
Y
j 6=i

Mj .

Moreover, the sum, p1 + . . . + pk+1 =: (d01, . . . , d0k) does not belong to any of the
faces of K; so, it belongs to the interior of the cone, and hence, satisfies (4).

The broad idea of the proof of Lemma 1 is as follows. We are given a generalized
arithmetic progression G := {

Pk
i=1 aidi : �Li  yi  Li}. In a sense, this can be

identified with the point (d1, . . . , dk). What we would like to find is another gener-
alized arithmetic progression, H := {

Pk
i=1 bid0i : �L0

i  bi  L0
i} which maintains

the same additive structure as G, but is much more compact. Viewed another way,
we want to find a point (d01, . . . , d0k) much closer to the origin than (d1, . . . , dk) that
also satisfies certain inequalities (these are what maintain the additive structure).
Hence, we reduce our problem to finding an integer solution, relatively close to the
origin, to a set of linear inequalities.

2.2. Proof of the Condensing Lemma

The crux in the proof of the Condensing Lemma is to first prove it for generalized
arithmetic progressions.

Proof of Lemma 1. Given G as in the statement of the Lemma, consider the follow-
ing set of inequalities:

{
kX

i=1

aixi > 0 : a1d1 + . . . + akdk > 0;�4Li  ai  4Li}. (6)

We will first prove that if (d01, . . . , d0k) is an integer solution to the above system of
inequalities, then the map � : G ! Z defined by

�

 
kX

i=1

aidi

!
=

kX
i=1

aid
0
i

is an order-preserving Freiman 2-isomorphism. Note that � is well-defined since G
is proper.
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To see that � is order-preserving, if

kX
i=1

aidi <
kX

i=1

bidi

for two elements in G, then
kX

i=1

(bi � ai)xi > 0

is one of the inequalities in (6) that (d01, . . . , d0k) must satisfy. So,

�

 
kX

i=1

aidi

!
=

kX
i=1

aid
0
i <

kX
i=1

bid
0
i = �

 
kX

i=1

bidi

!
.

For the converse, if
kX

i=1

aid
0
i <

kX
i=1

bid
0
i (7)

and
kX

i=1

(bi � ai)di  0,

then we get a contradiction as follows. First, if

kX
i=1

(bi � ai)di = 0,

then bi = ai because G is a proper generalized arithmetic progression. Hence, (7)
cannot hold in this case. If

kX
i=1

(bi � ai)di < 0, then
kX

i=1

(ai � bi)di > 0

which implies that
kX

i=1

(ai � bi)xi > 0

is an inequality in (6) satisfied by (d01, . . . , d0k), again contradicting (7).
If we have points in G such that

kX
i=1

aidi +
kX

i=1

bidi =
kX

i=1

sidi +
kX

i=1

tidi

then
kX

i=1

(ai + bi)di =
kX

i=1

(si + ti)di. (8)
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Moreover, |ai +bi|, |si +ti|  2Li. Hence, each side of (8) corresponds to an element
in G0, and by the fact that G0 is proper, we must have that ai + bi = si + ti for
i = 1, . . . , k. This implies that indeed, � is a Freiman 2-homomorphism:

kX
i=1

aid
0
i +

kX
i=1

bid
0
i =

kX
i=1

sid
0
i +

kX
i=1

tid
0
i. (9)

For the converse, if (9) holds and (8) does not, then without loss of generality, we
may assume

kX
i=1

(ai + bi � si � ti)di > 0.

However, ai + bi � si � ti 2 [�4Li, 4Li], and so the inequality

kX
i=1

(ai + bi � si � ti)xi > 0

is satisfied by (d01, . . . , d0k) which contradicts (9). This proves � is a Freiman 2-
isomorphism.

Now, we bound the image of �. To apply Lemma 2, Siegel’s Lemma, we remind
the reader that (d1, . . . , dk) is a solution to (6), and hence there exists a solution in
the interior of the convex cone. We also remind the reader that, by the definition of
a generalized arithmetic progression, di 2 Z+. Let (d01, . . . , d0k) be a solution to (6)
guaranteed by Lemma 2. By the conclusion of Lemma 2, the image of � is bounded
as follows:������

 
kX

i=1

yidi

!����� =
�����

kX
i=1

yid
0
i

����� 
�����

kX
i=1

Lid
0
i

����� 
������

kX
i=1

Li(k + 1)(4kk!
Y
j 6=i

Lj)

������
 (k + 1)!4k

kY
j=1

Lj .

So if g 2 G0, �(g) 2 [�4k(k + 1)!|G|, 4k(k + 1)!|G|].

The proof of Theorem 1 follows easily from applying Theorem 2 to a set with
small doubling.

Proof of Theorem 1. Let A ✓ Z be such that |A + A|  K|A|. All constants ci

in the following depend only on K. We may apply Theorem 2 to A to get a
proper, symmetric, generalized arithmetic progression G with A ✓ G, |G|  c2|A|,
dimension at most c1.

Denote G as

G = {u +
kX

i=1

xidi : |xi|  Li}.
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Since the composition of an order-preserving Freiman isomorphism with a linear
map (in this case, the map  (x) = x � u) is also an order-preserving Freiman
isomorphism, we may assume u = 0, or simply work with the sets  (A) and  (G)
instead. Let

G0 :=

(
kX

i=1

xidi : |xi|  bLi/4c
)

.

Apply Lemma 1 to G0 to get an order-preserving Freiman isomorphism � : G0 !
[�c3|G0|, c3|G0|]. We have that A ✓ G, but A \G0 may not be large. However, by
considering the 4k di↵erent translates, G0 + v, where v = jbLi/4c for j = 0, 1, 2, 3,
i = 1, . . . , k there exists an integer v such that

|A \ (G0 + v)| = |(A� v) \G0|�k |A|.

Let A0 := A\(G0+v). So, � is an order-preserving Freiman isomorphism from A0�v
to [�c3|G00|, c3|G00|]. The composition of an order-preserving Freiman isomorphism
with the linear map  0(x) = x�v is also an order-preserving Freiman isomorphism.
So, �0(x) := �(x) � v is an order-preserving Freiman isomorphism from A0 to
[�c3|G0|, c3|G0|]. Since |G|  c2|A|, we have [�c3|G0|, c4|G0|] = [�c4|A0|, c4|A0|],
proving the lemma.

3. Indexed Energy

We provide an interesting combinatorial application of the Condensing Lemma. In
(1) and (2), we defined the notions of indexed energy and additive energy. One
always has the following relationship between the additive energy and indexed en-
ergy:

|A|2  EI(A)  E(A)  |A|3.

If A is an arithmetic progression, the relationship is strengthened to EI(A) = E(A).
Moreover, for an arithmetic progression A, E(A) is maximized. Thus, it is natural
to wonder if one loosens the restriction to E(A) � |A|3 then is EI(A) � |A|3? We
provide a counterexample to show that this is false.

Theorem 5. There exists an integer N such that for every n � N , there exists
A ⇢ [n] such that |A| � n/3, E(A) � 1

6 |A|3, and EI(A)  2000|A|2(log |A|)2.

Thus, one can indeed have the additive energy ⌦(|A|3) while the indexed energy
is O((|A| log |A|)2). However, when the additive energy is large, it turns out that
one can still pass to a large subset A0 ✓ A with |A0| = ⌦(|A|) and EI(A) = ⌦(|A0|3).
We note that when passing to a subset, the subset does not inherit the same indices
as the superset, but rather it is re-indexed in the natural way. Hence, EI(A0) is not
bounded from above or below by EI(A).
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Theorem 6. For any K > 0, there exists c1, c2 dependent only on K such that if
A is a finite set of integers with |A + A|  K|A| then the following holds. There
exists an A0 ✓ A such that EI(A0) � c1|A0|3 and |A0| � c2|A|.

The condition that |A + A|⌧K |A| may easily be loosened to E(A) �K |A|3 by
applying the following well-known result of Balog-Szemerédi [1] and Gowers [6] to
pass to a subset with small doubling.

Theorem 7 (Balog-Szemerédi[1], Gowers[6]). For any K > 0, there exists
c1, c2 such that if A ✓ Z is such that E(A) � K|A|3 then there exists A0 ✓ A with
|A0| � c1|A| and |A0 + A0|  c2|A0|.

3.1. Indexed Energy in Subsets of [1, n]

It turns out that if A is a dense subset of an interval, then there is a simple algorithm
that can find a subset A0 ✓ A with |A0| � |A| and EI(A0) � |A0|3. Thus, the
general case may then be quickly deduced by applying the Condensing Lemma. We
first begin with a lemma that states, loosely speaking, that if A is a dense subset
of [1, n], then one can choose a large subset A0 ✓ A that is equidistributed over the
interval.

Lemma 3. For every � > 0, there exists c1, c2, c3, N such that if A ✓ [1, n] with
n > N and |A| = �n, then the following holds. There exists an A0 ✓ A, |A0| � c1|A|
and for c3|A| elements x 2 A0, we have that

x 2 [(j � 1)c2, jc2) and |{y 2 A0 : y < x}| = j � 1. (10)

It is easy to establish that a set with property (10) has large indexed energy.

Lemma 4. For every � > 0, there exists c0, c1, N such that if A ✓ [1, n] with n > N
su�ciently large and |A| = �n, then A has a subset A0 ✓ A with |A0| � c1|A| and
EI(A0) � c0|A|3.

Proof of Lemma 3. Denote A = {a1 < a2 < . . . < a�n}. Let d = b2
� c. Let Ij =

[(j � 1)d, jd) for all j = 1, . . . , dn
d e. Let Aj = A \ Ij , and observe that the Aj are

pairwise disjoint – a fact that will be important later when we estimate a union.
We pick our subset A0 as follows:

• Step 1: If A1 6= ; then let X1 = {a1}. Else, X1 = ;.

• Step k: For k = 2, . . . , dn
d e, if |Ak [Xk�1|  k, then Xk := Ak [Xk�1. Else,

arbitrarily choose Y ✓ Ak so that |Y [Xk�1| = k and then let Xk := Y [Xk�1.

Let A0 = Xdn
d e. To prove that A0 satisfies the conclusion of the lemma, we analyze

the algorithm as follows. First, note that X1 ✓ X2 ✓ . . . ✓ Xdn
d e = A0 and |Xi|  i

for all i. Now, the sets Xj for which |Xj | = j we will call sated, and the others
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we will call hungry. Note that if Xj is sated, then |Xj�1|  j � 1, and |Xj | = j;
hence, there is an x 2 Xj \ Xj�1 such that |{y 2 A0 : y < x}| = j � 1. Showing
that lots of Xj are sated will prove the lemma. Let J = {j1, j2, . . . , jm} be the
set of indices such that Xji is sated. Observe that for indices between ji and ji+1,
we must not have enough elements to make any of those corresponding sets sated.
More precisely, for all 1  k  ji+1 � ji � 1,

|Aji+k|  k � 1�
k�1X
s=1

|Aji+s|.

This implies that �����
ji+1�ji�1[

k=1

Aji+k

�����  ji+1 � ji � 1.

Note that in the case that we have two consecutive sated sets, that is ji+1 = ji + 1,
we define [0

k=1Aji+k = ;, and the inequality still holds. We can now bound the
total number of elements in hungry sets (except for potential hungry sets before j1
or after jm) by taking the union as follows:

�����
m�1[
i=1

ji+1�ji�1[
k=1

Aji+k

����� 
m�1X
i=1

ji+1 � ji � 1 = jm � j1 � (m� 1).

We must also account for the hungry sets occurring before j1. They contain at
most j1� 2 elements. The hungry sets occurring after jm contain at most dn

d e� jm

elements. Hence, the total number of elements in A that appear in hungry sets is

jm � j1 � (m� 1) + j1 � 2 +
ln

d

m
� jm 

ln

d

m
.

Thus, we have at least �n � dn
d e � �n/4 elements of A are distributed over the

intervals where the corresponding Xj are sated. Since each interval is of length d,
it contains at most d elements of A. Then we must have that m, the number of
sated sets, is at least

m � 1
d

· �n
4
� n�2

8
.

This in turn gives us a lower bound on |A0| = jm � m � n�2

8 = �
8 |A|.

Proof of Lemma 4. Apply Lemma 3 to A to get A0, c1, c2, c3 as in the lemma. De-
note A0 = {b1 < b2 < . . . < bm}, and so m = |A0|. Let J0 be the set of integers
j such that there exists an x 2 A0 where (10) holds. At least half of J0 is ei-
ther even or odd; without loss of generality, assume at least half are even and
let J := {j 2 J0 : j is even}. We know that |J | � 1/2|J0| � c3/2|A|. Since
EI(A0) � |{(i, j, k, l) 2 J4 : bi + bj = bk + bl and i+ j = k+ l}|, we will simply work
with these quadruples.
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For all of the following, bj 2 A0 will be assumed to have j 2 J . Let t 2
{2, . . . , 2m}, and define

rJ+J(t) := |{(i, j) 2 J ⇥ J : i + j = t}|.

Observe that for pairs (i, j) 2 J ⇥ J , we have that if i + j = t then bi + bj 2
[(t � 2)c2, tc2). Additionally, since J is only the set of even indices, if j 2 J , then
j � 1 /2 J and j + 1 /2 J . Hence, if bi + bj 2 [(t � 2)c2, tc2), then we can deduce
i + j = t. Observe that there are only 2c2 values that bi + bj can take when i + j is
fixed. For every k 2 [0, 2c2 � 1], define

tk := |{(i, j) 2 J ⇥ J : bi + bj = (t� 2)c2 + k}|.

We can bound the indexed energy of A0 by two applications of Cauchy-Schwarz as
follows:

EI(A0) �
2mX
t=2

2c2�1X
k=0

t2k �
2mX
t=2

1
2c2

 
2c2�1X
k=0

tk

!2

=
2mX
t=2

1
2c2

rJ+J(t)2

� 1
4c2m

 
2mX
t=2

rJ+J(t)

!2

=
|J |4
4c2m

� c0|A|3,

for some constant c0 depending only on �.

Now, we are ready to prove Theorem 6.

Proof of Theorem 6. Let A be a finite subset of integers with |A + A|  c|A|. All
constants ci in the following depend only on c. Apply Theorem 1 to A to get
a set A0 ✓ A with |A0| � c1|A| and an order-preserving Freiman isomorphism
� : A0 ! [�c2|A0|, c2|A0|]. We may assume at least one third of the elements are in
[1, c2|A0|] or simply shift A0 by v = c2|A0|. Apply Lemma 4 to �(A0) to conclude
that EI(�(A0)) � c3|�(A0)|3 = c3|A0|3. It is easy to see that EI(�(A0)) = EI(A0)
since � is an order-preserving Freiman 2-isomorphism, so the result follows.

3.2. An Extremal Construction

The proof of Theorem 5 follows from the following lemma.

Lemma 5. Let n 2 N, and let p 2 (1, 2) and denote p = 1+ ✏. Let A = {bapc : 1 
a  bn1/pc}. Then, EI(A)  16✏�1n2 log n.
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Proof of Lemma 5. Let x, y 2 [1, bn1/pc] with x + 1 < y. The main part of the
argument is to establish the following bound:

xp + yp � (x + 1)p � (y � 1)p >
✏(y � x)

2y
. (11)

For now, assume (11) holds. If x + y = z + w, then by convexity, xp + yp 6= zp + wp

unless z = x and y = w or vice versa. However, it may happen that x + y = z + w
and bxpc+ bypc = bzpc+ bwpc. Since bapc = ap � [ap], where [ap] is the noninteger
part of ap, we must have that if x + y = z + w and

bxpc+ bypc = bzpc+ bwpc,

then
|xp + yp � zp � wp| < 2.

So, fixing an x and a y, we can bound how many other pairs z and w can have
z + w = x + y and bzpc+ bwpc = bxpc+ bypc. More specifically, we find the largest
t such that

xp + yp � (x + t)p � (y � t)p < 2.

Using (11), the triangle inequality, and letting k = y � x we get that

xp + yp � (x + t)p � (y � t)p � ✏k

2y
+
✏(k + 2)
2(y � 1)

+ . . . +
✏(k + 2(t� 1))
2(y � (t� 1))

.

Each term in the sum is greater than or equal to ✏k
2y , so we get a lower bound of

t✏k
2y . So, if t � 4y

✏(y�x) , then we cannot have

bxpc+ bypc = b(x + t)pc+ b(y � t)pc.

This allows us to conclude that any quadruple (x, y, z, w) with x + y = z + w, with
x < z < w < y, z < x < y < w, w < y < x < z, or y < w < z < x we must have
that |z � x| < 4y

✏(y�x) . Accounting for an extra factor of 2 for when x < w < z < y
and so on, we can bound the indexed energy of A as

EI(A)  2
X

y

X
x<y

4y
✏(y � x)

.

Estimating this summation by using the harmonic series gets us that

EI(A)  16
✏

n2 log n,

concluding the proof assuming that (11) holds.
Now, we work to establish (11). First, since f(x) := xp is convex for p > 1, it is

easy to establish the following bound for any x > 0:

p(x + 1)p�1 > (x + 1)p � xp > pxp�1. (12)
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Assuming p = 1 + ✏ < 2, we have that g(x) := xp�1 is concave. Doing a similar
analysis for g(x), we get that for any ` � 1

(x + `)p�1 � xp�1 > `(p� 1)(x + `)p�2. (13)

Using (12), we have
xp + yp � (x + 1)p � (y � 1)p =

= yp � (y � 1)p � ((x + 1)p � xp) > p(y � 1)p�1 � p(x + 1)p�1.

Using (13) and reminding the reader that k := y � x > 1, we establish (11):

p[(y � 1)p�1 � (y � k + 1)p�1] > p[(k � 2)(p� 1)(y � 1)p�2] >
✏k

2y
.

Theorem 5 follows by letting ✏ = 1
log n .

Proof of Theorem 5. Let A be as in the above lemma and let ✏ = 1
log n . Then, for

n su�ciently large,

|A| = bn 1
1+✏ c =

�
n

1
1+ 1

log n

⌫
=
jn

e
· e 1

1+log n

k
�
jn

e

k
� n

3
.

So, A ✓ [1, n], |A| � n
3 , and A + A ✓ [1, 2n]. Thus, |A + A|  2n  6|A|. Hence,

E(A) � |A|4
|A + A| �

|A|3
6

.

On the other hand, by Lemma 5, for A su�ciently large,

EI(A)  16n2(log n)2  16 · (9|A|)2(log 9|A|)2  1296|A|2(log 9|A|)2

 2000|A|2(log |A|)2.

4. Further Applications and Conjectures

Since |(A⇥B)+(A⇥B)| = |A+A||B +B|, it is obvious that if |A+A|  K|A| and
|B+B|  K|B|, then for any C ✓ A⇥B of size ⌦(|A||B|), one has |C +C|⌧K |C|.
However, if |C| = O(

p
|A||B|), one has little control of |C + C|. Does there exist a

C ✓ A⇥B with |C| = O(
p

|A||B|), and |C +C|⌧K |C|? Clearly one could simply
take C = {(a, b) : a 2 A} for a fixed b 2 B. If we forbid such sets lying on vertical
or horizontal lines by additionally requiring that for any distinct (x, y), (z, w) 2 C
we have (x� z)(y � w) > 0, the answer is not as obvious.
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For a set C ✓ A1 ⇥ . . . ⇥ Ak, call C a diagonal set if for any distinct pairs of
elements (x1, . . . , xk), (y1, . . . , yk) 2 C, one has xi�yi > 0 for all i or xi�yi < 0 for
all i. Moreover, we call C truly diagonal if there exists an X and a tuple (t1, . . . , tk)
such that C = {(x, . . . , x) � (t1, . . . , tk) : x 2 X}. Clearly a truly diagonal set is
also a diagonal set.

Theorem 8. For any k,K 2 N, there exists c1, c2 such that the following holds.
Let A1, . . . , Ak ✓ Z be su�ciently large sets of size n such that |Ai + Ai|  K|Ai|
for all i = 1, . . . , k. Then, there exists a truly diagonal set C ⇢ A1 ⇥ . . .⇥Ak such
that |C + C|  c1|C| and |C| = c2(|A1| . . . |Ak|)1/k = c2n.

Proof. We may apply the Condensing Lemma to each Ai individually to find con-
stants c1,i, c2,i depending on K such that there exists a subset A0

i ✓ Ai and an
order-preserving Freiman isomorphism to a set Bi ✓ [0, c1,kn] with |A0

i| � c2,in.
Let c1 be the maximum of {c1,i : i = 1, . . . , k} and let c2 be the minimum of
{c2,i : i = 1, . . . , k}. So, we may view all the Bi as being dense in the interval
[0, c1n]. Next, we claim that there exists t1, . . . , tk 2 Z such that

�����
k\

i=1

(Bi + ti)

����� �
ck
2

(2c1)k�1
n.

We prove this by induction on k. For k = 1, it is trivial. For the induction step, let
X,Y ⇢ [1, c1n] be of size �1n and �2n respectively. Then,

c1n�1X
t=�(c1n�1)

|(X + t) \ Y | = |X||Y | = �1�2n
2.

Hence, there exists a t such that

|(X + t) \ Y | � �1�2
2c1

n.

Letting X := Bk and Y := \k�1
i=1 Bi + ti finishes the inductive argument. Now, let

C0 := \k
i=1Bi + ti, and denote C0 := {x1 < . . . < xm}. We let C be the following

set:
C := {(xi � t1, xi � t2, . . . , xi � tm) : i = 1, . . . ,m}.

Since xi � tj 2 Bj , we have that C ✓ B1 ⇥ . . . ⇥ Bk. Since xi � tj > x` � tj for
i > `, C must be diagonal. Also, |C| = |C0| � ck

2
(2c1)k�1 . Lastly, it is easy to see that

|C + C| = |C0 + C0|  2n =
2kck�1

1

ck
2

|C0|.



INTEGERS: 18 (2018) 17

Although the above application is similar in spirit to the indexed energy problem
– letting A⇥B := A⇥ [1, |A|], where B is the set of indices – there are several subtle
di↵erences. Mainly, in the indexed energy problem, when we pass to a subset, we
are forced to reindex the set in a very specific way. Therefore, this problem is related
to, but does not imply, Theorem 6. The following conjecture, however, would be
general enough to imply Theorem 6.

Conjecture 1. Let A,B ✓ Z be sets of size N such that |A + A|, |B + B|  KN .
Then there exist c1, c2 depending only on K such that the following holds. There
exists an A0 ✓ A with |A0| � c1|A|, and if we denote A0 := {a01 < . . . < a0k} and
B := {b1 < . . . < bn}, then

|{(a0i, a0j , a0k, a0`) : a0i + a0j = a0k + a0` and bi + bj = bk + b`}| � c2|A0|3.

Conjecture 1 is true in the case where B = [1, N ] (or any arithmetic progression
of size N) since this then becomes the indexed energy result. It would be interesting
to know whether the conjecture is even true in the case where B is a generalized
arithmetic progression of dimension 2.

Another problem closely related to the indexed energy problem is as follows. Let
A ✓ Z and let f : A ! Z be such that |f(A) + f(A)|  c|A|, and |A + A|  c|A|.
Let Ef denote the additive energy of the graph of f . More precisely,

Ef (A) := {(a, b, c, d) : a + b = c + d, f(a) + f(b) = f(c) + f(d)}.

When f is the indexing function for a set A, Ef (A) becomes EI(A). What is
the relation between Ef (A) and E(A)? Here, we point out to the reader a subtle
but important di↵erence between this problem and the indexed energy problem:
when passing to a subset, there is a natural way to reindex a set which is distinctly
di↵erent than how a function restricted to a subset behaves. Therefore, Ef is not
simply a generalization of EI. Due to this lack of reindexing, there is not always
an A0 ✓ A with Ef (A0) �K |A|3 when E(A) � K|A|3. For instance, let f be the
indexing function, let A be as in Theorem 5, and since sets are not reindexed

Ef (A0)  EI(A) ⌧K |A|2 log |A|.

Moreover, |{(a + a0, f(a) + f(a0)) : a, a0 2 A}| � |A|2/ log |A|. As an openended
question, we ask if there are any reasonable conditions that we can impose on f or
A to arrive at a di↵erent conclusion?

Lastly, we remark that the content of Lemma 3 is making a statement about
equidistribution of a set in an interval. This has been a well-studied topic in dis-
crepancy theory; however, we are not aware of it appearing in this specific, com-
binatorial form – where one is allowed to pass to a subset of the original set, and
one only requires that for lots of interval, the subset is well-distributed. We tepidly
conjecture a generalization of Lemma 3 to higher dimensions, but it would also be
interesting if a counterexample was found.
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Conjecture 2. Let A ✓ [1, n]⇥ [1, n] be of size |A| = �n2. There exists constants
c1, c2, c3 depending only on � such that the following holds. There exists an A0 ✓ A
such that |A0| � c1|A| and for c2n2 pairs 0  i, j  n/c3, |A0\[0, ic3)⇥[0, jc3)| = ij.
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