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Abstract

In this paper, we define the k-adjacency-Pell-Hurwitz numbers by using the Hurwitz
matrix of order 4m which is obtained by the aid of the characteristic polynomial of
the adjacency-Pell sequence. Firstly, we give relationships between the k-adjacency-
Pell-Hurwitz numbers and the generating matrices for these sequences. Further, we
obtain the Binet formula for the (2m — 1)-adjacency-Pell-Hurwitz numbers. Also,
we derive relationships between the k-adjacency-Pell-Hurwitz numbers and perma-
nents and determinants of certain matrices. Finally, we give the combinatorial and
exponential representations of the k-adjacency-Pell-Hurwitz numbers.

1. Introduction
It is well-known that the Pell sequence is defined by the following equation:
PnJrl =2P, + P,

for n > 0, where Py =0, P, = 1.
The adjacency-type sequence is defined in [3] by an mn-order recurrence equation:

n,m n,m

_ n,m
mnm-{-k - mnm—n—&-l—&-k + Ly

n,m _ ()7 xn,m _ 17 xn,m _ _

nﬁm — p—
for k 2 17 where Ty = = Tomentl = nm—n+2 T nm—n+3 T

e =0 and n,m > 2.
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Karaduman and Deveci defined the adjacency-Pell sequence as follows:
A, (MR +E) =20 (M0 —n 4+ k4 1) + am,p (k)

for the integers k > 1, m > 2 and n > 4, with initial constants a,,, (1) = --- =
U, (MmN — 1) =0 and ap, n, (Mmn) =1 [5].
Consider the k-step recurrence sequence:

Gtk = CoQp + C10p41 + -+ + Ck—10n4k—1

where c¢p,cq1,...,c;—1 are real constants. Earlier, Kalman [8] derived a number
of closed-form formulas for some generalized sequences via the companion matrix
method as follows:

If the companion matrix A is defined by

o 1 0 --- 0 0
o o0 1 --- 0 0
0O 0 0 . 0 0
A= a0 = .
0 0 O 0 1
| Co C1 C2 Ck—2 Ck—1 | )
then
ao Qnp,
ay Qp+41
A" =
Aj—1 Ap+k—1
forn > 0.

Consider f a real polynomial of degree n given by

f(z) =apz" + a1z '+ +a,_ 17 +a,.
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Hurwitz [7] introduced the matrix H,, = [h; ;] associated to f as follows:

nxn
fa, a, a, -~ o - 0 0 0 T
a’O a2 a4
0 a, a,
a, a, 0
Hy = 0 a a,
a, a, ., 0
0 a, . a,
: : : a, . a,, O
Lo 0 0 -+ - - a _, a,, a, |

Several suthors have used homogeneous linear recurrance relations to deduce mis-
cellaneous properties for a plethora of sequences; see for example [4, 6, 9, 10, 13,
14, 15, 16, 17, 18, 19]. In particular, Deveci and Shannon defined the adjacency-
type numbers and examined their structural properties [3]. The adjacency-Pell
numbers, their miscellaneous properties and applications in groups were studied by
Deveci and Karaduman in [5]. In the present paper, we define the k-adjacency-
Pell-Hurwitz numbers by a recurrence relations of order 4m, (m > 2) and give
their generating matrices, Binet formulas, permanental, determinantal, combina-
torial, exponential representations, and we derive a formula for the sums of the
k-adjacency-Pell-Hurwitz numbers.

2. The Main Results

For m > 2 and n = 4 it is clear that the characteristic polynomial of the adjacency-
Pell sequence is

p(x) = '™ — 2243 1, (2.1)
Then by (2.1), we see that the Hurwitz matrix Hap, = [h ;]
polynomial p is

Amcdm associated to a

2 ifi=2k—1land j=k+1forl<k<2m,
(hi ] _ -1 ifi=2kand j=k+2mfor 1 <k <2m,
bJidmxdm 1 ifi=2kand j=kforl1 <k<2
0 otherwise.

We define the k-adjacency-Pell-Hurwitz numbers by using the Hurwitz matrix

Hy,, as shown:

k, k, k,
ximﬁl = 72xé(lm”—L)2k+1+u + xflmnz)Qk—2+u (22)
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for the integers u > 1, m > 2 and 1 < k < 2m — 1, with initial constants xgk’m) =
C= xiiﬁ)l =0 and xi];’lm) = 1. Here xfkm) is the ith term of the kth sequence

according to the constant m.
By (2.2), we may write

[—2 00 1 0 0 0]

1 00 - 0 0 0 0

0 10 0 - 0 0 0

0 01 0 0 0 0

1

MP=[mE] =19 00 0 1 0 - o0

0 00 0 0 1 0

L 0 00 0 0 0 1|

M,Q):{m(%)]
“J | gmxdam
(2A +2)th
|

000 - 0 —200 1 0 0 0 0 07
100 0 00
010 00
001 0 00
000 1 0 00
00 0 1.0 0 0 00
1 0 0 0 00
00 0 0 1 0 - 00
00 0 0 1 0 00
00 0 0 0 10
L0 0 0 0 0 0 1|
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for2<A<2m—2 and

M7(712m71) — |:m§)2jm—1)

:|4m><4m

0 0
1 0
0 1
0 0
0

| 0

-2 0
0 1
0 O

o O oo

oo o

o

We call matrix M,(r? ) the a-adjacency-Pell-Hurwitz matrix of size 4m x 4m.

By an inductive argument on 7, we obtain

roo.(1m) (1,m)
Lam4r 4m+47-3
(1,m) (1,m)
‘T4m+‘r71 m4m+‘r74
Sm) o (Lm)
Adm+17—2 Am~+1—5
Sm)  (Lm)
T 4dm+71-3 4m—+71—6
() -
0 0
0 0
0 0
for 7 > 1,
i (A,m)
x4m+7‘
(A,m)
4dm+T1—1
(\;m)
Lam+r—2
M(’\)) = om
( m 'I4m+7—2A
A,m
Lam+r—22—1
i 0

(1,m)

(1,m)

Tppir—o Tamyr—1 0 0
l‘(l’m) x(l’m) 0 0
é(linJr)‘rfB El{nJrier
7m 7m
T S 0
7m 7m
Typir—s5 Tamyr—a 0 0
0 0 1 0
0 0 0 1
0 0 0
0 0 0
(A,m) (A,m)
x4m+7+1 x4m+‘r+2)\—2
(A,m) A,m
Lom+r Lymtr+22—3
(A,m) A,m
Lam+r—1 Lomtrar—a
(Am) (Am)
x4m+7’—2>\+1 ‘T4m+‘r—2
(Asm) (Am)
Lam+r—2x Lhm4r-3
0 0
0 0

S oo O O O

o

E

S oo O O O

S e
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for 7 > 1and 2 < A < 2m —2, where E is the following 4m x (4m — 2\ 4+ 1) matrix:

r (A\,m) (Am) (Am) 7
1 GO S . OO
)m 7m 7m
x4m+'r—4 'r4m+7'—3 x4m+7’—2 0 0 0 T 0
: : : o o o0 --- 0
(A,m) (Am) (A,m)
Tymir—or-3 Tamir-o2x—2 Lamyr-on-1 0 0 0 -0
m A,m A,m 0 0 0 0
E=| Tymyr—ar—a Tam+r—2x-3 Tamtr—2x—2
1 0 o --- 0
0 0 0 0 1 o --- 0
0 0 0 0 0 1 0
L 0 0 0 0 0 0 1
and
2m—1
(2227 77) =
[ (2m—1,m) (2m—1,m) (2m—1,m) (2m—1,m) (2m—1,m) (2m—1,m) T
x4m+‘r x4m+‘r+1 e x8m+‘r—4 x4m+‘r—3 x4m+‘r—2 x4m+‘r—1
(2m—1,m) (2m—1,m) (2m—1,m) (2m—1,m) (2m—1,m) (2m—1,m)
1.4m+‘r71 x4m+‘r e x8m+‘r75 x4m+‘r74 $4m+‘r73 x4m+‘r72
(2m—1,m) (2m—1,m) (2m—1,m) (2m—1,m) (2m—1,m) (2m—1,m)
x4m+‘r—2 I4m+‘r—1 e x8m+‘r—6 I4m+‘r—5 x4m+‘r—4 x4m+‘r—3
(2m—1,m) (2m—1,m) (2m—1,m) (2m—1,m) (2m—1,m) (2m—1,m)
l"r 3 T+4 1’4m+‘r71 Tr $T+1 x'r+2
(2m—1,m) (2m—1,m) (2m—1,m) (2m—1,m) (2m—1,m) (2m—1,m)
T+2 T+3 x4m+‘r—2 xT—l Tr T+1
(2m—1,m) (2m—1,m) (2m—1,m) (2m—1,m) (2m—1,m) (2m—1,m)
L xT-‘rl xT-‘rQ e x47n+7’—3 Tr_o Tr_q LT p

t
for 7 > 3. Let m > 2 and let S%™ = 3> 2"™ such that 1 < k < 2m — 1. We
i=1

introduce matrix H (k,m) by

1 0 0 0
1
k
H(k,m)=| 0 M
0

for 1 < k < 2m — 1. Note that H (k,m) is a square matrix of size (4m + 1) x
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(4m + 1), and it can be shown by induction that:

i 1 0 0 e 0]
Sy i
57(-#47?—2
S‘r-&l4m—3 -
(H(1,m))" = Siiznn)l% (M,%)) forT>1,
0
0
L 0 -
[ 1 0 0 e 0]
A,m
S%#n}_l
ST*|’74721172
(HAm) =] g&m = (M,gj))T for7>1and 2 <\ <2m—2
0
0
- O -
and
[ 1 0 0 0
2m—1,m
S{-;Aml—l ;
ST+4m—2
(H(2m—1,m))" = (Méfm_l)>7 (r>3).
2m—1,m
S
STJrl 7
I S‘(er—l,m) |

Lemma 2.1. The equation 2*™ + 223 — 1 = 0 does not have multiple roots for any
integer m > 2.

Proof. Let q(x) = 2*™ + 223 — 1 and suppose v is a multiple root of ¢ (z). Since
q(0) #£ 0, it follows that v # 0. Then, the hypotheses ¢ (v) = 0 and ¢’ (v) = 0 imply
pim=3 = —% and v3 = 43ﬁ3, respectively. It follows that v® > 0 and v*™=3 < 0,
inequalities that cannot hold simultaneously for m > 2. This is a contradiction
resulting from our assumption that v is a multiple root, which concludes the proof

of the lemma. O
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Let ¢ (v) be the characteristic polynomial of matrix MEmY, Then, ¢ (v) =
v¥™ 1203 — 1, a clear fact because M2™ ™Y is a companion matrix.

Let v1, va, .. .,u4m be the eigenvalues of M,S?m_l). By Lemma 2.1, we know that
these are 4m distinct numbers. Let V,2™ ™ be the following Vandermonde matrix:
(v1)4m71 (1)2)4’"7‘71 .. ('U4m)4m 1
(U1)4m—2 (U2)4m—2 o (vm)4m—2
Vrgm—l) _
U1 V2 V4m,
1 1 . 1

Denote by 1A (i,4) the matrix obtained from Vn(fm_l) by replacing the jth
column by

,UT+4m7i
1
,U‘r+4m7i
2m—1) (s \ _ 2
Cr(n ) (%]) -
T+4m—i
Uam

We can give the generalized Binet formula for the (2m — 1)-adjacency-Pell-Hurwitz
numbers with the following theorem.

Theorem 2.1. For the matriz ( 753’"*”) = [mg-mfl’r)} , for >3,
> 4dmx4m
. d t‘/v(27n71) .7 .
mEQJ b - 2 (2m7(1l) /) (2.3)
det Vi,

Proof. Consider the integer 7 > 3 to be fixed. Since vy, vs, ..., vy, are distinct, the
matrix MT(anfl) is diagonalizable. Then, M,(,fm’l)vfﬁfm*” = V#?’”*”Dm, where
D,, = (v1,v2,...,V4m,). Since det V,Sm‘” # 0, we can write

(Vn(PLQm—l))fl Mgm_l)v;gm—l) = D,,.
Then, the matrix M,(,%m_l) is similar to D,,, and so
(MT(an—l))T Vn(fm_l) _ V,,Sfm_l) (Dm)T ]

We can now easily establish the following linear system of equations:

m§,21m—1,7') (U1)4m_1 + mfgn—l,‘r) (U1)4m_2 NI ml(724rzl—1,T) _ (Ul)n+4m—z:
iy T () m T () e m T = ()

m T () ™ m G () T = (o)

The numbers in formula (2.3) are solutions of the last linear system. O
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Theorem 2.1 gives immediately:

Corollary 2.2. Let x&zm*l’m) be the Tth element of the (2m — 1)-adjacency-Pell-
Hurwitz sequence, then

LCmtmy _ det V™D (dmy4m)  det V™Y (4m — 1,4m — 1)

det Vﬁmfl) det Vn(fm*l)
Cdet VeV (4m — 2,4m — 2)
det V2D '

Now we consider the permanental representations of the k-adjacency-Pell-Hurwitz
numbers.

u

Definition 2.1. Let M = [m; ;] be u x v real matriz and let r*,r?,....,r" and

c', 2, ..., c be respectively, the row and column vectors of M. Ifr® contains exactly
two non-zero entries, then M is contractible on row « . Similarly, M is contractible

on column B provided ¢® contains exactly two non-zero entries.

Let x1,x9,...,x, be row vectors of the matrix M and let M be contractible in
the o' column with m; o # 0,m; 4 # 0 and i # j. Then the (u—1) x (v—1)
matrix M;j.. obtained from M by replacing the ith row with M4 o + My aT; and
deleting the j*® row and the o' column is called the contraction in the at® column
relative to the i*" row and the j** row.

The permanent of a u-square matrix A = [a; ;] is defined by

per(A) = Z Hai,o(i)v
o€S, i=1

where the summation extends over all permutations o of the symmetric group S,,.
In [1], Brualdi and Gibson showed that per (A) = per (B) if A is a real matrix of
order v > 1 and B is a contraction of A.

Let n > 4m and let X (k,(m,n)) = {:c;nj”k], 1<k<2m-—1,bethenxn

super-diagonal matrices defined using the following cases:
l. i=~vand j=v+2k—2for 1 <~y <n-2k—-1,
2.i=v,j=v+2k+1for1<y<n—-2k—1, and j=~v—1for2<~vy <mn,
3. otherwise.
-2 if case (1) applies
if case (2) applies

0 if case(3) applies
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where m is as in the definition of the k-adjacency-Pell-Hurwitz numbers. Then we
have the following theorem.

Theorem 2.3. For 1 <k <2m — 1, we have
per(X (k, (m,n))) = ),

Proof. Consider the matrix X (1, (m,n)). We will use induction on n. Assume the
equation holds for n > 4m. Then we must show that the equation per(X (1, (m,n))) =
acgnni)n holds for n+ 1. If we expand per(X (1, (m,n))) by the Laplace expansion of

permanent according to the first row, then we obtain

per(X (1,(m,n+1))) = —2per(X (1, (m,n))) + per(X (1, (m,n — 3))).

Since per(X (1, (m,n — 3))) = x&ﬁ%_g, we obtain

per(X (1, (m,n +1))) = =224,7%) + ¢, 5 = w4
The proofs for 2 < k < 2m — 1 are similar to the above and are omitted. O

IN

Let n > 4m. Now we define the n x n matrices Y (k, (m,n)) = {ylmjnk} 1<k
2m — 1, using the following cases:

1. i=dand j=0+2k—2for 1 <§<n-—2k—-1,
2.i=0,7j=04+2k—-2for1<0<n—-2k—1, andj=6—1for2<6 <mn,
3. otherwise,
With these three cases in mind we now define the desired matrix:
-2 if case (1) applies
if case (2) applies
0 if case(3) applies

where m is as in the definition of the k-adjacency-Pell-Hurwitz numbers. In the
next theorem we obtain another permanental representation.

Theorem 2.4. For1 <k <2m — 1, we have
per(Y (k, (m,n))) =z
9 9 4m—2k—2+n"

Proof. Consider matrices Y (A, (m,n)) = [yzlj’"’A}, 2 <A< 2m—2. We will use

induction on n. Suppose that the equation holds for n > 4m. Then we must show
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that the equation holds for n + 1. If we expand the perY (A, (m,n)) by the Laplace
expansion of permanent according to the first row, then we obtain

per(Y()\, (ma n+ 1))) = *QPGT(Y(A, (m’ n—2XA+ 2)))+per(Y()\, (ma n—2\— 1)))

(A,m) (A,m) (A,m)

= 2T ixin T Tim—trtn—3 = Tom—2xr+n—1

for 2 < XA < 2m — 2. Thus, the conclusion is obtained.
The proofs for the matrices Y (1, (m,n)) and Y (2m — 1, (m,n)) are similar. O

We now consider the sums of the k-adjacency-Pell-Hurwitz numbers by using
their permanental representations. Let n > 4m and suppose that Z (1, (m,n)),
Z (A, (myn)), (2<A<2m—2) and Z (2m — 1, (m,n)) are the n x n matrices de-
fined by

(n—4)th
|
1 - 1 0 e 0
1
Z(1,(m,n)) =0 Y (1, (m,n—1)) (2.4)
6 ’
(n—A—4)th
1
1 1 0 0
1
Z(\ (myn)) =] 0 Y (A, (m,n —1)) (2.5)
0
and
(n —6)th
!
1 1 0 0
1
Z(2m—1,(m,n)) = 0 Y (2m —1,(m,n — 1)) (2.6)
0

Then we have the following theorem.
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Theorem 2.5. For 1 < k < 2m — 1, let the n x n matrices Z (k,(m,n)) be as in
(2.4),(2.5) and (2.6). Then

n+4m—1

per(Z (1,(m,n))) = Z 2

n+4m—2\—3
per(Z(\, (m,n))) = Y 2™ (2<A<2m-2),
e=1

and

n—1
per(Z (2m — 1, (m,n))) = Z gm=1m)
e=1

Proof. Consider the matrices Z(2m — 1, (m, n)). Expanding per(Z(2m — 1, (m,n)))
with respect to the first row, we have

per(Z (2m —1,(m,n))) = per(Z (2m — 1, (m,n — 1)))+per(Y (2m — 1, (m,n — 1))).

By Theorem 2.3 and the inductive argument on n, we easily complete the proof.
The proofs for 1 < k < 2m — 2 are similar to the above and are omitted. O

A matrix M is called convertible if there is an n x n (1, —1)-matrix K such that
perM = det (M o K), where M o K denotes the Hadamard product of M and K.
Let n > 4m and let W be the n x n matrix defined by

1 1 1 - 11
-1 1 1 - 1 1
1 -1 1 - 1 1
W= :
1 1 -1 1 1
1 1 1 -1 1|

It is easy to see that
per(X (k, (m,n)) = det (X (k, (m,n)) o W)),
per(Y (k, (m,n)) = det (Y (k, (m,n)) o W))

and
per(Z (k,(m,n)) = det (Z (k,(m,n)) o W))

forn>4mand 1 <k <2m — 1.
Consider the n x n matrix

C=C(c1,¢2,...,¢p) =
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For detailed information about the companion matrix, see [11, p.69] and [12
p.284].

Theorem 2.6. (Chen and Louck [2]).The (i,j) entry ng;) (c1,¢2,...,¢n) in the

matriz C7 (¢1,ca, ..., cn) 18 given by the following formula:
() Attt ittt
¢, (c1y60,...,0n) = X et
1, (17 2 ) n) y tZt : t1+t2+"'+tn t17~-~;tn 1 n
1,025--5ln

(2.7)
where the summation is over nonnegative integers satisfying t1 + 2to + - - - + nt, =
T—14 7, (tijtt”) = w is a multinomial coefficient, and the coefficients
in (2.7) are defined to be 1 if T =1 — j.

Now we give the combinatorial representations for the (2m — 1)-adjacency-Pell-
Hurwitz sequence by the following Corollary.

Corollary 2.7. Let 2PN e the Tth element of the (2m — 1)-adjacency-Pell-

Hurwitz sequence such that T > 3 and m > 2. Then

x(?m—l,m) — Z tam—2 + tam—1 + tam % t1+ -+ tam (_2)t4m73
4 t1+t2++t4m t15-~-at4’rn

(tl ,tg...,t4m)

tmf tm t tm o
Z am—1 + la X<1+ +4>(_2)t4m3

(totany 1 T2 tam trsee o tam

Z tam % ty+ -+ tam (_2)15477173 ,
t1+to+ -+ tam ti,..

Lt
(t1,t2.. tam) ) vAm

where the summation is over nonnegative integers satisfying t1+2to+- - -+(4dm) tam, =
T.

Proof. In Theorem 2.6, if we choose n = 4m and i = j such that 4dm—2 < i,j < 4m,
then the proof follows from (2). O

Now we give the generating function of the k-adjacency-Pell-Hurwitz numbers.

Let

m k,m k,m k,m k,m u km) wu
g(kl’ ) ( ) ( ) =+ xl(lm+)1y + xé(lm-&-)Zy +o At xé(lm—&-)u—ly + xé(lm-l—Ly + + -

Then

— k,m — k,m km
2y2k 1g(k,m) (y) :xim )2y2k 1 +9Uz(1m+)1292k +xim+)22 2k+1

bl oyl g g2kt

and
y2k+2g(k,m) ( i’:ﬁm)y%ﬂ + x(k m) 2k+3 + x(k m)  2k44

y) == oY
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(k,m) 2k+24u (k,m)  2k+424u+t1
ot a1y + Tamu¥ teee

Thus, we have
m — m m k,m m—
g®m () 4 2R gk () — 2R glkm) () — g{om)dm—1,

By the definition of the k-adjacency-Pell-Hurwitz numbers, we obtain

4m—1

(ksm) (1)) = 4
g y) = 1+ 2y2h—1 _ y2kt2’

where 1 <k <2m —1 and 0 < y?F+2 — 2y2k—1 < 1.

Now we give an exponential representation for the k-adjacency-Pell-Hurwitz
numbers.

Theorem 2.8. For 1 <k <2m —1 and 0 < y***2 —2y2¢—1 < 1, the k-adjacency-
Pell-Hurwitz numbers have the following exponential representation:

(k,m) _ ,4m—1 = (kail)i 3 9\
g B (y) =y texp D= 2)" |
i=1

Proof. Since

Am—1
In gk (y) =In 1+ 2y2yk71 — y2kt2 =Iny*™"! —In (1 + 27— y2k+2)
and
In (1 + 2y2k—1 _ y2k+2) - I (1 _ (y2k+2 _ 2y2k—1))
1
_ [(ka—l) (y3 _ 2) + 5 (ka_l)Z (y3 - 2)2
1 i i
et L0 (-
0o 9ok—1)%
= —<Z K ; : (y3—2)z>7
=1
we have
0 ( ok—1)\%
(kym) (21 _ Ty gydm—1 _ 1) 5 o\i
Ing™™™ (y) —Iny Z — (2

Therefore, we obtain
i

S 2k—1\" X
I U

The last formula implies the one in the text of the theorem, thus concluding the
proof. O
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