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Unidad Académica de Matemáticas, Universidad Autónoma de Zacatecas,
Zacatecas, Zac., México
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Abstract
Let (Pn)n>0 be the Padovan sequence given by P0 = 1, P1 = P2 = 0 and the
recurrence formula Pn+3 = Pn+1 + Pn, for all n > 0. In this note we study and
completely solve the Diophantine equations Pn = 2a and Pn + Pm = 2a in non-
negative integers n, a and n,m, a, respectively.

1. Introduction

We recall that the Fibonacci sequence (Fn)n>0 is given by F0 = 0, F1 = 1 and the
recurrence formula Fn+2 = Fn+1 + Fn for all n > 0. Recently, the Diophantine
equation

Fn + Fm = 2a (1)

in positive integers n,m and a has been studied. Indeed, in [6] Bravo and Luca
prove the following result:

Theorem 1. The only solutions of equation (1) in positive integers (n,m, a) with
n > m are given by

2F1 = 2, 2F2 = 2, 2F3 = 4, 2F6 = 16

and

F2 + F1 = 2, F4 + F1 = 4, F4 + F2 = 4, F5 + F4 = 8, F7 + F4 = 16.
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Then, they solve the same problem with Lucas and k-Fibonacci sequences (see [5]
and [4]). Also, the problem of writing powers of two as sum of three Fibonacci
numbers and three Pell numbers have been studied (see [3] and [2]). Inspired by
this results in this note we study the same kind of problems with the Padovan
sequence.

The Padovan sequence (Pn)n>0, named after the architect R. Padovan, is a
ternary recurrence sequence given by P0 = 1, P1 = P2 = 0 and the recurrence
formula

Pn+3 = Pn+1 + Pn, for all n > 0. (2)

This is the A000931 sequence in [13]. Its few first terms are

1, 0, 0, 1, 0, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, . . .

Some arithmetical problems with the Padovan sequence have been studied. For
example, in [14], Stewart asks for the intersection of the Padovan and Fibonacci
sequences. In [8], De Weger solves this problem. He actually proves that the distance
between Padovan and Fibonacci numbers growths exponentially. In this paper, we
shall study the following arithmetical problems with the Padovan sequence, namely,
we study the Diophantine equations:

Pn = 2a (3)

and
Pn + Pm = 2a (4)

in non-negative integers n,m and a. Since P1 = P2 = P4 = 0, we will assume
that n,m 6= 1, 2. That is, whenever we think of 0 as a member of the Padovan
sequence, we think of it as being P4. We do the same with the terms 1 and 2: for
1, n,m 6= 0, 3, 5, 6, and we think of 1 as being P7; for 2, n,m 6= 8 and thus we think
of 2 as being P9. With these conventions our results are

Theorem 2. All solutions of equation (3) in non-negative integers (n, a) are given
by

P7 = 20, P9 = 21, P11 = 22 and P16 = 24.

Theorem 3. All solutions of equation (4) in non-negative integers (n,m, a) with
n > m are given by

2P7 = 21, 2P9 = 22, 2P11 = 23, 2P16 = 25;

P7 + P4 = 20, P9 + P4 = 21, P11 + P4 = 22 = P10 + P7,

P12 + P10 = 23 = P13 + P7, P14 + P13 = 24 = P15 + P11 = P16 + P4,

P18 + P11 = 25, P32 + P29 = 211 = P33 + P24.
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2. Tools

In the proofs of Theorems 2 and 3 the first tool we need is a lower bound for linear
forms in logarithms: we use a lower bound given by Matveev. Let ↵ be an algebraic
number of degree d, let a > 0 be the leading coe�cient of its minimal polynomial
over Z and let ↵ = ↵(1), . . . ,↵(d) denote its conjugates. The logarithmic height of
↵ is defined as

h(↵) =
1
d

 

log a +
dX

i=1

log max
n
|↵(i)|, 1

o!

.

In particular, if ↵ = p/q is a rational number with gcd(p, q) = 1 and q > 0, then

h(↵) = log max{|p|, q}.

The following are basic properties of the logarithmic height. For ↵, � algebraic
numbers and m 2 Z we have

• h(↵ + �) 6 h(↵) + h(�) + log(2)

• h(↵�) 6 h(↵) + h(�)

• h(↵m) = |m|h(↵)

Now, let K be a real number field of degree dK, ↵1, . . . ,↵` 2 K positive elements
and b1, . . . , b` 2 Z \ {0}. Let B > max{|b1|, . . . , |b`|} and

⇤ = ↵b1
1 · · ·↵b`

` � 1.

Let A1, . . . , A` be real numbers with

Ai > max{dK h(↵i), | log ↵i|, 0.16} for i = 1, 2, . . . , `.

The following result is due to Matveev in [11] (see also Theorem 9.4 in [7]).

Theorem 4. (Matveev’s Theorem) Assume that ⇤ 6= 0. Then

log |⇤| > �1.4 · 30`+3 · `4.5 · d2
K · (1 + log dK) · (1 + log B)A1 · · ·A`.

In this note we always use ` = 3. Further, K = Q(�) has degree dK = 3, where � is
defined at the begining of Section 3. Thus, once for all we fix the constant

C := 2.70444⇥ 1012 > 1.4 · 303+3 · 34.5 · 32 · (1 + log 3).

Our second tool is a version of the reduction method of Baker-Davenport based
on Lemma in [1]. We shall use the one given by Bravo, Gómez and Luca in [4]. For
a real number x, we write kxk for the distance from x to the nearest integer.
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Lemma 1. Let M be a positive integer. Let ⌧, µ, A > 0, B > 1 be given real
numbers. Assume that p/q is a convergent of ⌧ such that q > 6M and " := kµqk �
Mk⌧qk > 0. Then there is no solution to the inequality

0 < |u⌧ � v + µ| <
A

Bw

in positive integers u, v and w in the ranges

u 6 M and w >
log(Aq/")

log(B)
.

Lemma 1 is a slight variation of the one given by Dujella and Pethő in [9]. Finally,
the following result will be very useful. This is Lemma 7 in [10].

Lemma 2. If m > 1, T > (4m2)m and T > x/(log x)m. Then

x < 2mT (log T )m.

3. Proofs

We start with some basic properties of the Padovan sequence. For a complex number
z, we write z for its complex conjugate. Let ! 6= 1 be a cubic root of 1. Put

� :=
3

s
9 +

p
69

18
+

3

s
9�

p
69

18
, � := !

3

s
9 +

p
69

18
+ !

3

s
9�

p
69

18
.

We see that �, �, � are the three roots of the Q-irreducible polynomial X3 �X � 1.
It is plain to see, by induction for example, the Binet formula

Pn = c1�
n + c2�

n + c3�
n
, for all n > 0, (5)

where
c1 =

1
2� + 3

, c2 =
1

2� + 3
, c3 = c2.

Formula (5) follows from the general theorem on linear recurrence sequences, since
the above polynomial is the characteristic polynomial of the Padovan sequence (see
for example Theorem C.1 in [12]). We note that

� = 1.32471 . . . , |�| = 0.86883 . . . , c1 = 0.17700 . . . , |c2| = 0.49560 . . .

Further, we have the inequalities

�n�7 6 Pn < �n�1 (6)
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which hold for all n > 5. These can be proved by induction.

Proof of Theorem 2. Let us start with the study of equation (3) in non-negative
integers (n, a), where, as we have said, n 6= 0, 1, 2, 3, 5, 6, 8. We will assume n > 7.
Then from (6) we have

�n�7 6 Pn = 2a and �n�1 > Pn = 2a.

Thus
(n� 7)

log �

log 2
6 a < (n� 1)

log �

log 2
.

Now, since
1
3

<
log �

log 2
<

1
2

we get that

2(n� 7)
3

< 2a < n. (7)

If n 6 200 then a 6 99. Running a Mathematica program in the range 7 6 n 6 200,
0 6 a 6 99, with our conventions, we get all the posibilities listed in Theorem 2.

From now on we assume n > 200. Then from (7) we have a > 64. From (5) we
rewrite (3) as

|2a � c1�
n| 6 2|c2||�|n < 1.

Dividing through by c1�n we obtain

|2a��nc�1
1 � 1| <

1
c1�n

<
1

�n�7
, (8)

since 1 < c1�7. Put ⇤ := 2a��nc�1
1 � 1. We claim that ⇤ 6= 0. To see this, we

consider the Q�automorphism � of the Galois extension Q(�, �) over Q defined by
�(�) = � and �(�) = �. We note �(�) = �. If ⇤ = 0 then �(⇤) = 0. Thus

2a = �(c1�
n) = c2�

n.

By taking absolute values and since |c2|, |�| < 1, a > 64, we obtain

1 < 2a = |c2||�|n < 1,

which is a contradiction. Thus ⇤ 6= 0. Now, we will apply Matveev’s Theorem to
⇤. To do this, we take

↵1 = 2, ↵2 = �, ↵3 = c1 2 K, b1 = a, b2 = �n, b3 = �1.

Thus B = n. Further, h(↵1) = log 2, h(↵2) = log �/3. For ↵3 we use the properties
of the height and we deduce that

h(↵3) 6
log �

3
+ 4 log 2.
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Then we choose A1 = 2.1, A2 = 0.3 and A3 = 8.6. From Theorem 4 we get

log |⇤| > �C · (1 + log n) · 2.1 · 0.3 · 8.6 > �1.46528⇥ 1013(1 + log n),

which compared with (8) yields

(n� 7) log � < 1.46528⇥ 1013(2 log n).

Thus n < 1.04217⇥ 1014 log n and from Lemma 2 we obtain

n < 6.72773⇥ 1015. (9)

Now we will reduce this upper bound on n. To do this, we consider

� = a log 2� n log � + log(1/c1)

and we go to (8). Note that e� � 1 = ⇤. Since ⇤ 6= 0, � 6= 0. If � > 0 then we
obtain

0 < � 6 e� � 1 = |e� � 1| = |⇤| <
1

�n�7
.

If, for another hand � < 0 we have that 1�e� = |e��1| = |⇤| < 1/2, since n > 200.
Then e|�| < 2. Thus

0 < |�| < e|�| � 1 = e|�||⇤| <
2

�n�7
.

So, in both cases we have that

0 < |�| <
2

�n�7

Replacing � in the above inequality by its formula and dividing through by log �
we get

0 < |a⌧ � n + µ| <
51
�n

, (10)

where
⌧ :=

log 2
log �

and µ :=
log(1/c1)

log �
.

Put M := 3.36387 ⇥ 1015. From (9) we see that M is the upper bound on a
since 2a < n. With a Mathematica program we find that the denominator of the
convergent

p42

q42
=

1814208205674503586
735997475682980473

of ⌧ satisfies q42 > 6M and that " = kq42 µk �Mkq42 ⌧k = 0.264486 > 0. Thus,
from Lemma 1 applied to (10) with A := 51, B := � we have that

n <
log(51 q42/")

log �
< 166,
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which contradicts our assumption on n. This finishes the proof of Theorem 2.

Proof of Theorem 3. We now study equation (4) in non-negative integers (n,m, a),
where, n,m 6= 0, 1, 2, 3, 5, 6, 8. If n = m, we have Pn = 2a�1. Then from Theorem 2
we get the first row of the solutions listed in Theorem 3. Thus we assume n > m.
Since the case m = 4 corresponds to those of Theorem 2, from now on we assume
that n > m > 7. From (6) we get

�n�7 < Pn < Pn + Pm = 2a and 2n > 2�n�1 > 2Pn > Pn + Pm = 2a,

since 2 > �. Then
�n�7 < 2a < 2n.

Again, since
1
3

<
log �

log 2
we have

(n� 7)
3

< a < n. (11)

If n 6 350 then we get a 6 349. We ran a Mathematica program in the range
7 6 m < n 6 350, 0 6 a 6 349, with our conventions, we obtained the remainder
solutions listed in Theorem 3.

From now on we assume n > 350. Then from (11) we have a > 114. From the
Binet formula (5) we rewrite (4) as

|2a � c1�
n| < 2|c2||�|n + �m�1 < 1 + �m�1 < 2�m�1 < �m+2,

where we use 2|c2|, |�| < 1 and 2 < �3. Dividing through by c1�n we get

|2a��nc�1
1 � 1| <

1
�n�m�9

, (12)

since �2 < c1�9. Put ⇤1 := 2a��nc�1
1 � 1. We note that ⇤1 = ⇤ where ⇤ is the one

given in the proof of Theorem 2. Since in this case a > 114, we also have ⇤1 6= 0.
Actually, since we are studying equation (4) we can prove that ⇤1 > 0. Indeed, by
rewriting (5) we get

c1�
n = |c1�

n| = |Pn � c2�
n � c3�

n| 6 Pn + 2|c2||�|n < Pn + 1 6 Pn + Pm = 2a,

since, m > 7. As we have noted ⇤ = ⇤1, we use the same ↵1, ↵2, ↵3 2 K and the
same b1, b2, b3, A1, A2, A3 to apply Matveev’s theorem to ⇤1. Thus we obtain

(n�m) log � < 1.46528⇥ 1013(1 + log n). (13)

Now we get a bound on n. From the Binet formula (5) we rewrite our equation (4)
as ��2a � c1(�n�m + 1)�m

�� = |c2�
n + c3�

n
+ c2�

m + c3�
m| < 4|c2||�|7 < 1
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Dividing through by c1(�n�m + 1)�m we get
���2a��m

�
c1(�n�m + 1)

��1 � 1
��� <

1
c1(�n + �m)

<
1

�n�7
, (14)

since 1 < c1�7. Put ⇤2 := 2a��m (c1(�n�m + 1))�1 � 1. We claim that ⇤2 6= 0. To
see this we consider the same Q-automorphism � of the Galois extension Q(�, �)
over Q given in the proof of Theorem 2. If ⇤2 = 0 then �(⇤2) = 0. Thus

2a = |c2 (�n + �m)| 6 2|c2||�|7 < 1

which is absurd since a > 114. Now we apply Matveev’s Theorem to ⇤2. To do
this, we take

↵1 = 2, ↵2 = �, ↵3 = c1(�n�m + 1) 2 K, b1 = a, b2 = �m, b3 = �1.

Thus B = n. Now, h(↵1), h(↵2) are already calculated. For ↵3 we use the height
properties and (13) to conclude that

h(↵3) 6
1.46529⇥ 1013

3
(1 + log n).

Thus, we take A1, A2 as above and A3 = 1.46529⇥1013(1+log n). From Matveev’s
theorem we obtain

log |⇤2| > �C · (1 + log n) · 2.1 · 0.3 ·
�
1.46529⇥ 1013(1 + log n)

�
,

which compared with (14) yields n < 3.5513⇥ 1026 (log n)2 and from Lemma 2 we
get

n < 5.30909⇥ 1030.

Now we will reduce the upper bound on n�m. To do this we go to equation (12)
and consider

�1 = a log 2� n log � + log(1/c1).

Note that e�1 � 1 = ⇤1 > 0. Then �1 > 0 and we have

0 < �1 < e�1 � 1 = |⇤1| <
1

�n�m�9
.

Dividing through by log � we get

0 < |a⌧ � n + µ| <
45

�n�m
, (15)

where
⌧ :=

log 2
log �

and µ :=
log(1/c1)

log �
.
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Let M := 5.30909⇥ 1030. Since a < n, a < M . With a Mathematica program, we
find that the denominator of the convergent

p80

q80
=

36188749486195288059611685803555963
14681241208508887086673603148214699

of ⌧ satisfies that q80 > 6M and that " = kq80 µk�Mkq80 ⌧k = 0.231411 > 0. Now,
from Lemma 1 applied to inequality (15) with A := 45, B := � we get

n�m <
log(q80 45/")

log �
< 299.

We will reduce the upper bound on n. To do this we go to equation (14) and
consider

�2 = a log 2�m log � + log(1/c1(�n�m + 1)).

Note that e�2 � 1 = ⇤2 6= 0. Thus �2 6= 0. If �2 > 0, then we obtain

0 < �2 6 e�2 � 1 = |⇤2| <
1

�n�7
.

From another hand, if �2 < 0 then we have that 1 � e�2 = |e�2 � 1| = |⇤2| < 1/2
since n > 350. Then e|�2| < 2. Thus

0 < |�2| < e|�2| � 1 = e|�2||⇤2| <
2

�n�7
.

So, in both cases we have that

0 < |�2| <
2

�n�7
.

Replacing �2 in the above inequality by its formula and dividing through by log �
we get

0 < |a⌧ �m + µ| <
51
�n

, (16)

where ⌧ is as above and

µ :=
log(1/c1(�n�m + 1))

log �
.

Now, we use Lemma 1 again. Consider

µ` =
log(1/c1(�` + 1))

log �
, ` = 1, 2, . . . , 298.

With Mathematica we find that the same 80-th convergent above of ⌧ well works for
all values of `, except to the case ` = 11. That is, q80 > 6M and "` > 0.00485795 > 0
for all ` = 1, 2 . . . , 298 except to the case ` = 11. With A := 51, B := � we calculated
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log(q80 51/"`)/ log � for each of these "`, and we found that the maximum value of
them is less than or equal to 312.

The problem in the case ` = 11 is that "11 is always less than 0. The reason for
this is that we have the identity

1
�5

=
2� + 3
�11 + 1

.

Thus inequality (16) is

0 < |a⌧ � (m + 5)| <
51
�n

and we use the theory of continued fractions to study it. Since n > 350 it follows
that �n > 102M > 102a. Thus from Legendre’s theorem we have that (m + 5)/a is
a i-th convergent of ⌧ and therefore

1
a2(ai+1 + 2)

<

����⌧ �
m + 5

a

���� .

A quick computation with Mathematica reveals that q70 6 M < q71 and that
b := max{a1, . . . , a71} = 80. In particular b > ai+1. Thus by combining the above
inequalities we get

�n < M · 51 · 82,

which implies n < 282. Thus, by combining the above result with this remaining
case we conclude that n 6 312. This contradicts our assumption on n and finishes
the proof of Theorem 3.
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