

THE ADJACENCY-PELL-HURWITZ NUMBERS

Josh Hiller

Department of Mathematics and Computer Science, Adelpi University, New York johiller@adelphi.edu

Yeşim Aküzüm

Faculty of Science and Letters, Kafkas University, Turkey yesim_036@hotmail.com

Ömür Deveci

Faculty of Science and Letters, Kafkas University, Turkey yesim_036@hotmail.com

Received: 9/25/17, Revised: 8/22/18, Accepted: 10/11/18, Published: 10/26/18

Abstract

In this paper, we define the k-adjacency-Pell-Hurwitz numbers by using the Hurwitz matrix of order 4m which is obtained by the aid of the characteristic polynomial of the adjacency-Pell sequence. Firstly, we give relationships between the k-adjacency-Pell-Hurwitz numbers and the generating matrices for these sequences. Further, we obtain the Binet formula for the (2m-1)-adjacency-Pell-Hurwitz numbers. Also, we derive relationships between the k-adjacency-Pell-Hurwitz numbers and permanents and determinants of certain matrices. Finally, we give the combinatorial and exponential representations of the k-adjacency-Pell-Hurwitz numbers.

1. Introduction

It is well-known that the Pell sequence is defined by the following equation:

$$P_{n+1} = 2P_n + P_{n-1}$$

for n > 0, where $P_0 = 0$, $P_1 = 1$.

The adjacency-type sequence is defined in [3] by an mn-order recurrence equation:

$$x_{nm+k}^{n,m} = x_{nm-n+1+k}^{n,m} + x_k^{n,m}$$

for $k \ge 1$, where $x_1^{n,m} = \cdots = x_{nm-n+1}^{n,m} = 0$, $x_{nm-n+2}^{n,m} = 1$, $x_{nm-n+3}^{n,m} = \cdots = x_{nm}^{n,m} = 0$ and $n, m \ge 2$.

Karaduman and Deveci defined the adjacency-Pell sequence as follows:

$$a_{m,n}(mn+k) = 2a_{m,n}(mn-n+k+1) + a_{m,n}(k)$$

for the integers $k \geq 1$, $m \geq 2$ and $n \geq 4$, with initial constants $a_{m,n}(1) = \cdots = a_{m,n}(mn-1) = 0$ and $a_{m,n}(mn) = 1$ [5].

Consider the k-step recurrence sequence:

$$a_{n+k} = c_0 a_n + c_1 a_{n+1} + \dots + c_{k-1} a_{n+k-1}$$

where $c_0, c_1, \ldots, c_{k-1}$ are real constants. Earlier, Kalman [8] derived a number of closed-form formulas for some generalized sequences via the companion matrix method as follows:

If the companion matrix A is defined by

$$A = [a_{i,j}]_{k \times k} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ 0 & 0 & 0 & \ddots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 1 \\ c_0 & c_1 & c_2 & & c_{k-2} & c_{k-1} \end{bmatrix}.$$

then

$$A^n \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_{k-1} \end{bmatrix} = \begin{bmatrix} a_n \\ a_{n+1} \\ \vdots \\ a_{n+k-1} \end{bmatrix}$$

for $n \geqslant 0$.

Consider f a real polynomial of degree n given by

$$f(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n.$$

Hurwitz [7] introduced the matrix $H_n = [h_{i,j}]_{n \times n}$ associated to f as follows:

7] introduced the matrix
$$H_n = [h_{i,j}]_{n \times n}$$
 associated to f as fold
$$H_n = \begin{bmatrix} a_1 & a_3 & a_5 & \cdots & \cdots & 0 & 0 & 0 \\ a_0 & a_2 & a_4 & & & \vdots & \vdots & \vdots \\ 0 & a_1 & a_3 & & \vdots & \vdots & \vdots & \vdots \\ \vdots & a_0 & a_2 & \ddots & & 0 & \vdots & \vdots \\ \vdots & 0 & a_1 & & \ddots & a_n & \vdots & \vdots \\ \vdots & \vdots & a_0 & & & \ddots & a_{n-1} & 0 & \vdots \\ \vdots & \vdots & 0 & & & a_{n-2} & a_n & \vdots \\ \vdots & \vdots & \vdots & & & & a_{n-3} & a_{n-1} & 0 \\ \vdots & \vdots & \vdots & & & & a_{n-4} & a_{n-2} & a_n \end{bmatrix}$$
suthors have used homogeneous linear recurrance relations to

Several suthors have used homogeneous linear recurrance relations to deduce miscellaneous properties for a plethora of sequences; see for example [4, 6, 9, 10, 13, 14, 15, 16, 17, 18, 19]. In particular, Deveci and Shannon defined the adjacencytype numbers and examined their structural properties [3]. The adjacency-Pell numbers, their miscellaneous properties and applications in groups were studied by Deveci and Karaduman in [5]. In the present paper, we define the k-adjacency-Pell-Hurwitz numbers by a recurrence relations of order 4m, $(m \ge 2)$ and give their generating matrices, Binet formulas, permanental, determinantal, combinatorial, exponential representations, and we derive a formula for the sums of the k-adjacency-Pell-Hurwitz numbers.

2. The Main Results

For $m \geq 2$ and n = 4 it is clear that the characteristic polynomial of the adjacency-Pell sequence is

$$p(x) = x^{4m} - 2x^{4m-3} - 1. (2.1)$$

Then by (2.1), we see that the Hurwitz matrix $H_{4m} = [h_{i,j}]_{4m \times 4m}$ associated to a polynomial p is

$$[h_{i,j}]_{4m\times 4m} = \begin{cases} 2 & \text{if } i=2k-1 \text{ and } j=k+1 \text{ for } 1 \leq k \leq 2m, \\ -1 & \text{if } i=2k \text{ and } j=k+2m \text{ for } 1 \leq k \leq 2m, \\ 1 & \text{if } i=2k \text{ and } j=k \text{ for } 1 \leq k \leq 2 \\ 0 & \text{otherwise.} \end{cases}$$

We define the k-adjacency-Pell-Hurwitz numbers by using the Hurwitz matrix H_{4m} as shown:

$$x_{4m+u}^{(k,m)} = -2x_{4m-2k+1+u}^{(k,m)} + x_{4m-2k-2+u}^{(k,m)} \tag{2.2} \label{eq:2.2}$$

for the integers $u \ge 1$, $m \ge 2$ and $1 \le k \le 2m-1$, with initial constants $x_1^{(k,m)} = \cdots = x_{4m-1}^{(k,m)} = 0$ and $x_{4m}^{(k,m)} = 1$. Here $x_i^{(k,m)}$ is the ith term of the kth sequence according to the constant m.

By (2.2), we may write

$$M_m^{(1)} = \left[m_{i,j}^{(1)} \right]_{4m \times 4m} = \begin{bmatrix} -2 & 0 & 0 & 1 & 0 & \cdots & 0 & 0 \\ 1 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 1 & 0 \end{bmatrix},$$

$$M_m^{(\lambda)} = \left[m_{i,j}^{(\lambda)} \right]_{4m \times 4m} =$$

	$(2\lambda+2)\mathrm{th}$													
								\downarrow						
[0	0	0	• • •	0	-2	0	0	1	0	0	0	• • •	0	0]
1	0	0	0										0	0
0	1	0											0	0
0	0	1	0										0	0
0	0	0	1	0				• • •					0	0
:	:		٠	٠									:	:
					_									.
:	:			•	••		:						:	:
0	0		• • •		0	1	0	0	0		• • •		0	0
							1	0	0	0	• • •		0	0
0	0			• • •			0	0	1	0	• • •		0	0
0	0			• • •				0	0	1	0	• • •	0	0
:	:									٠.	٠.			:
:	:										٠.	٠.		:
0	0								0	0		0	1	0
	0				• • •				0	0		0	0	1]

INTEGERS: 18 (2018)

for $2 \le \lambda \le 2m - 2$ and

$$M_m^{(2m-1)} = \left[m_{i,j}^{(2m-1)}\right]_{4m\times 4m} = \begin{bmatrix} 0 & 0 & \cdots & 0 & -2 & 0 & 0 & 1 \\ 1 & 0 & 0 & & \cdots & & 0 & 0 \\ 0 & 1 & 0 & & \cdots & & 0 & 0 \\ 0 & 0 & 1 & 0 & \cdots & & 0 & 0 \\ \vdots & \vdots & & & \ddots & \ddots & & \vdots \\ \vdots & \vdots & & & \ddots & \ddots & & \vdots \\ 0 & \cdots & & 0 & 1 & 0 & 0 \\ 0 & \cdots & & 0 & 0 & 1 & 0 \end{bmatrix}$$

We call matrix $M_m^{(\alpha)}$ the α -adjacency-Pell-Hurwitz matrix of size $4m \times 4m$. By an inductive argument on τ , we obtain

$$\left(M_m^{(1)} \right)^{\tau} = \begin{bmatrix} x_{4m+\tau}^{(1,m)} & x_{4m+\tau-3}^{(1,m)} & x_{4m+\tau-2}^{(1,m)} & x_{4m+\tau-1}^{(1,m)} & 0 & 0 & 0 & \cdots & 0 \\ x_{4m+\tau}^{(1,m)} & x_{4m+\tau-4}^{(1,m)} & x_{4m+\tau-3}^{(1,m)} & x_{4m+\tau-2}^{(1,m)} & 0 & 0 & 0 & \cdots & 0 \\ x_{4m+\tau-1}^{(1,m)} & x_{4m+\tau-3}^{(1,m)} & x_{4m+\tau-3}^{(1,m)} & x_{4m+\tau-3}^{(1,m)} & 0 & 0 & 0 & \cdots & 0 \\ x_{4m+\tau-2}^{(1,m)} & x_{4m+\tau-5}^{(1,m)} & x_{4m+\tau-4}^{(1,m)} & x_{4m+\tau-4}^{(1,m)} & 0 & 0 & 0 & \cdots & 0 \\ x_{4m+\tau-3}^{(1,m)} & x_{4m+\tau-6}^{(1,m)} & x_{4m+\tau-5}^{(1,m)} & x_{4m+\tau-4}^{(1,m)} & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 \end{bmatrix}$$

for $\tau \geq 1$,

$$\begin{pmatrix} \begin{pmatrix} x_{4m+\tau}^{(\lambda,m)} & x_{4m+\tau+1}^{(\lambda,m)} & \cdots & x_{4m+\tau+2\lambda-2}^{(\lambda,m)} \\ x_{4m+\tau}^{(\lambda,m)} & x_{4m+\tau}^{(\lambda,m)} & \cdots & x_{4m+\tau+2\lambda-3}^{(\lambda,m)} \\ x_{4m+\tau-1}^{(\lambda,m)} & x_{4m+\tau-1}^{(\lambda,m)} & \cdots & x_{4m+\tau+2\lambda-4}^{(\lambda,m)} \\ \vdots & & \vdots & & \vdots \\ x_{4m+\tau-2\lambda}^{(\lambda,m)} & x_{4m+\tau-2\lambda+1}^{(\lambda,m)} & \cdots & x_{4m+\tau-2}^{(\lambda,m)} \\ x_{4m+\tau-2\lambda}^{(\lambda,m)} & x_{4m+\tau-2\lambda}^{(\lambda,m)} & \cdots & x_{4m+\tau-3}^{(\lambda,m)} \\ 0 & 0 & \cdots & 0 \\ \vdots & & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}$$

for $\tau \geq 1$ and $2 \leq \lambda \leq 2m-2$, where E is the following $4m \times (4m-2\lambda+1)$ matrix:

$$E = \begin{bmatrix} x_{4m+\tau-3}^{(\lambda,m)} & x_{4m+\tau-2}^{(\lambda,m)} & x_{4m+\tau-1}^{(\lambda,m)} & 0 & 0 & 0 & \cdots & 0 \\ x_{4m+\tau-4}^{(\lambda,m)} & x_{4m+\tau-3}^{(\lambda,m)} & x_{4m+\tau-2}^{(\lambda,m)} & 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & 0 & 0 & 0 & \cdots & 0 \\ x_{4m+\tau-2\lambda-3}^{(\lambda,m)} & x_{4m+\tau-2\lambda-2}^{(\lambda,m)} & x_{4m+\tau-2\lambda-1}^{(\lambda,m)} & 0 & 0 & 0 & \cdots & 0 \\ x_{4m+\tau-2\lambda-3}^{(\lambda,m)} & x_{4m+\tau-2\lambda-2}^{(\lambda,m)} & x_{4m+\tau-2\lambda-2}^{(\lambda,m)} & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 1 \end{bmatrix}$$

and

$$\left(M_m^{(2m-1)}\right)^{\tau} =$$

$$\begin{bmatrix} x_{4m+\tau}^{(2m-1,m)} & x_{4m+\tau+1}^{(2m-1,m)} & \cdots & x_{8m+\tau-4}^{(2m-1,m)} & x_{4m+\tau-2}^{(2m-1,m)} & x_{4m+\tau-1}^{(2m-1,m)} \\ x_{4m+\tau-1}^{(2m-1,m)} & x_{4m+\tau-1}^{(2m-1,m)} & \cdots & x_{8m+\tau-4}^{(2m-1,m)} & x_{4m+\tau-2}^{(2m-1,m)} & x_{4m+\tau-1}^{(2m-1,m)} \\ x_{4m+\tau-1}^{(2m-1,m)} & x_{4m+\tau-1}^{(2m-1,m)} & \cdots & x_{8m+\tau-5}^{(2m-1,m)} & x_{4m+\tau-3}^{(2m-1,m)} & x_{4m+\tau-2}^{(2m-1,m)} \\ x_{4m+\tau-2}^{(2m-1,m)} & x_{4m+\tau-1}^{(2m-1,m)} & \cdots & x_{8m+\tau-6}^{(2m-1,m)} & x_{4m+\tau-4}^{(2m-1,m)} & x_{4m+\tau-3}^{(2m-1,m)} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ x_{\tau+3}^{(2m-1,m)} & x_{\tau+4}^{(2m-1,m)} & \cdots & x_{4m+\tau-1}^{(2m-1,m)} & x_{\tau+1}^{(2m-1,m)} & x_{\tau+2}^{(2m-1,m)} \\ x_{\tau+2}^{(2m-1,m)} & x_{\tau+3}^{(2m-1,m)} & \cdots & x_{4m+\tau-2}^{(2m-1,m)} & x_{\tau-1}^{(2m-1,m)} & x_{\tau+1}^{(2m-1,m)} \\ x_{\tau+1}^{(2m-1,m)} & x_{\tau+2}^{(2m-1,m)} & \cdots & x_{4m+\tau-3}^{(2m-1,m)} & x_{\tau-1}^{(2m-1,m)} & x_{\tau+1}^{(2m-1,m)} \\ x_{\tau+1}^{(2m-1,m)} & x_{\tau+2}^{(2m-1,m)} & \cdots & x_{4m+\tau-3}^{(2m-1,m)} & x_{\tau-1}^{(2m-1,m)} & x_{\tau-1}^{(2m-1,m)} & x_{\tau+1}^{(2m-1,m)} \\ x_{4m+\tau-3}^{(2m-1,m)} & x_{\tau-2}^{(2m-1,m)} & x_{\tau-1}^{(2m-1,m)} & x_{\tau-1}^{(2m-1,m)} & x_{\tau-1}^{(2m-1,m)} \\ x_{\tau+1}^{(2m-1,m)} & x_{\tau+2}^{(2m-1,m)} & x_{\tau-2}^{(2m-1,m)} & x_{\tau-1}^{(2m-1,m)} & x_{\tau-1}^{(2m-1,m)} \\ x_{\tau+1}^{(2m-1,m)} & x_{\tau+1}^{(2m-1,m)} & x_{\tau-2}^{(2m-1,m)} & x_{\tau-1}^{(2m-1,m)} & x_{\tau-1}^{(2m-1,m)} \\ x_{\tau+1}^{(2m-1,m)} & x_{\tau+1}^{(2m-1,m)} & x_{\tau+1}^{(2m-1,m)} & x_{\tau+1}^{(2m-1,m)} & x_{\tau-1}^{(2m-1,m)} & x_{\tau-1}^{(2m-1,m)} \\ x_{\tau+1}^{(2m-1,m)} & x_{\tau+2}^{(2m-1,m)} & x_{\tau+1}^{(2m-1,m)} & x_{\tau+1}^{(2m-1,m)} & x_{\tau+1}^{(2m-1,m)} & x_{\tau+1}^{(2m-1,m)} & x_{\tau+1}^{(2m-1,m)} \\ x_{\tau+1}^{(2m-1,m)} & x_{\tau+2}^{(2m-1,m)} & x_{\tau+1}^{(2m-1,m)} & x_{\tau+1}^{(2m-1,m)} & x_{\tau+1}^{(2m-1,m)} & x_{\tau+1}^{(2m-1,m)} \\ x_{\tau+1}^{(2m-1,m)} & x_{\tau+2}^{(2m-1,m)} & x_{\tau+1}^{(2m-1,m)} & x_{\tau+1}^{(2m-1,m)}$$

for $\tau \geq 3$. Let $m \geq 2$ and let $S_t^{(k,m)} = \sum_{i=1}^t x_i^{(k,m)}$ such that $1 \leq k \leq 2m-1$. We introduce matrix H(k,m) by

$$H(k,m) = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 1 & & & \\ 0 & & M_m^{(k)} & & \\ \vdots & & & & \\ 0 & & & & \end{bmatrix}$$

for $1 \le k \le 2m-1$. Note that H(k,m) is a square matrix of size $(4m+1) \times$

(4m+1), and it can be shown by induction that:

$$(H(1,m))^{\tau} = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ S_{\tau+4m-1}^{(1,m)} & & & \\ S_{\tau+4m-2}^{(1,m)} & & \\ S_{\tau+4m-3}^{(1,m)} & & \\ S_{\tau+4m-4}^{(1,m)} & & & \\ 0 & & & \\ 0 & & & \\ \vdots & & & \\ 0 & & & \end{bmatrix} for \ \tau \ge 1,$$

$$(H(\lambda, m))^{\tau} = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ S_{\tau + 4m - 1}^{(\lambda, m)} & & & \\ S_{\tau + 4m - 2}^{(\lambda, m)} & & & \\ \vdots & & & \\ S_{\tau + 4m - 2\lambda - 2}^{(\lambda, m)} & \left(M_{m}^{(\lambda)}\right)^{\tau} & & \\ 0 & & & \\ \vdots & & & \\ 0 & & & \\ \vdots & & & \\ 0 & & & \\ \end{bmatrix}$$
for $\tau \ge 1$ and $2 \le \lambda \le 2m - 2$

and

$$(H\left(2m-1,m\right))^{\tau} = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ S_{\tau+4m-1}^{(2m-1,m)} & & & & \\ S_{\tau+4m-2}^{(2m-1,m)} & & & & \\ \vdots & & & & & & \\ S_{\tau+2}^{(2m-1,m)} & & & & & \\ S_{\tau+1}^{(2m-1,m)} & & & & & \\ S_{\tau}^{(2m-1,m)} & & & & & \\ \end{bmatrix} \quad (\tau \ge 3) \, .$$

Lemma 2.1. The equation $x^{4m} + 2x^3 - 1 = 0$ does not have multiple roots for any integer $m \ge 2$.

Proof. Let $q(x) = x^{4m} + 2x^3 - 1$ and suppose v is a multiple root of q(x). Since $q(0) \neq 0$, it follows that $v \neq 0$. Then, the hypotheses q(v) = 0 and q'(v) = 0 imply $v^{4m-3} = -\frac{3}{2m}$ and $v^3 = \frac{2m}{4m-3}$, respectively. It follows that $v^3 > 0$ and $v^{4m-3} < 0$, inequalities that cannot hold simultaneously for $m \geq 2$. This is a contradiction resulting from our assumption that v is a multiple root, which concludes the proof of the lemma.

Let q(v) be the characteristic polynomial of matrix $M_m^{(2m-1)}$. Then, q(v) =

 $v^{4m} + 2v^3 - 1$, a clear fact because $M_m^{(2m-1)}$ is a companion matrix. Let v_1, v_2, \ldots, v_{4m} be the eigenvalues of $M_m^{(2m-1)}$. By Lemma 2.1, we know that these are 4m distinct numbers. Let $V_m^{(2m-1)}$ be the following Vandermonde matrix:

$$V_m^{(2m-1)} = \begin{bmatrix} (v_1)^{4m-1} & (v_2)^{4m-1} & \cdots & (v_{4m})^{4m-1} \\ (v_1)^{4m-2} & (v_2)^{4m-2} & \cdots & (v_m)^{4m-2} \\ \vdots & \vdots & & \vdots \\ v_1 & v_2 & & v_{4m} \\ 1 & 1 & \cdots & 1 \end{bmatrix}$$

Denote by $V_m^{(2m-1)}(i,j)$ the matrix obtained from $V_m^{(2m-1)}$ by replacing the jth column by

$$C_{m}^{(2m-1)}(i,j) = \begin{bmatrix} v_{1}^{\tau+4m-i} \\ v_{2}^{\tau+4m-i} \\ \vdots \\ v_{4m}^{\tau+4m-i} \end{bmatrix}$$

We can give the generalized Binet formula for the (2m-1)-adjacency-Pell-Hurwitz numbers with the following theorem.

Theorem 2.1. For the matrix $\left(M_m^{(2m-1)}\right)^{\tau} = \left[m_{i,j}^{(2m-1,\tau)}\right]_{Am\times Am}$, for $\tau \geq 3$,

$$m_{i,j}^{(2m-1,\tau)} = \frac{\det V_m^{(2m-1)}(i,j)}{\det V_m^{(2m-1)}}.$$
 (2.3)

Proof. Consider the integer $\tau \geq 3$ to be fixed. Since v_1, v_2, \ldots, v_{4m} are distinct, the matrix $M_m^{(2m-1)}$ is diagonalizable. Then, $M_m^{(2m-1)}V_m^{(2m-1)}=V_m^{(2m-1)}D_m$, where $D_m=(v_1,v_2,\ldots,v_{4m})$. Since $\det V_m^{(2m-1)}\neq 0$, we can write

$$\left(V_m^{(2m-1)}\right)^{-1} M_m^{(2m-1)} V_m^{(2m-1)} = D_m.$$

Then, the matrix $M_m^{(2m-1)}$ is similar to D_m and so

$$\left(M_m^{(2m-1)}\right)^{\tau} V_m^{(2m-1)} = V_m^{(2m-1)} \left(D_m\right)^{\tau}.$$

We can now easily establish the following linear system of equations:

$$\begin{cases}
 m_{i,1}^{(2m-1,\tau)} (v_1)^{4m-1} + m_{i,2}^{(2m-1,\tau)} (v_1)^{4m-2} + \dots + m_{i,4m}^{(2m-1,\tau)} = (v_1)^{n+4m-i} \\
 m_{i,1}^{(2m-1,\tau)} (v_2)^{4m-1} + m_{i,2}^{(2m-1,\tau)} (v_2)^{4m-2} + \dots + m_{i,4m}^{(2m-1,\tau)} = (v_2)^{n+4m-i} \\
 \vdots \\
 m_{i,1}^{(2m-1,\tau)} (v_{4m})^{4m-1} + m_{i,2}^{(2m-1,\tau)} (v_{4m})^{4m-2} + \dots + m_{i,4m}^{(2m-1,\tau)} = (v_{4m})^{n+4m-i}
\end{cases}$$

The numbers in formula (2.3) are solutions of the last linear system.

Theorem 2.1 gives immediately:

Corollary 2.2. Let $x_{\tau}^{(2m-1,m)}$ be the τ th element of the (2m-1)-adjacency-Pell-Hurwitz sequence, then

$$x_{\tau}^{(2m-1,m)} = \frac{\det V_m^{(2m-1)} (4m, 4m)}{\det V_m^{(2m-1)}} = \frac{\det V_m^{(2m-1)} (4m - 1, 4m - 1)}{\det V_m^{(2m-1)}}$$
$$= \frac{\det V_m^{(2m-1)} (4m - 2, 4m - 2)}{\det V_m^{(2m-1)}}.$$

Now we consider the permanental representations of the k-adjacency-Pell-Hurwitz numbers.

Definition 2.1. Let $M = [m_{i,j}]$ be $u \times v$ real matrix and let r^1, r^2, \ldots, r^u and c^1, c^2, \ldots, c^v be respectively, the row and column vectors of M. If r^{α} contains exactly two non-zero entries, then M is contractible on row α . Similarly, M is contractible on column β provided c^{β} contains exactly two non-zero entries.

Let x_1, x_2, \ldots, x_u be row vectors of the matrix M and let M be contractible in the α^{th} column with $m_{i,\alpha} \neq 0, m_{j,\alpha} \neq 0$ and $i \neq j$. Then the $(u-1) \times (v-1)$ matrix $M_{ij:\alpha}$ obtained from M by replacing the i^{th} row with $m_{i,\alpha}x_j + m_{j,\alpha}x_i$ and deleting the j^{th} row and the α^{th} column is called the contraction in the α^{th} column relative to the i^{th} row and the j^{th} row.

The permanent of a *u*-square matrix $A = [a_{i,j}]$ is defined by

$$per(A) = \sum_{\sigma \in S_u} \prod_{i=1}^u a_{i,\sigma(i)},$$

where the summation extends over all permutations σ of the symmetric group S_u .

In [1], Brualdi and Gibson showed that per(A) = per(B) if A is a real matrix of order u > 1 and B is a contraction of A.

Let $n \geq 4m$ and let $X(k, (m, n)) = \left[x_{i,j}^{m,n,k}\right], 1 \leq k \leq 2m - 1$, be the $n \times n$ super-diagonal matrices defined using the following cases:

- 1. $i = \gamma$ and $j = \gamma + 2k 2$ for $1 \le \gamma \le n 2k 1$,
- 2. $i = \gamma$, $j = \gamma + 2k + 1$ for $1 \le \gamma \le n 2k 1$, and $j = \gamma 1$ for $2 \le \gamma \le n$,
- 3. otherwise.

$$x_{i,j}^{m,n,k} \begin{cases} -2 & \text{if case (1) applies} \\ 1 & \text{if case (2) applies} \\ 0 & \text{if case(3) applies} \end{cases}$$

where m is as in the definition of the k-adjacency-Pell-Hurwitz numbers. Then we have the following theorem.

Theorem 2.3. For $1 \le k \le 2m-1$, we have

$$\operatorname{per}(X(k, (m, n))) = x_{4m+n}^{(k,m)}.$$

Proof. Consider the matrix X(1,(m,n)). We will use induction on n. Assume the equation holds for $n \geq 4m$. Then we must show that the equation $\operatorname{per}(X(1,(m,n))) = x_{4m+n}^{(1,m)}$ holds for n+1. If we expand $\operatorname{per}(X(1,(m,n)))$ by the Laplace expansion of permanent according to the first row, then we obtain

$$per(X(1,(m,n+1))) = -2 per(X(1,(m,n))) + per(X(1,(m,n-3))).$$

Since
$$\operatorname{per}(X(1,(m,n-3))) = x_{4m+n-3}^{(1,m)}$$
, we obtain

$$\operatorname{per}(X\left(1,(m,n+1)\right)) = -2x_{4m+n}^{(1,m)} + x_{4m+n-3}^{(1,m)} = x_{4m+n+1}^{(1,m)}.$$

The proofs for $2 \le k \le 2m-1$ are similar to the above and are omitted.

Let $n \geq 4m$. Now we define the $n \times n$ matrices $Y(k, (m, n)) = \left[y_{i,j}^{m,n,k}\right], 1 \leq k \leq 2m-1$, using the following cases:

- 1. $i = \delta$ and $j = \delta + 2k 2$ for $1 < \delta < n 2k 1$,
- 2. $i = \delta, j = \delta + 2k 2$ for $1 < \delta < n 2k 1$, and $j = \delta 1$ for $2 < \delta < n$,
- 3. otherwise,

With these three cases in mind we now define the desired matrix:

$$y_{i,j}^{m,n,k} = \begin{cases} -2 & \text{if case (1) applies} \\ 1 & \text{if case (2) applies} \\ 0 & \text{if case(3) applies} \end{cases}$$

where m is as in the definition of the k-adjacency-Pell-Hurwitz numbers. In the next theorem we obtain another permanental representation.

Theorem 2.4. For $1 \le k \le 2m-1$, we have

$$per(Y(k, (m, n))) = x_{4m-2k-2+n}^{(k,m)}.$$

Proof. Consider matrices $Y(\lambda, (m, n)) = [y_{i,j}^{m,n,\lambda}], \ 2 \le \lambda \le 2m - 2$. We will use induction on n. Suppose that the equation holds for $n \ge 4m$. Then we must show

that the equation holds for n+1. If we expand the $perY(\lambda, (m, n))$ by the Laplace expansion of permanent according to the first row, then we obtain

$$\begin{split} \operatorname{per}(Y(\lambda,(m,n+1))) &= -2\operatorname{per}(Y(\lambda,(m,n-2\lambda+2))) + \operatorname{per}(Y(\lambda,(m,n-2\lambda-1))) \\ &= -2x_{4m-4\lambda+n}^{(\lambda,m)} + x_{4m-4\lambda+n-3}^{(\lambda,m)} = x_{4m-2\lambda+n-1}^{(\lambda,m)} \end{split}$$

for $2 \le \lambda \le 2m - 2$. Thus, the conclusion is obtained.

The proofs for the matrices Y(1,(m,n)) and Y(2m-1,(m,n)) are similar. \square

We now consider the sums of the k-adjacency-Pell-Hurwitz numbers by using their permanental representations. Let n>4m and suppose that Z(1,(m,n)), $Z(\lambda,(m,n))$, $(2 \le \lambda \le 2m-2)$ and Z(2m-1,(m,n)) are the $n \times n$ matrices defined by

$$Z(1,(m,n)) = \begin{bmatrix} 1 & \cdots & 1 & 0 & \cdots & 0 \\ 1 & \cdots & 1 & 0 & \cdots & 0 \\ 1 & & & & & & \\ 0 & & & & & & & \\ \vdots & & & & & & \\ 0 & & & & & & \end{bmatrix},$$
(2.4)

$$Z(\lambda, (m, n)) = \begin{bmatrix} 1 & \cdots & 1 & 0 & \cdots & 0 \\ 1 & \cdots & 1 & 0 & \cdots & 0 \\ 0 & & & Y(\lambda, (m, n - 1)) & & \\ \vdots & & & & & \\ 0 & & & & & \end{bmatrix}$$
(2.5)

and

$$Z(2m-1,(m,n)) = \begin{bmatrix} 1 & \cdots & 1 & 0 & \cdots & 0 \\ 1 & \cdots & 1 & 0 & \cdots & 0 \\ 1 & & & & & & \\ 0 & & & & & & & \\ \vdots & & & & & & \\ 0 & & & & & & & \\ \end{bmatrix}$$
(2.6)

Then we have the following theorem.

Theorem 2.5. For $1 \le k \le 2m - 1$, let the $n \times n$ matrices Z(k, (m, n)) be as in (2.4), (2.5) and (2.6). Then

$$per(Z(1,(m,n))) = \sum_{\varepsilon=1}^{n+4m-1} x_{\varepsilon}^{(1,m)},$$

$$x_{\varepsilon}^{(1,m)}$$

$$\operatorname{per}(Z(\lambda,(m,n))) = \sum_{\varepsilon=1}^{n+4m-2\lambda-3} x_{\varepsilon}^{(\lambda,m)}, \ (2 \le \lambda \le 2m-2),$$

and

$$per(Z(2m-1,(m,n))) = \sum_{\varepsilon=1}^{n-1} x_{\varepsilon}^{(2m-1,m)}.$$

Proof. Consider the matrices Z(2m-1,(m,n)). Expanding per(Z(2m-1,(m,n))) with respect to the first row, we have

$$\operatorname{per}(Z\left(2m-1,(m,n)\right)) = \operatorname{per}(Z\left(2m-1,(m,n-1)\right)) + \operatorname{per}(Y\left(2m-1,(m,n-1)\right)).$$

By Theorem 2.3 and the inductive argument on n, we easily complete the proof. The proofs for $1 \le k \le 2m - 2$ are similar to the above and are omitted.

A matrix M is called *convertible* if there is an $n \times n$ (1, -1)-matrix K such that $perM = \det(M \circ K)$, where $M \circ K$ denotes the Hadamard product of M and K. Let n > 4m and let W be the $n \times n$ matrix defined by

$$W = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ -1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & -1 & 1 & \cdots & 1 & 1 \\ \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ 1 & \cdots & 1 & -1 & 1 & 1 \\ 1 & \cdots & 1 & 1 & -1 & 1 \end{bmatrix}.$$

It is easy to see that

$$per(X (k, (m, n)) = det (X (k, (m, n)) \circ W)),$$

$$per(Y (k, (m, n)) = det (Y (k, (m, n)) \circ W))$$

and

$$\operatorname{per}(Z\left(k,\left(m,n\right)\right)=\operatorname{det}\left(Z\left(k,\left(m,n\right)\right)\circ W\right))$$

for n > 4m and $1 \le k \le 2m - 1$.

Consider the $n \times n$ matrix

$$C = C(c_1, c_2, \dots, c_n) = \begin{bmatrix} c_1 & c_2 & \cdots & c_n \\ 1 & 0 & & 0 \\ \vdots & \ddots & & \vdots \\ 0 & \cdots & 1 & 0 \end{bmatrix}$$

For detailed information about the companion matrix, see [11, p.69] and [12, p.284].

Theorem 2.6. (Chen and Louck [2]). The (i,j) entry $c_{i,j}^{(\tau)}(c_1,c_2,\ldots,c_n)$ in the matrix $C^{\tau}(c_1,c_2,\ldots,c_n)$ is given by the following formula:

$$c_{i,j}^{(\tau)}(c_1, c_2, \dots, c_n) = \sum_{(t_1, t_2, \dots, t_n)} \frac{t_j + t_{j+1} + \dots + t_n}{t_1 + t_2 + \dots + t_n} \times {t_1 + \dots + t_n \choose t_1, \dots, t_n} c_1^{t_1} \cdots c_n^{t_n}$$
(2.7)

where the summation is over nonnegative integers satisfying $t_1 + 2t_2 + \cdots + nt_n = 0$ $\tau - i + j$, $\binom{t_1 + \dots + t_n}{t_1, \dots, t_n} = \frac{(t_1 + \dots + t_n)!}{t_1! \dots t_n!}$ is a multinomial coefficient, and the coefficients in (2.7) are defined to be 1 if $\tau = i - j$.

Now we give the combinatorial representations for the (2m-1)-adjacency-Pell-Hurwitz sequence by the following Corollary.

Corollary 2.7. Let $x_{\tau}^{(2m-1,m)}$ be the τ th element of the (2m-1)-adjacency-Pell-Hurwitz sequence such that $\tau \geq 3$ and $m \geq 2$. Then

$$x_{\tau}^{(2m-1,m)} = \sum_{(t_1,t_2,\dots,t_{4m})} \frac{t_{4m-2} + t_{4m-1} + t_{4m}}{t_1 + t_2 + \dots + t_{4m}} \times {t_1 + \dots + t_{4m} \choose t_1,\dots,t_{4m}} (-2)^{t_{4m-3}}$$

$$= \sum_{(t_1,t_2,\dots,t_{4m})} \frac{t_{4m-1} + t_{4m}}{t_1 + t_2 + \dots + t_{4m}} \times {t_1 + \dots + t_{4m} \choose t_1,\dots,t_{4m}} (-2)^{t_{4m-3}}$$

$$= \sum_{(t_1,t_2,\dots,t_{4m})} \frac{t_{4m}}{t_1 + t_2 + \dots + t_{4m}} \times {t_1 + \dots + t_{4m} \choose t_1,\dots,t_{4m}} (-2)^{t_{4m-3}},$$

where the summation is over nonnegative integers satisfying $t_1+2t_2+\cdots+(4m)t_{4m}=$

Proof. In Theorem 2.6, if we choose n = 4m and i = j such that $4m - 2 \le i, j \le 4m$, then the proof follows from (2).

Now we give the generating function of the k-adjacency-Pell-Hurwitz numbers.

Let

$$g^{(k,m)}\left(y\right) = x_{4m}^{(k,m)} + x_{4m+1}^{(k,m)}y + x_{4m+2}^{(k,m)}y^2 + \dots + x_{4m+u-1}^{(k,m)}y^u + x_{4m+u}^{(k,m)}y^{u+1} + \dots.$$

$$2y^{2k-1}g^{(k,m)}(y) = x_{4m}^{(k,m)}2y^{2k-1} + x_{4m+1}^{(k,m)}2y^{2k} + x_{4m+2}^{(k,m)}2y^{2k+1} + \cdots + x_{4m+u-1}^{(k,m)}2y^{2k-1+u} + x_{4m+u}^{(k,m)}2y^{2k+u} + \cdots$$

and
$$y^{2k+2}g^{(k,m)}\left(y\right) = x_{4m}^{(k,m)}y^{2k+2} + x_{4m+1}^{(k,m)}y^{2k+3} + x_{4m+2}^{(k,m)}y^{2k+4}$$

$$+\cdots + x_{4m+u-1}^{(k,m)}y^{2k+2+u} + x_{4m+u}^{(k,m)}y^{2k+2+u+1} + \cdots$$

Thus, we have

$$g^{(k,m)}\left(y\right) + 2y^{2k-1}g^{(k,m)}\left(y\right) - y^{2k+2}g^{(k,m)}\left(y\right) = x_{4m}^{(k,m)}y^{4m-1}.$$

By the definition of the k-adjacency-Pell-Hurwitz numbers, we obtain

$$g^{(k,m)}(y) = \frac{y^{4m-1}}{1 + 2y^{2k-1} - y^{2k+2}},$$

where $1 \le k \le 2m - 1$ and $0 \le y^{2k+2} - 2y^{2k-1} < 1$.

Now we give an exponential representation for the k-adjacency-Pell-Hurwitz numbers.

Theorem 2.8. For $1 \le k \le 2m-1$ and $0 \le y^{2k+2}-2y^{2k-1} < 1$, the k-adjacency-Pell-Hurwitz numbers have the following exponential representation:

$$g^{(k,m)}(y) = y^{4m-1} \exp\left(\sum_{i=1}^{\infty} \frac{(y^{2k-1})^i}{i} (y^3 - 2)^i\right).$$

Proof. Since

$$\ln g^{(k,m)}(y) = \ln \frac{y^{4m-1}}{1 + 2y^{2k-1} - y^{2k+2}} = \ln y^{4m-1} - \ln \left(1 + 2y^{2k-1} - y^{2k+2}\right)$$

and

$$\ln\left(1+2y^{2k-1}-y^{2k+2}\right) = \ln\left(1-\left(y^{2k+2}-2y^{2k-1}\right)\right)$$

$$= -\left[\left(y^{2k-1}\right)\left(y^3-2\right) + \frac{1}{2}\left(y^{2k-1}\right)^2\left(y^3-2\right)^2 + \dots + \frac{1}{i}\left(y^{2k-1}\right)^i\left(y^3-2\right)^i + \dots\right]$$

$$= -\left(\sum_{i=1}^{\infty} \frac{\left(y^{2k-1}\right)^i}{i}\left(y^3-2\right)^i\right),$$

we have

$$\ln g^{(k,m)}(y) - \ln y^{4m-1} = \sum_{i=1}^{\infty} \frac{(y^{2k-1})^i}{i} (y^3 - 2)^i.$$

Therefore, we obtain

$$\ln \frac{g(x)}{y^{4m-1}} = \sum_{i=1}^{\infty} \frac{(y^{2k-1})^i}{i} (y^3 - 2)^i.$$

The last formula implies the one in the text of the theorem, thus concluding the proof. \Box

INTEGERS: 18 (2018) 15

Acknowledgement. This work was supported by the Commission for the Scientific Research Projects of Kafkas University, Project number 2016-FM-23. The authors would like to thank the anonymous referee for a careful reading and many helpful comments that improved the final version of this manuscript.

References

- [1] R. Brualdi and P. Gibson, Convex polyhedra of doubly stochastic matrices I: applications of permanent function, *J. Combin Theory* **22** (1977), 194-230.
- [2] W. Chen and J. Louck J., The combinatorial power of the companion matrix, *Linear Algebra Appl* 232 (1996), 261-278.
- [3] O. Deveci and A. Shannon, On the adjacency-type sequences, Int. J. Adv. Math. 2 (2017), 10-24.
- [4] O. Deveci, Y. Akuzum and E. Karaduman, The Pell-Padovan p-Sequences and Its Applications, Util. Math. 98 (2015), 327-347.
- [5] O. Deveci and E. Karaduman, On The Adjacency-Pell Numbers, Util. Math., in press.
- [6] N. Gogin and A. Myllari, The Fibonacci-Padovan sequence and MacWilliams transform matrices, Program. Comput. Softw. published in Programmirovanie, 33(2) (2007), 74-79.
- [7] A. Hurwitz, Ueber die Bedingungen unter welchen eine gleichung nur Wurzeln mit negative reellen teilen besitzt, Mathematische Annalen 46 (1895) 273-284.
- [8] D. Kalman, Generalized Fibonacci numbers by matrix methods, Fibonacci Quart, 20(1), (1982) 73-76.
- [9] E. Kilic, The generalized Pell (p,i)-numbers and their Binet formulas, combinatorial representations, sums, Chaos, Solitons Fractals 40(4) (2009), 2047-2063.
- [10] E. Kilic and A. Stakhov, On the Fibonacci and Lucas p-numbers, their sums, families of bipartite graphs and permanents of certain matrices, *Chaos Solitons Fractals* 40 (2009), 2210-2221.
- [11] P. Lancaster and M. Tismenetsky, The Theory of Matrices, Academic, 1985.
- [12] R. Lidl and H. Niederreiter, Introduction to Finite Fields and Their Applications, Cambridge UP, Cambridge, 1994.
- [13] N. Ozgur, On the sequences related to Fibonacci and Lucas numbers, J. Korean Math. Soc. 42(1) (2005), 135-151.
- [14] A. Shannon, P. Anderson and A. Horadam, Properties of cordonnier Perrin and Van der Laan numbers, Internat. J. Math. Ed. Sci. Tech. 37(7) (2006) 825-831.
- [15] A. Shannon and L. Bernstein, The Jacobi-Perron algorithm and the algebra of recursive sequences, Bull. Australian Math. Soc. 8 (1973), 261-277.
- [16] A. Stakhov and B. Rozin, Theory of Binet formulas for Fibonacci and Lucas p-numbers, Chaos Solitons Fractals 27 (2006) 1162-1177.
- [17] D. Tascı and M. Firengiz, Incomplete Fibonacci and Lucas p numbers, Math. Comput. Modelling 52(9) (2010), 1763-1770.

INTEGERS: 18 (2018) 16

[18] N. Tuglu, E. Kocer and A. Stakhov, Bivariate Fibonacci like p-polynomials, *Appl. Math. and Compt.* **217** (2011), 10239-10246.

[19] F. Yilmaz and D. Bozkurt, The generalized order-k Jacobsthal numbers, Int. J. Contemp. Math. Sci. $\bf 34(4)$ (2009), 1685-1694.