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Abstract
The Ulam sequence is given by a1 = 1, a2 = 2, and then, for n ≥ 3, the element an is defined as
the smallest integer that can be written as the sum of two distinct earlier elements in a unique
way. This gives the sequence 1, 2, 3, 4, 6, 8, 11, 13, 16, . . . , which has a mysterious quasi-periodic
behavior that is not understood. Ulam’s definition naturally extends to higher dimensions: for a
set of initial vectors {v1, . . . , vk} ⊂ Rn, we define a sequence by repeatedly adding the smallest
elements that can be uniquely written as the sum of two distinct vectors already in the set. The
resulting sets have very rich structure that turns out to be universal for many commuting binary
operations. We give examples of different types of behavior, prove several universality results, and
describe new unexplained phenomena.

1. Introduction

1.1. Background

Stanis"law Ulam introduced the sequence

1, 2, 3, 4, 6, 8, 11, 13, 16, 18, 26, 28, 36, 38, 47, 48, 53, 57, 62, 69, 72, 77, 82, 87, 97 . . .

in a 1964 survey [17] on unsolved problems. The sequence is given by a1 = 1, a2 = 2, after which
we iteratively choose the next element to be the smallest integer that can be written as the sum of
two distinct earlier elements in a unique way. Ulam asks in [18] whether it is possible to determine
the asymptotic density of the sequence (which, empirically, seems to be somewhere around 0.079).
At first glance, this sequence seems somewhat arbitrary and contrived.

Ulam himself is not very clear about his motivation, and the original text reads only:

Another one-dimensional sequence was studied recently. This one was defined purely
additively: one starts, say, with integers 1,2 and considers in turn all integers which
are obtainable as the sum of two different ones previously defined but only if they are
so expressible in a unique way. The sequence would start as follows:

1, 2, 3, 4, 6, 8, 11, 13, . . . ;

even sequences this simple present problems. (Ulam, 1964)
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Figure 1: The Ulam set arising from {(9, 0), (0, 9), (1, 13)} shows both chaotic and regular
behavior. In Section 4 we will prove that it is periodic in both the x− and y−directions.

It is trivial to see that an ≤ Fn+1, where Fn is the n-th Fibonacci number. This is, in fact,
the only rigorously proven statement about the Ulam sequence that we are aware of. Different
initial values a1, a2 can give rise to more structured sequences [2, 3, 11]: for some, the sequence
of consecutive differences an+1 − an is eventually periodic. Ulam’s original sequence beginning
with 1, 2 does not seem to become periodic: Knuth [10] remarks that a4953 − a4952 = 262 and
a18858 − a18857 = 315. The understanding in the literature is that the sequence ‘does not appear
to follow any recognizable pattern’ [4] and is ‘quite erratic’ [14]. Other initial values sometimes
give rise to more regular sequences, a phenomenon investigated by Cassaigne & Finch [1], Finch
[2, 4, 3], Queneau [11] and, proving a conjecture of Finch, Schmerl & Spiegel [14].

Figure 2: The set arising from {(2, 5), (3, 1)} creates a regular pattern. The regularity
of this set is a consequence of a more general result in Section 2.1.

1.2. The Hidden Structure

The second author [15] recently discovered, more or less by accident, that the Ulam sequence has
a nontrivial interaction with Fourier series: more precisely, if we let (an)∞n=1 denote the sequence
starting with a1 = 1, a2 = 2, then, empirically, there seems to exist a real number α ∼ 2.571447 . . .
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such that
N∑

n=1

cos (αan) ∼ −0.79N.

If the sequence were truly random, we would expect the sum to be at scale ∼
√
N . Thus, this

finding indicates the presence of a strong intrinsic structure in the sequence αan. The underlying
structure is very rigid: for the first 107 terms of the sequence,

cos (2.5714474995 an) < 0 for all an /∈ {2, 3, 47, 69} .

This type of structure usually indicates periodic behavior, but the sequence does not seem to
have periodic behavior of any kind – the phenomenon, an unusual connection between additive
structures in N and quasi-periodic behavior, is not understood and also occurs for many other
initial conditions (although the arising constants vary). One interesting byproduct of this discovery
is the development of an algorithm by Philip Gibbs [5] (see also the description of Knuth [8])
which is much faster than previously existing algorithms whenever such phenomena are present.
This allowed the verification of the presence of the phenomenon for the first 109 elements of the
sequence. Daniel Ross studied various aspects of the phenomenon in his 2016 PhD thesis [13].
Hinman, Kuca, Schlesinger & Sheydvasser [7] recently undertook an in-depth study of the Ulam
sequence and uncovered several striking new properties as well as partially answering some of the
questions raised in the present paper. We also refer the reader to the recent work of Kuca [9] on
a related sequence.

1.3. The Big Picture

If we return to the original setup, we see that the Ulam sequence is given by a very simple greedy
algorithm: to find the next element, perform all possible binary operations on the given set and
add the smallest element with a unique representation. Obviously, this scheme can be implemented
for any type of set equipped with a binary operation and a notion of size. This generalization gives
rise to an incredibly rich structure, which we discuss in this paper – we focus our investigation
on objects in R2 and R3 equipped with the standard addition. (We do show, however, that the
dynamics of lattice points is universal, and we also describe the behavior of many Ulam sets
over algebraic objects equipped with a notion of size and an associative and commutative binary
operation.) Generalizing the classical Ulam sequence is very much in the spirit of Ulam’s musings;
directly after introducing the sequence, he writes in a passage that may not be well known:

For two dimensions one can imagine the lattice of all integral valued points or the
division of the plane into equilateral triangles (the hexagonal division). Starting with
one or a finite number of points of such a subdivision, one can ‘grow’ new points defined
recursively by, for example, including a new point if it forms with two previously defined
points the third vertex of a triangle, but only doing it in the case where it is uniquely
so related to a previous pair; in other words, we don’t grow a point if it should be a
vertex of two triangles with different pairs previously taken. Apparently the properties
of the figure growing by this definition are difficult to ascertain. For example [...] it is
not easy to decide whether or not there will be infinitely long side branches coming off
the ‘stems’. (Ulam, 1964)

It is evident that Ulam himself was considering a generalization of a more geometric flavor.
Although this line of inquiry is potentially interesting, we chose to pursue a more algebraic gen-
eralization, and the rest of this paper is devoted to studying the additive analogue for vectors.
However, the question of ‘whether or not there will be infinitely long side branches coming off the
stems’ also arises naturally in our setup (see Figure 3 below and Section 4).
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Figure 3: The set arising from {(1, 0), (2, 0), (0, 1)}, the classical Ulam sequence on the x−axis
augmented by (0, 1). Regular columns branch away from the irregular sequence.

Figure 3, which shows the Ulam set generated by {(1, 0), (2, 0), (0, 1)} (see Figure 10 for a larger
scale), motivated much of our inquiry into the internal structure of these graphs. In particular, this
example recreates the classical Ulam sequence on the x−axis (about which little is known). One
main result of this paper (Section 4) implies that for each fixed value of x ∈ N, the y−coordinates
of elements in the set are either bounded in size or eventually become periodic (where the period
is some power of 2).

1.4. Ulam Sets

We define Ulam sequences in Rn
≥0 (the set of nonzero vectors all of whose components are nonneg-

ative) by specifying a set of initial vectors {v1, . . . , vk} and then repeatedly adding the smallest
vector (with respect to Euclidean norm; see Section 3) that can be uniquely written as the sum of
two distinct vectors already in the set. At any stage of the construction, there may be two or more
vectors with the same size each with a unique representation. In this case, we can simply add all
of them at once; having initial conditions contained in Rn

≥0 guarantees that they can be added
one by one in any arbitrary order without affecting the representations of the others. However,
this ambiguity makes it clear that there can be no canonical notion of sequence, which is why we
will refer to these objects as unordered Ulam sets.

Remarks.

1. It is not clear how one would define an Ulam sequence allowing initial elements with negative
initial components. Even for a one-dimensional Ulam-type sequence, allowing negative initial
elements proves difficult. The greedy algorithm does not work because two numbers with
large absolute value can sum to a number with smaller absolute value. This possibility can
potentially destroy the set property of uniqueness of representation retroactively, and the
order in which we add vectors tied for smallest becomes a nontrivial consideration. We thus
restrict ourselves in the remainder of this paper to nonzero initial elements {v1, . . . , vk} ⊂
Rn

≥0 containing only nonnegative components.

2. It is not difficult to see that all such sequences are necessarily infinite. If such a sequence
were finite, we could select the two vectors with the largest x1-component (breaking ties
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by considering the x2-component, etc.). The resultant sum of these two vectors would be
unique among sums of distinct vectors already in the set, which leads to a contradiction.

3. The definition makes sense for arbitrary vectors equipped with a notion of size. In general,
the most interesting dynamics can be expected when a1v1 + a2v2 + · · · + akvk = 0 has
nontrivial solutions over Zk (Section 2). However, even an absence of nontrivial solutions
gives rise to many complexities (Section 2.4).

1.5. Outline of the Paper

We start by presenting several examples in Section 2 and showing how, in many cases, we can
establish the existence of regular repeating patterns. Section 3 contains several universality results
stating that, for a large number of initial conditions, the arising behavior is universal: in particular,
Ulam sets depend only very weakly on the notion of norm used (despite the definition’s emphasis on
adding the ‘smallest’ vector with a unique representation). Section 3 also exhibits numerical results
suggesting that the generic case of three initial conditions has surprisingly complex structures and
symmetries that we do not rigorously understand. Section 4 is devoted to the column phenomenon:
we provide at least a partial understanding of regular periodic structures such as the ones observed
to be branching away from the x−axis in Figure 3 (above). Section 5 concludes the paper by listing
several open problems.

2. Lattices and Non-Lattices

2.1. Lattices

We first consider the case of two vectors {v1, v2} ⊂ R2
≥0. If v2 = cv1, then we merely recreate the

one-dimensional classical Ulam sequence with initial conditions {1, c} where c > 0. If c = p/q is
rational, then we can reduce it to the one-dimensional Ulam sequence with initial conditions {p, q}.
If c is irrational, then we will be able to use Lemma 2 (Section 3.2) to deduce that the elements
in the one-dimensional sequence demonstrate the universal dynamics created by the initial set
{(1, 0), (0, 1)} ⊂ R2

≥0. We now determine the dynamics of such sets.

Figure 4: The set arising from {(1, 0), (0, 1)}.

Theorem 1 (Lattice in Two Dimensions). The set arising from nonparallel {v1, v2} ⊂ R2
≥0 con-

sists of all vectors of the form v1+nv2 and nv1+v2 for n ∈ N and all vectors of the form mv1+nv2
with m,n ≥ 3 both odd integers.

Proof. All terms in the sequence are contained in the set

{k1v1 + k2v2 : k1, k2 ∈ N} .
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Since v1 and v2 are linearly independent, the above representation is unique. Whether mv1 + nv2
is contained in the set can be determined by knowing which elements of the form

{k1v1 + k2v2 : 0 ≤ k1 ≤ m ∧ 0 ≤ k2 ≤ n}

are contained in the Ulam set. First, v1 + v2 is uniquely representable and is thus in the Ulam
set. We can now see inductively that all elements

{v1 + nv2 : n ∈ N} and {nv1 + v2 : n ∈ N}

are uniquely representable and hence are contained in the set. We will now show by induction
that for m,n ≥ 2, the vector mv1 + nv2 is an element if and only if both m and n are odd. The
base case is m = 2 or n = 2. We have

2v1 + 2v2 = (2v1 + v2) + v2 = (v1 + 2v2) + v1,

implying that it is not included. By the same token, for n ≥ 3,

2v1 + nv2 = (v1 + v2) + (v1 + (n− 1)v2) = (v1 + nv2) + v1

is is not unique either. Symmetrically, vectors of the form nv1 + 2v2 are excluded for the same
reason. We now consider vectors mv1 + nv2 with m,n ≥ 3 and note that we always have a
representation of the type

mv1 + nv2 = (v1 + (n− 1)v2) + ((m− 1)v1 + v2),

using vectors already established to be in the set. Depending on the parity of m and n, we can
now distinguish four cases. If m and n are both even, then we get a second representation

mv1 + nv2 = ((m− 1)v1 + (n− 1)v2) + (v1 + v2),

where (m− 1)v1 + (n− 1)v2 is contained in the set by the inductive hypothesis. If m is even and
n is odd, then

mv1 + nv2 = ((m− 1)v1 + nv2) + v1

is a second representation, and the case of m odd, n even follows by symmetry. It remains to
show that there is no second representation when both m and n are both odd. Let S1 denote
the set of vectors of the form v1 + nv2 or nv1 + v2, and let S2 denote all the other vectors in the
Ulam set with x−coordinate at most m and y−coordinate at most n. Note that, by hypothesis,
the coefficients of v1 and v2 are both odd for all elements of S2. The fact that m,n ≥ 3 means
that mv1 + nv2 can be written uniquely as the sum of 2 elements of S1: this is the representation
we found before beginning casework. The sum of any 2 elements of S2 has even coefficients for v1
and v2, so mv1 + nv2 cannot be expressed in this way. Similarly, the sum of an element of S1 and
an element of S2 must have at least 1 even coefficient (from the sum of the 1 in the S1 element
and an odd coefficient in the S2 element). This exhausts all possibilities.

2.2. Special Cases with Regular Behavior

The purpose of this section is to demonstrate that a variety of cases can actually be rigorously
dealt with; the proofs rely mainly on using the right type of induction and are only sketched.

2.2.1. {(2, 0), (0, 1), (3, 1)}

This sequence consists of exactly the points (2, 0) and (0, 1), and all points of the form (n, 1), (2, n),
and (3, n) where n ≥ 2.
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Figure 5: The set arising from {(2, 0), (0, 1), (3, 1)}.

Proof. We start by noting that there can be no point other than (2, 0) on the x−axis since (2, 0)
is the only point with y−component 0. The same argument tells us that (0, 1) is the only point
on the y−axis, and, by the same token, there can never be any point with x−component 1. Now
for n ≥ 2, we have (n, 1) = (n − 2, 1) + (2, 0) uniquely. (This is simple n → n + 2 induction
with base cases (2, 1) and (3, 1).) Inductively, we also have (2, n) = (2, n − 1) + (0, 1) uniquely
for n ≥ 2, so all points of the form (2, n) are included. Similarly, (3, n) = (3, n − 1) + (0, 1)
uniquely. Note that, again, the absence of any element of the Ulam set with x−component 1
makes uniqueness easy to see. Next, we have (4, 2) = (2, 2) + (2, 0) = (4, 1) + (0, 1) not uniquely.
And for n ≥ 5, (n, 2) = (n, 1) + (0, 1) = (n − 2, 1) + (2, 1) is also excluded. For n ≥ 4, we have
(4, n) = (2, 0)+ (2, n) = (2, 1)+ (2, n− 1) not uniquely. Finally, for any remaining ‘interior point’
with m ≥ 5, n ≥ 3, we have that (m,n) = (m − 2, 1) + (2, n− 1) = (m− 3, 1) + (3, n− 1) is not
unique and is thus excluded.

2.2.2. {(1, 0), (0, 1), (2, 3)}

This sequence consists of all points of the form (n, 1) and (1, n) where n ∈ N, the point (2, 3), and
all points of the form (2n+ 4, 2m+ 3) for m,n ∈ N. The proof proceeds using parity distinctions
as in Theorem 1.

Figure 6: The set arising from {(1, 0), (0, 1), (2, 3)}.
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2.2.3. {(3, 0), (0, 1), (1, 1)}

This sequence splits R2
≥0 in a stable way into two regions with different lattice behavior. We did

not attempt to obtain a complete proof because, at this point, it seems to require an enormous
amount of casework. However, we do not see a fundamental obstruction to obtaining a proof
using the methods employed above. Perhaps unsurprisingly, this sort of statement is fairly easy
to prove via induction once the correct induction hypothesis is found. (Note added in revision:
some of these types of behavior have now been rigorously classified by Hinman, Kuca, Schlesinger
& Sheydvasser [7].)

Figure 7: The set arising from {(3, 0), (0, 1), (1, 1)} splits the domain into two lattices.

2.3. Linear Transformations

There is a useful invariance under certain linear transformations which we actively exploit in the
study of three initial vectors {v1, v2, v3} ⊂ R2

≥0.

Lemma 1. Let {v1, . . . , vk} ⊂ R2
≥0 span R2. Then there exists an invertible linear transformation

T : R2 → R2 that maps {v1, . . . , vk} ⊂ R2
≥0 to another set in R2

≥0 such that at least one of the
transformed vectors lies on the x−axis and at least one on the y−axis. Moreover, the Ulam sets
arising from the original and transformed sets of initial vectors are structurally equivalent (in the
obvious sense).

Proof. The proof is fairly simple: it is easy to see that sets are invariant under small rotations
that keep all the vectors in the positive quadrant R2

≥0. This allows us to map the vector(s) with
the smallest slope to the x−axis. Finally, it is also easy to see that Ulam sets of this type are
invariant under shear transformations of the form

S : (x, y) → (x − cy, y),

and the result follows from composition.

This property is quite useful when studying the case of three initial vectors in R2
≥0. Invariance

under certain types of linear transformation easily generalizes to higher dimensions and should be
a valuable symmetry in the systematic investigation of these sets. We also remark that if all the
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initial vectors are contained in Z2
≥0, then the transformed vectors will all be in Q2

≥0, and scaling
them yields another set in Z2

≥0. We give a more formal and thorough treatment of structural
equivalence in Section 3.

2.4. Unit Vectors in Three Dimensions

A natural topic of inquiry is the case of the three canonical unit vectors in R3 because their
behavior is the universal behavior for three vectors {v1, v2, v3} that are linearly independent over
Z (see Section 3.2). Computation using the initial set {(1, 0, 0), (0, 1, 0), (0, 0, 1)} reveals this

Figure 8: The first few points with all coordinates larger than 2 in the Ulam set generated by
the unit vectors of R3 (left) and a projection of the same points onto the xy−plane (right).

structure to be highly nontrivial. The coordinate planes naturally contain 2-dimensional lattices
generated pairwise by the initial vectors characterized above. There is a second type of regular
structure appearing in the hyperplane

{
(x, y, z) ∈ R3 : x = 2

}
(and, by symmetry, the other two

hyperplanes) because it contains the points (2, 0, 1), (2, 1, 0), and (2, 2m+ 3, 2n+ 3) for m,n ∈ N.
However, beyond these two planes (or, a total of six hyperplanes with symmetry), there is a
secondary structure unfolding in the interior that seems to have a roughly hexagonal shape and to
be centered in the direction (1, 1, 1) (as is to be expected because of symmetry under permutation
of the coordinates). Simple numerical experiments reveal that the point (4, 6, 10) (along with
the five other points arising from permutation) seems to make the largest angle with the vector
(1, 1, 1); the second largest angle comes from (94, 136, 230). Our only rigorous result (besides the
behavior of the hyperplanes and the obvious hexagonal symmetry) is that (n, n, n) is never in the
set.

Proposition 1. The Ulam set arising from the canonical basis vectors in R3 does not contain any
vector of the form (n, n, n) ∈ N3.

Proof. Suppose the statement is false and (n, n, n) ∈ N3 is the smallest such element in the
set. (Observe that (0, 0, 0) is not included in the set.) Then (n, n, n) = (a1, a2, a3) + (b1, b2, b3)
uniquely for some elements (a1, a2, a3) ̸= (b1, b2, b3) in the set. It is clear that not all entries
of these elements can be identical because (n, n, n) is the smallest element in the set with that
property. Then, however, at least one of the six possible permutations of the coordinates yields a
second representation, and the resulting non-uniqueness implies the result.
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Figure 9: Projection of the set onto the orthogonal complement of (1, 1, 1).

3. Independence of Norms and Universal Embeddings

3.1. Independence of Norms

This section establishes a simple result that we believe to be fairly fundamental: Ulam sets depend
strongly on initial conditions but much less so on the notion of size that is used. Note that the
theorems throughout this section are not restricted to sets of initial elements in Rn. For a given
set of initial elements V = {v1, v2, . . . vk}, the the arising Ulam set A is fully contained in the
‘domain’ given by

DV = {a1v1 + a2v2 + · · ·+ akvk : ai ∈ N ∧max(a1, a2, . . . , ak) > 0}

where some elements may have multiple expressions. Our definition of Ulam sets uses the Pythagorean
ℓ2−distance to determine the ‘smallest’ element, but the arising sets are actually independent of
this particular notion of size. More precisely, if the set of initial elements is V = {v1, v2, . . . , vk},
then any function

f : DV → R

satisfying
f(u+ v) > max (f(u), f(v)) for all u, v ∈ DV

such that (−∞, x) has a finite preimage for all x ∈ R will give rise to the same universal set
independent of the particular function f used. This property guarantees that it does not matter in
what order we add new elements that are tied for smallest length. For example, all ℓp−norms with
1 ≤ p < ∞ (including the Euclidean norm ℓ2) have this property, as do all functions f : Rn

≥0 → R
that are strictly monotonically increasing and unbounded in each coordinate. For a given set of
initial conditions V = {v1, . . . , vk} and any admissible f−function, one can define the f−Ulam
set as the set obtained by adding, in a greedy manner, the smallest elements according to f−value
that are uniquely representable as sums of two distinct earlier terms.

Theorem 2 (Independence of Norms). f−Ulam sets are independent of the function f .

Proof. The proof is by contradiction. Suppose that for a given set of initial elements V =
{v1, v2, . . . vk}, there are two functions f1, f2 giving rise to different Ulam sets, and suppose with-
out loss of generality that x ∈ DV is a f1−smallest element that is contained in the first set but
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not the second set. Since the initial conditions and subsequently added elements are all contained
in DV , whether the element x is added to a set depends only on the elements

{a1v1 + a2v2 + · · ·+ akvk ∈ DV : x = b1v1 + b2v2 + · · ·+ bkvk for some bi ∈ N, bi ≥ ai∀1 ≤ i ≤ k}.

(There could be many such expansions for x; we consider all elements a1v1+a2v2+· · ·+akvk ∈ DV

satisfying this relation for at least one expansion of x.) By assumption, this set coincides for f1
and f2, which yields a contradiction.

This theorem shows the Ulam sets to depend on the underlying algebraic structure of addition,
but only very weakly on the ordering by a notion of size. We remark that, in practice, the order
in which elements are added to the set depends rather strongly on the f−function used, but the
resulting (unordered) sets are ultimately the same.

3.2. Universal Embeddings

Suppose sets of initial conditions U = {u1, u2, . . . uk} and V = {v1, v2, . . . vk} give rise to Ulam
sets A ⊂ DU and B ⊂ DV , respectively. Then we say that A and B are structurally equivalent
(or isomorphic) as Ulam sets if for all ai ∈ N,

a1u1 + a2u2 + . . . akuk ∈ A iff a1v1 + a2v2 + · · ·+ akvk ∈ B.

The next statement deals with a large number of initial cases and shows that the dynamics for
‘generic’ initial conditions is unique. Here, ‘generic’ refers to the fact that for ‘most’ (i.e., in the
sense of Lebesgue measure) sets of initial vectors {v1, . . . , vk} ⊂ Rn

≥0, the equation

a1v1 + a2v2 + · · ·+ akvk = 0 has no solution (a1, . . . , ak) ∈ Zk \ 0.

In this case, things drastically simplify because each possible element of the set has a unique
representation in {vi}, which in turn implies universal behavior.

Lemma 2. Let V = {v1, . . . , vk} be a set of initial conditions such that

a1v1 + a2v2 + . . . akvk = 0 has no solution (a1, . . . , ak) ∈ Zk \ 0.

Then the arising Ulam set A is structurally equivalent to the Ulam set E arising from the set
{e1, . . . , ek} ⊂ Rk (where ei = (0, 0, . . . , 0, 1, 0, . . . , 0) is the i-th canonical basis vector in Rk).

Proof. The argument is a straightforward application of Theorem 2:

a1v1 + a2v2 + · · ·+ akvk = b1v1 + · · ·+ bkvk

with ai, bi ∈ N implies that ai = bi for all 1 ≤ i ≤ k and thus that each potential element of the
Ulam set has a unique representation in {vi} over N as coefficients. We observe that we can, for
all relevant lattice points that could ever be under consideration, define a f−function via

f (a1v1 + a2v2 + · · ·+ akvk) =
√
a21 + a22 + · · ·+ a2k.

Theorem 2 implies that A does not depend on the f−function, so the fact that this particular
choice of f−function gives rise to the canonical Ulam set E concludes the argument.

This simple statement has quite serious implications. For example, the Ulam set generated
by

{
(1, 0), (1,

√
2)
}
behaves exactly like the set generated by {(1, 0), (0, 1)} (which is structurally

fairly simple; see Figure 4). By the same token, the initial sets
{
(1, 0, 0), (1,

√
2, 0), (1, 1,

√
3)
}
⊂ R3

≥0 and {3,
√
5, 2 + π} ⊂ R≥0
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both evolve exactly the same way as the initial set

{(1, 0, 0), (0, 1, 0), (0, 0, 1)} ⊂ R3
≥0.

The following statement extends Lemma 2 and establishes even more general equivalence classes
for Ulam sets (but is stated separately for clarity of exposition).

Lemma 3. Suppose U = {u1, . . . uk} and V = {v1, . . . , vk} give rise to Ulam sets A and B,
respectively, under admissible notions of size fu and fv. Then A and B are structurally equivalent
if

a1u1 + a2u2 + · · ·+ akuk = 0

and
a1v1 + a2v2 + · · ·+ akvk = 0

have the same set of solutions (a1, a2, . . . ak) ∈ Zk.

Proof. We proceed by contradiction. The above condition guarantees that representations of
elements inDU andDV are completely equivalent: if an element ofDU has multiple representations
a1u1 + a2u1 + · · ·+ akuk = b1u1 + b2u1 + · · ·+ bkuk (with natural numbers as coefficients), then
the corresponding element of DV has the same representations given by a1v1+a2v1+ · · ·+akvk =
b1v1 + b2v1 + · · ·+ bkvk. Now suppose (without loss of generality) that there is a smallest element
x0 ∈ A (measured according to fu) representable by

a1u1 + a2u2 + · · ·+ akuk = x0 ∈ A

such that the corresponding element

a1v1 + a2v2 + · · ·+ akvk = y0 /∈ B

and such that A and B agree for all elements that are strictly smaller than x0 with respect to fu.
Since x0 is included in A, it is the unique sum x0 = x1 + x2 of two smaller elements x1, x2 ∈ A.
Thus, the corresponding elements y1 and y2 are included in B and sum to y0. But in order for
y0 to be excluded from B, it must have a second representation: there exist y3, y4 ∈ B such that
y3 + y4 = y0. But by comparing coefficients, we see that the corresponding elements x3, x4 ∈ A
sum to x0, a contradiction.

In light of this lemma, it makes sense to call

a1u1 + a2u2 + · · ·+ akuk = 0

the characteristic equation for the initial conditions {ui}.

3.3. More General Objects

These arguments easily extend to a more general setting. Suppose we have a set A of elements,
a binary operation ◦ : A × A → A, a finite set of initial elements {a1, a2, . . . , ak} ⊆ A, and a
function f : A → R that is acceptable (in the sense of Section 3.1). Then we can define an Ulam
set arising from the initial set {a1, a2, . . . , ak} by repeatedly adding, among all elements with a
unique representation a = ai ◦ aj (i ̸= j), one with minimal value of f . (If ◦ is commutative,
then the canonical definition restricts our consideration to sums of unique pairs of elements.) As
before, the order in which we break ties is inconsequential because of the constraint on f , and the
same argument as above implies that the arising set is independent of the function f .
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Example 1. Let {A1, . . . , Ak} ⊂ Rn×n be a set of pairwise commuting n × n matrices with
det(Ai) > 1 for all 1 ≤ i ≤ k. Then define our binary operation as standard matrix multiplication,
and let

f(A) := det(A)

be our notion of size. It is easy to see that

f(AB) = det(AB) = det(A) det(B) > max(det(A), det(B)) = max(f(A), f(B)).

Since all of the matrices commute, there exists a change of basis under which they all become
upper triangular, and this property is preserved under multiplication.

Example 2. Let {g1, . . . , gk} ⊂ C([0, 1],R>0) be a set of continuous functions each enclosing
strictly positive area, let the binary operation ◦ be given by addition, and set

f(g) :=

∫ 1

0
g(x)dx.

For instance, the Ulam set arising from {1, sinx, cosx} is isomorphic to the set obtained from
{(1, 0, 0), (0, 1, 0), (0, 0, 1)} ⊂ R3, and the set arising from {sin2 x, cos2 x, 1} is isomorphic to the
set arising from {(1, 0), (0, 1), (1, 1)} ⊂ R2.

3.4. Embedding Into the Real Line

The previous section shows that many general initial conditions can be reduced to universal dy-
namical behavior on a lattice, the dimension of which is determined by the initial values. Perhaps
surprisingly, one can also reduce dynamical behavior to the case of one-dimensional Ulam se-
quences (possibly with real initial conditions). We believe this to be one of the reasons why Ulam
sequences with non-integer initial elements or more than two initial elements have never been
actively investigated: the underlying dynamics can be of a higher-dimensional nature.

Lemma 4. Let {v1, . . . , vk} ⊂ Zn
≥0 be a set of nonzero vectors. The arising Ulam set A is

isomorphic to a suitable one-dimensional Ulam set.

Proof. The proof is constructive. We map each vector to a unique positive real number via

φ(x) = φ(x1, x2, . . . , xn) := log (2x13x2 . . . pxn
n ),

where pi is the i-th prime number. We now claim that the set

{φ(v1), . . . ,φ(vk)} ⊂ R≥0,

interpreted as the initial conditions of a one-dimensional Ulam sequence, exhibits the same dy-
namics. It is clear that

φ(u) + φ(v) = φ(u + v)

is equivalent to the additive relationship of the vectors in Nn. It remains only to note that φ can
be interpreted as a continuous function φ : Rn

≥0 → R that is strictly monotonically increasing and
unbounded in each of its coordinates.

3.5. Embedding Into the Integer Lattice

We also prove a converse to the above Lemma 4, namely, that an acceptable set of initial conditions
in Rm is always structurally equivalent to some initial conditions in Zl

≥0. This embedding is useful
in two ways: first, it greatly narrows the search space for Ulam sets; and second, it allows us to
apply the results of Section 4 which we derive for initial conditions with integer coordinates.
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Lemma 5. Let V = {v1, v2, . . . vk} ⊂ Rm
≥0 be a set of initial conditions where each vi is nonzero

and has all nonnegative components. Then there exists some set of initial conditions
W = {w1, w2, . . . wk} ⊂ Nl with 1 ≤ l ≤ k that gives rise to a structurally equivalent Ulam
set.

Proof. To begin, define the rational solutions to the characteristic equation of V to be

S = {(a1, a2, . . . ak) ∈ Qk : a1v1 + a2v2 + · · ·+ akvk = 0}.

As shown in Lemma 3, S completely determines the behavior of the Ulam set arising from V . (Be-
cause this equation is homogeneous, we may take integer and rational solutions interchangeably.)
Now, let Q = {q1, q2, . . . ql} be a minimal subset of V such that every element of V is expressible
as a Q−linear combination of the elements of Q. (1 ≤ l ≤ k is clear from any construction of Q.
The cases |Q| = 1 and |Q| = k are special: the former is equivalent to a one-dimensional Ulam
sequence with integer coeffients, and the latter exhibits the universal behavior of Lemma 2.) By
the minimality of Q, each vi ∈ V can be uniquely written as

vi = ci1q1 + vi2q2 + · · ·+ cilql

where the coefficients are rational. Then the characteristic equation becomes

a1(c
1
1q1 + c12q2 + · · ·+ c1lql) + a2(c

2
1q1 + c22q2 + · · ·+ c2lql) + · · ·+ ak(c

k
1q1 + ck2q2 + · · ·+ cklql) = 0.

Again, the minimality of Q ensures that the qi’s are Q−linearly independent, so we may separate
this equation into the system of l simultaneous equations in k variables given by

⎡

⎢⎢⎢⎣

c11 c21 . . . ck1
c12 c22 . . . ck2
...

...
. . .

...
c1l c2l . . . ckl

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

a1
a2
...
ak

⎤

⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎣

0
0
...
0

⎤

⎥⎥⎥⎦
.

Interpreting the columns of this matrix as the expansions of vectors in Rl over the standard basis,
we see that the set of initial conditions U = {ui = (ci1, c

i
2, . . . c

i
l)} ⊂ Ql (for 1 ≤ i ≤ k) gives the

same rational solutions to the characteristic equation as V . However, the proof is not complete
because some elements of U may have negative components. For each 1 ≤ i ≤ l, define bi to be
the sum of the components of qi. Since each qi is nonzero and has all nonegative components,
each bi is strictly positive. We now associate any vector (d1, d2, . . . dl) ∈ Rl with a real number
via the linear map

ψ(d1, d2, . . . dl) = d1b1 + d2b2 + · · ·+ dlbl.

Note that ψ(ui) equals the sum of the coordinates of vi and hence is strictly positive. Thus, the
solutions to

ψ(x1, x2, . . . xl) = x1b1 + x2b2 + · · ·+ xlbl= 0

form a (l−1)−dimensional hyperplane bisecting Rl, and all the ui’s lie strictly on the same side of
it. We remark that the vector u⊥= (b1, b2, . . . bl) ∈ Rl is orthogonal to the hyperplane and lies on
the ‘positive side,’ i.e.,, the angle between u⊥ and each ui is strictly smaller than π

2 . Because the
inequality is strict, there is some ‘wiggle room’ around u⊥ such that all the angles remain strictly
smaller than π

2 . More precisely, there exists an open ball around the endpoint of u⊥ such that any
vector with its endpoint in that ball retains said property. By the denseness of the rationals, we
can find such a u′

⊥ with all rational components that is ‘almost’ perpendicular to the boundary
space. It follows that the dot product of u′

⊥with each ui is always strictly positive. Let

m = min
1≤ i≤ k

ui · u′
⊥ and Ω = min

1≤ i≤ k
1≤ j≤ l

cij
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where m > 0 is guaranteed but Ω may be negative. Then there exists a positive integer M such
that Ω +Mm > 0. We now create a new set Y = {yi} ⊂ Rl defined by

yi = ui +M(ui · u′
⊥)(1, 1, . . . 1) = (Il+M1(u′

⊥)
T )ui

where Il is the (l × l) identity matrix and 1 = (1, 1, . . . 1) is a column vector. By construc-
tion, each yi has all components strictly positive. Moreover, since ui · u′

⊥ is rational, each {yi}
has rational components. Scaling the entire set by the least common denominator gives a set
W = {wi} ⊂ Zl

≥0. We now need note only that the transformation from ui to wi is an invertible
linear transformation, which means that it preserves S. (The transformation matrix is singular
only if − 1

M is an eigenvalue of the matrix 1(u′
⊥)

T . But this matrix has only finitely many eigen-
values, so if the smallest integer M makes the transformation noninvertible, then a larger value of
M can be chosen.) This completes the proof.

4. The Column Phenomenon

This section is devoted to a curious phenomenon that we first observed in the set arising from
{(1, 0), (2, 0), (0, 1)} (the classical Ulam sequence on the x−axis augmented by a vector in the
orthogonal direction). The picture (Figure 10) is rather stunning: seemingly chaotic behavior
close to the x−axis and periodic structures evolving in the direction of the y−axis. The list of
x−coordinates for which nonempty columns arise is given by

1, 4, 6, 9, 14, 20, 23, 25, 30, 33, 49, 56, 60, 248, 270, 280, 302, 385, 474, 479, . . .

At this point, we do not understand whether and how this sequence evolves further. This example
naturally leads to defining a column as, loosely, a structure that periodically extends to infinity
in one direction. The purpose of this section is to prove the existence of such periodic structures.
We begin by considering columns in 2 dimensions extending in the direction of the y− axis. After
proving several results about the behavior of these columns, we provide natural generalizations to
more complex column behavior.

Figure 10: The set arising from {(1, 0), (2, 0), (0, 1)}. We see a gap in nonempty columns
between x = 60 and x = 248. Two more nonempty columns follow at x = 270 and x = 280.

4.1. A Combinatorial Lemma

Our proof of the existence of columns requires a simple combinatorial fact that we prefer to state
independently. Let X be the set of infinite words over the alphabet {0, 1, 2} and Y the set of
infinite words over {0, 1}. We define a transformation T : X → Y by setting

T (x)0 :=

{
1 if x0 = 1

0 otherwise.
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and, for i ≥ 1,

T (x)i :=

{
1 if xi + T (x)i− 1 = 1

0 otherwise.

We are interested in how this map affects infinite words that are eventually periodic. For example,

110011001 . . .
T−→ 100010001 . . .

is a word with period 4 that is mapped to another word with period 4. By contrast,

010101010 . . .
T−→ 011001100 . . .

is a word with period 2 mapped to a word with period 4. Our next statement shows this to be an
exhaustive case distinction.

Lemma 6 (T Preserves Periodicity.). If x ∈ X is eventually periodic with period p (i.e., xj+p = xj

for all j sufficiently large), then T (x) is eventually periodic with period either p or 2p. T (x) is
periodic with period 2p if and only if the each period in the periodic portion of x contains an odd
number of 1’s and no 2’s.

Proof. Fix m sufficiently large for the word x to be periodic after the first m symbols, and consider
the action of T on the three quantities xm, xm+p, xm+2p (all three of which are identical because of
the eventual periodicity of x). If T (x)m = T (x)m+p, then we clearly have T (x)m+1 = T (x)m+p+1

since T (x)i depends on only xi and T (x)i− 1. It follows by induction that T (x) becomes periodic
with period p. Suppose now that T (x)m ̸= T (x)m+p. Then, since there are only two symbols in
Y , we have either T (x)m+2p = T (x)m or T (x)m+2p = T (x)m+p. The second case is identical to
the previously considered case and implies that T (x) will be periodic with period p. If T (x)m =
T (x)m+2p, then we can infer that T (x) is periodic with period 2p. Now we come to the second part
of the statement. If xj = 2 for some j in the periodic section of x, then we must have T (x)j = 0
(and therefore the p−periodicity of x implies T (x)j = 0 = T (x)j+p), so we obtain that T (x) is
periodic with period p. We may thus limit ourselves to considering periodic words in x containing
only 0’s and 1’s in the periodic section. We observe for l ≥ m that flipping the value of xl (either
from 0 to 1 or from 1 to 0) has the effect of flipping all values T (x)i for i ≥ l. We can thus start
with the basic word

0000 . . .
T−→ 0000 . . .

and add 1’s one-by-one until we re-create the original string x: we place 1’s in the proper position
starting from the top of the range we are interested in and work our way down. If there is an even
number of 1’s in each period of x, then T (x)m+p = T (x)m, whereas an odd number of 1’s in each
period implies T (x)m+2p = T (x)m ̸= T (x)m+p.

Remark. We have shown only that T (x) must be periodic with period either p or 2p. The minimal
period, however, can be any divisor of p (in the first case) or any divisor of 2p but not of p (in the
second case).

4.2. Existence and Doubling

This section is devoted to an analysis of columns in the two-dimensional case. We consider an
initial set {v1, v2, . . . , vk} ⊂ Z2

≥0 with the property that one of the vectors is (0, 1) and no other
vector lies on the y−axis. In this setting, the columns naturally extend in the direction of the
y−axis. We will say that the set has a column with period p over x ∈ N if, for y large enough,

(x, y) is in the Ulam set if and only if (x, y + p) is also in the set.
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We will usually talk about the period of a column and not necessarily the minimal period. More-
over, for fixed x ∈ N, the case where there are no (x, y) in the set for y beyond a certain threshold
will also be denoted a column (the empty column). We now show that columns extend all the
way to infinity: for every fixed x ∈ N, the behavior along the y−axis ultimately becomes periodic
with a period that is a power of 2.

period 2 and 4 period 8

Figure 11: The set arising from {(2, 0), (3, 0), (0, 1)}. This example shows columns of period
1, 2, 4 and 8, and we mark the first occurrences of periods 2,4, and 8.

Theorem 3 (Periodicity in the y−direction). Let {v1, v2, . . . , vk} ⊂ Z2
≥0 contain (0, 1) and no

other vector on the y−axis. Then there exists a function φ : N → N such that a nonempty column
extends over x if and only if there is an element (x, y) in the set with y ≥ φ(x). All columns
(including empty columns) are eventually periodic and the period is a power of 2. Moreover, the
period is either the period of a preceding column or twice the period of a preceding column.

Proof. The proof proceeds by induction. The set clearly contains no points (0, n) with n ≥ 2,
which means that an empty column extends over x = 0 with period 20. We now assume that
the statement is true up to some x− 1 and investigate the possible behavior of the set for lattice
points with first coordinate fixed to be x. We consider vectors of the form (x, y) for y much larger
than any of the previously obtained bounds φ(0),φ(1),φ(2), . . . ,φ(x− 1) and the y−values of any
possible initial vectors with x−coordinate x. We want to use these elements to show the existence
of an infinitely periodic column over x. To that end, we first completely ignore the existence of
the vector (0, 1) in the set and obtain a complete description without it; we then add (0, 1) and
explain its effect using Lemma 6. We begin by arguing that any vector that is the sum of two
elements from preceding columns with y−coordinates significantly larger than the cutoff function
φ has at least 2 representations. In this case, the periodicity of the preceding columns means
that once there is a single representation, a second representation of the point can also be found
easily. (By taking points significantly larger than the previous φ−bounds, we can work in the
regime where at least one summand comes from well within the periodic region.) At the same
time, 2max0≤ i≤ x− 1 φ(i) bounds the y−coordinate of any sum of two elements each with second
coordinate smaller than φ, then we can exclude this case by moving past that number.
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x
φ

Figure 12: A splitting into two regions.

This implies that for y sufficiently large, any hypothetical element (x, y) can, if it exists, be
uniquely written as

(x, y) = (x1, y1) + (x2, y2)

with y1 ≥ φ(x1) and y2 < φ(x2). This uniqueness, along with the periodicity of the column over
x1, then implies (denoting the period of the column over x1 by p) that

(x, y + p) = (x1, y1 + p) + (x2, y2) uniquely.

Likewise, the existence of a second representation for (x, y+p) would automatically create a second
representation for (x, y), which is a contradiction. This implies that the ‘pre-correction-column’
over x has the same period as that of a preceding column (which, by induction, is a power of
2). An application of Lemma 6 then accounts for the additional vector (0, 1) and shows that the
period may double, which would yield another power of 2.

Remarks.

1. We note that in the case where doubling does not occur, the minimal period of the post-
correction column may be a smaller power of 2 than the minimal period of the pre-correction
column (due to Lemma 6), but it still matches the minimal period of some previous column.

2. Another immediate consequence of this application of Lemma 6 is that the periodic portion
of any column that doubles from period 2n to period 2n+1 has the property that exactly one
of the points (x, y) and (x, y + 2n) is included in the Ulam set (for sufficiently large y).

3. A careful inspection of the proof of Theorem 3 allows us to derive that φ(n) ≤ c · 3n for
some constant c depending on the initial vectors. However, in practice φ seems to be much,
much smaller, and we consider it an interesting problem to gain a better understanding of
in which regions periodicity starts being enforced. (Numerically, it does seem that φ could
very well be linear or at most polynomial in most cases.)

4.3. Generalizations

One notes that the above discussion applies equally well to columns extending in the direction of
the x−axis arising due to the action of the initial vector (1, 0). This structure result thus applies
to sets of the form {(1, 0), (0, 1), v3, . . . , vk} ⊂ Z2

≥0 where all the vectors v3, . . . , vk have both
coordinates strictly positive. Thus, there may be regions where all elements of the Ulam set are
periodic in both the x− and y−directions (see Figure 13). If {v1, v2, . . . , vk} ⊂ Z2

≥0 contains (0, a)
(where a is any positive integer) but no other vector on the y−axis, then the argument above still
applies with the main difference being that columns are now periodic with periods a · 2n: if we
split the y−coordinates with respect to their residue class modulo a, the proof above essentially
applies verbatim. We also remark that the argument extends easily to extremal directions in
high-dimensional cases, and we leave the details to the interested reader.
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? columns

columns
?

lattice

Figure 13: Regions bounded by y = φ(x) and x = φ(y) and two possible types of behavior.
It is also conceivable for the curves to intersect multiple times (not shown here).

5. Open Problems

It is clear that Ulam sets are incredibly rich in structure and that we have barely managed to
scrape the surface. Among the many natural questions, we explicitly point out a few that seem
particularly promising for future investigation.

5.1. Higher-dimensional Examples

We have been almost exclusively concerned with examples in R2
≥0 and the example

{(1, 0, 0), (0, 1, 0), (0, 0, 1)} ⊂ R3
≥0.

We emphasize that this three-dimensional example provides the universal dynamics for ‘generic’
sets of three elements in fairly general sets A (including the generic case of Ulam-type sequences
in R≥0 with an initial set of three elements that are linearly independent over Z). This set seems
to have an extraordinary amount of structure and symmetry and should be of great interest.

5.2. Lattice Structures

One natural question is how unavoidable lattice structures are: if the initial set {v1, . . . , vk} ⊂ Z2
≥0

has exactly one vector of the form (x, 0) and exactly one vector of the form (0, y), must the resulting
set ultimately exhibit lattice-type structure for sufficiently large x and y? Conversely, does the
existence of aperiodic behavior (for instance, the classical Ulam sequence) on one axis always
preclude regular column structures in that direction?

5.3. Classical Ulam Sequence and (0, 1)

Clearly, one of the most striking examples is given by {(1, 0), (2, 0), (0, 1)}. As already discussed,
we recover the classical Ulam sequence on the x−axis, then we see fairly intricate behavior close
to the x−axis and occasional nonempty vertical columns. We observe that in the first 100.000
elements of this sequence, no column seems to have period larger than 2. We also observe that
all elements in the sequence with x−coordinate fixed (x ≥ 2) have their second coordinate either
always even or always odd. If true, this would imply that all nonempty columns are of period
2. (See Section 4.2.) We also observe that the Fourier frequency phenomenon from [15] seems to
appear if we look at points for which the y−coordinate is fixed. It would be quite fascinating if
the dynamical behavior of this Ulam set could shed some light on the classical Ulam sequence in
one dimension.
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5.4. Columns and Their Properties

Figure 11 shows the first few points in the evolution of {(2, 0), (3, 0), (0, 1)}. We observe doubling of
the column period three times in the elements we have calculated so far. While we have shown that
columns (empty or nonempty) eventually arise, we do not understand columns very well: when
are there infinitely many nonempty columns? Do they generically double their period (as observed
in Figure 11), or do they not (which seems to be the case for the extended Ulam sequence)?

5.5. Classification

A complete classification of the behavior of {(1, 0), (0, 1), (m,n)} for the case m,n ∈ Z≥1 seems
within reach (and, using linear invariance, naturally includes many other initial conditions as well).
(Note added in revision: this question has in the meanwhile been completely resolved by Hinman,
Kuca, Schlesinger & Sheydvasser [7].) Here, we sketch the general types of structures that arise
(excluding some ‘edge cases’ where (m,n) is small). If (m,n) is included in the lattice generated
by (1, 0) and (0, 1), then the Ulam sequence is degenerate: the new vector does not contribute
anything and we obtain the lattice generated by {(1, 0), (0, 1)} alone.

1. If both coordinates of (m,n) are even, we observe that the resulting set consists of a series of
repeating, equally spaced L−shaped figures parallel to the coordinate axes. More specifically,
all elements of the L’s have both coordinates odd, and each L consists of m/2 horizontal
columns of period 2 and n/2 vertical columns of period 2, with all columns spaced 2 apart.
Interestingly, this means that many of the columns exhibit periodic behavior for the intervals
before they begin exhibiting the pattern that continues to infinity. It also shows that the
function φ (such that y ≥ φ(x) forces periodicity) can grow linearly.

Figure 14: The set arising from {(1, 0), (0, 1), (6, 4)} with L−shapes. Like in Figure 7, the
interior region splits into two regions each containing a lattice.

2. If m is even and n > 3 is odd, then the set is the usual lattice coming from {(1, 0), (0, 1)}
for all x /∈ {m,m+ 1}. Clearly, at x = m, we have the extra point (m,n), and the column
(otherwise of period 2) at x = m + 1 is truncated at y = n because of the extra sums
generated by the interaction of (m,n) and the column over x = 1. Then, for larger values of
x, the structure returns to the same lattice as before because for (m,n) to interfere, it would
have to be summed with a vector with odd x−coordinate and even y−coordinate, but these
vectors only exist at x = 1, which we have already discussed.

3. If m is even and n = 3, then the set is the usual lattice created by {(1, 0), (0, 1)} set for all
x < m. There is no element (x, y) at x = m for y > 3. For x > m, the normal lattice is
shifted to the right: all subsequent elements have even x−coordinate and odd y−coordinate.
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Figure 15: The graphs arising from {(1, 0), (0, 1), (10, 9)}, with the lattice temporarily dis-
rupted but ultimately unchanged lattice (left), and {(1, 0), (0, 1), (10, 3)}, with the lattice
shifted (right).

5.6. More Initial Conditions

Our active investigation was mainly restricted to initial sets containing three vectors in Z2
≥0. The

investigation of larger sets of initial vectors seems like a daunting but also very promising avenue
for further research.

5.7. Ulam’s Variant

We recall that Ulam originally proposed another variant on the hexagonal lattice based on the
idea of ‘including a new point if it forms with two previously defined points the third vertex of a
triangle, but only doing it in the case where it is uniquely so related to a previous pair’. We have
not investigated this more geometrical variant.

5.8. Other Variants

It is clear that Ulam sets can be considered on other algebraic structures equipped with a binary
operation and some notion of ‘size’ (though, as observed above in the case of Rn

≥0, the dependence
on the notion of size is rather weak, and the sets are fairly universal).

Multiplication Over the Complex Numbers. One natural example that comes to mind is
C equipped with multiplication for elements with norm larger than 1. The introduction of polar
coordinates shows that

(r1!φ1) (r2!φ2) = r1r2!(φ1 + φ2),

which allows us to reduce to transform the problem to R>1 × T. Moreover, as above, we can
replace multiplication by addition via the logarithm. For an initial set {v1, . . . , vk} ⊂ R>0 × T, we
can use as our notion of length f(x, y) = x.

Ulam Sets in Z≥0 × Zn. One particularly natural setting, inspired by multiplication in C, is
that of Z≥0 × Zn.

Figure 16: The set arising from {(1, 3), (3, 4)} ⊂ Z≥0 × Z6. We observe empirically that the
y−coordinates 0 and 2 seem not to appear.
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For the Ulam set to be well-defined, it is important that all initial elements (x, y) have x > 0. Note
also that not all Ulam sets defined this way contain an infinite number of elements (for example,
initial vectors given by {(1, 0), (1, 1), (1, 2)} ⊂ Z≥0 × Z3), and deriving a condition to determine
which initial sets exhibit this property is an interesting question for future investigation.

Figure 17: The set arising from {(1, 0), (1, 1)} ⊂ Z≥0 × Z11.
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