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Abstract
We express the newforms in S2(�0(N)) with N = 30, 33, 34, 35, 38, 40, 42, 44,
45 and 56 as linear combinations of eta quotients and Eisenstein series and list
their corresponding strong Weil curves. Then we give generating functions for the
group orders of these strong Weil curves on Zp, where p is a prime. At the end,
we use arithmetic properties of our generating functions to deduce some beautiful
congruences for these group orders.

1. Introduction

Let N, Z, Q and C denote the sets of positive integers, integers, rational numbers and
complex numbers, respectively. Let N 2 N. Let �0(N) be the modular subgroup
defined by

�0(N) =
⇢✓

a b
c d

◆
| a, b, c, d 2 Z, ad� bc = 1, c ⌘ 0 (mod N)

�
.

We write M2(�0(N)) to denote the space of modular forms of weight 2 for �0(N)
and S2(�0(N)) to denote the subspace of cusp forms of M2(�0(N)).

The Dedekind eta function ⌘(z) is the holomorphic function defined on the upper
half plane H = {z 2 C | Im(z) > 0} by the product formula

⌘(z) = e⇡iz/12
1Y

n=1

(1� e2⇡inz).
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A product of the form

f(z) =
Y

1�|N

⌘r�(�z),

where r� 2 Z, not all zero, is called an eta quotient. As in [6] we use the notation
q := q(z) = e2⇡iz. We set [n]f(z) := an for f(z) =

X

n2Z
anqn.

Martin and Ono [8] listed all the newforms in S2(�0(N)) that are eta quotients
and gave their corresponding strong Weil curves. There are such eta quotients only
for levels N = 11, 14, 15, 20, 24, 27, 32, 36, 48, 64, 80 and 144.

It is well-known that for modular forms we have

f(z) = ef (z) + of (z) + nf (z)

where ef (z), of (z) and nf (z) denote the Eisenstein part, oldform part and newform
part of the modular form f(z), respectively. Our approach to finding newforms in
M2(�0(N)) is taking an eta quotient from the space and extracting the Eisenstein
part and oldform part. If the dimension of the newform space is greater than 1
then the resulting newform part might be a linear combination of newforms. Such
a case occurs when N = 38 and 56, where we successfully manage to find the right
eta quotients to isolate two di↵erent newforms in each level.

In this paper we use the method described above to express the newforms in
S2(�0(N)) with N = 30, 33, 34 35, 38, 40, 42, 44, 45 and 56 as linear combinations
of eta quotients and Eisenstein series, and give their corresponding strong Weil
curves. Let E(Zp) denote the group of algebraic points of an elliptic curve E
over Zp, where p is a prime. We give generating functions for the group orders
|E(Zp)| of certain strong Weil curves in terms of eta quotients and Eisenstein series
(see Theorem 4). We then use our generating functions to deduce some beautiful
congruences for these group orders (see Corollary 1).

2. Preliminary Results

Appealing to [9, Theorem 1.64, p. 18] and [6, Corollary 2.3, p. 37] (see also [1, 5, 7]),
one can show that

⌘(z)⌘(3z)⌘3(10z)⌘3(30z)
⌘(2z)⌘(5z)⌘(6z)⌘(15z)

2 M2(�0(30)), (1)

⌘3(3z)⌘3(33z)
⌘(z)⌘(11z)

, ⌘2(3z)⌘2(33z), ⌘(z)⌘(3z)⌘(11z)⌘(33z) 2 M2(�0(33)),

⌘3(5z)⌘3(7z)
⌘(z)⌘(35z)

,
⌘3(z)⌘3(35z)
⌘(5z)⌘(7z)

2 M2(�0(35)),
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⌘4(2z)⌘4(38z)
⌘2(z)⌘2(19z)

,
⌘3(2z)⌘3(19z)

⌘(z)⌘(38z)
,
⌘3(z)⌘3(38z)
⌘(2z)⌘(19z)

,
⌘4(z)⌘4(19z)
⌘2(2z)⌘2(38z)

2 M2(�0(38)),

⌘2(z)⌘2(5z)⌘2(8z)⌘2(40z)
⌘(2z)⌘(4z)⌘(10z)⌘(20z)

2 M2(�0(40)),

⌘2(2z)⌘2(3z)⌘2(14z)⌘2(21z)
⌘(z)⌘(6z)⌘(7z)⌘(42z)

,
⌘2(z)⌘2(6z)⌘2(7z)⌘2(42z)
⌘(2z)⌘(3z)⌘(14z)⌘(21z)

2 M2(�0(42)),

⌘3(4z)⌘3(11z)
⌘(z)⌘(44z)

,
⌘3(z)⌘3(44z)
⌘(4z)⌘(11z)

2 M2(�0(44)),

⌘(3z)⌘2(5z)⌘2(9z)⌘(15z)
⌘(z)⌘(45z)

,
⌘2(z)⌘(3z)⌘(15z)⌘2(45z)

⌘(5z)⌘(9z)
2 M2(�0(45)),

⌘(4z)⌘3(14z)⌘(28z)
⌘(2z)

,
⌘10(4z)⌘4(56z)

⌘4(2z)⌘4(8z)⌘2(28z)
,
⌘3(4z)⌘(8z)⌘2(14z)⌘(56z)

⌘2(2z)⌘(28z)
,

⌘(2z)⌘2(4z)⌘6(28z)
⌘(8z)⌘3(14z)⌘(56z)

2 M2(�0(56)),

⌘4(4z)⌘4(68z)
⌘2(2z)⌘2(34z)

,
⌘10(2z)⌘10(34z)

⌘4(z)⌘4(4z)⌘4(17z)⌘4(68z)
2 M2(�0(68)).

The Eisenstein series L(z) is defined as

L(z) := � 1
24

+
X

n>0

�(n)qn,

where �(n) =
X

0<m|n

m is the sum of divisors function. By [11, Theorem 5.8] we

have

Lt(z) := L(z)� tL(tz) 2 M2(�0(N)) for all 1  t | N. (2)

Below we state the Sturm theorem specialized for M2(�0(N)). The following theo-
rem can be used to show the equality of given modular forms.

Theorem 1. [5, Theorem 3.13] Let f(z), g(z) 2 M2(�0(N)) have the Fourier series
expansions

f(z) =
1X

n=0

anqn and g(z) =
1X

n=0

bnqn.

The Sturm bound S(N) for the modular space M2(�0(N)) is given by

S(N) =
N

6

Y

p|N

�
1 + 1/p

�
, (3)

and so if an = bn for all n  S(2k) then f(z) = g(z).
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Using (3) we compute

S(30) = 12, S(33) = 8, S(35) = 8, S(34) = 9, S(38) = 10, (4)
S(40) = 12, S(42) = 16, S(44) = 12, S(45) = 12, S(56) = 16.

3. Newforms in S2(�0(N)) for N = 30, 33, 34, 35, 38, 40, 42, 44, 45, 56
as Linear Combinations of Eta Quotients and Eisenstein Series

Theorem 2. Let N 2 {30, 33, 34, 35, 38, 40, 42, 44, 45, 56}. In Table 1 below we
express all the newforms FN (z) in S2(�0(N)) as linear combinations of eta quotients
and Eisenstein series.

Level Newform Eta quotients and Eisenstein series

30 F30(z) = 6
⌘(z)⌘(3z)⌘3(10z)⌘3(30z)
⌘(2z)⌘(5z)⌘(6z)⌘(15z)

+ 2L2(z) + L3(z)

+
1
5
L5(z)� 2L6(z)� 2

5
L10(z)� 1

5
L15(z) +

2
5
L30(z)

33 F33(z) = �10
⌘3(3z)⌘3(33z)

⌘(z)⌘(11z)
� 6⌘2(3z)⌘2(33z)

�2⌘(z)⌘(3z)⌘(11z)⌘(33z) +
1
3
L3(z) + L11(z)� 1

3
L33(z)

34 F34(z) = 6
⌘4(4z)⌘4(68z)
⌘2(2z)⌘2(34z)

+
3
8

⌘10(2z)⌘10(34z)
⌘4(z)⌘4(4z)⌘4(17z)⌘4(68z)

�1
2
L2(z) +

1
2
L17(z)� 1

2
L34(z)

35 F35(z) = 3
⌘3(5z)⌘3(7z)
⌘(z)⌘(35z)

� ⌘3(z)⌘3(35z)
⌘(5z)⌘(7z)

+
4
5
L5(z)� 5

7
L7(z)� 73

35
L35(z)

38 F38A(z) =
3
7

⌘3(z)⌘3(38z)
⌘(2z)⌘(19z)

� 18
7

⌘4(2z)⌘4(38z)
⌘2(z)⌘2(19z)

� 3
7

⌘3(2z)⌘3(19z)
⌘(z)⌘(38z)
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Level Newform Eta quotients and Eisenstein series

� 9
28

⌘4(z)⌘4(19z)
⌘2(2z)⌘2(38z)

� 1
7
L2(z) +

1
7
L19(z) +

1
7
L38(z)

38 F38B(z) =
⌘3(2z)⌘3(19z)

⌘(z)⌘(38z)
+

⌘3(z)⌘3(38z)
⌘(2z)⌘(19z)

40 F40(z) = �4
⌘2(z)⌘2(5z)⌘2(8z)⌘2(40z)
⌘(2z)⌘(4z)⌘(10z)⌘(20z)

+
3
2
L2(z) +

3
2
L4(z) + L5(z)

�L8(z)� 3
2
L10(z)� 3

2
L20(z) + L40(z)

42 F42(z) = �8
⌘(2z)⌘(3z)⌘2(7z)⌘2(42z)

⌘(z)⌘(6z)
� 8

⌘(z)⌘(6z)⌘2(14z)⌘2(21z)
⌘(2z)⌘(3z)

+L2(z)� L3(z) + L6(z) +
1
7
L7(z)� 1

7
L14(z)

+
1
7
L21(z)� 1

7
L42(z)

44 F44(z) = 3
⌘3(4z)⌘3(11z)

⌘(z)⌘(44z)
� 3

⌘3(z)⌘3(44z)
⌘(4z)⌘(11z)

� 2L4(z)

+2L11(z)� 2L44(z)

45 F45(z) = 2
⌘(3z)⌘2(5z)⌘2(9z)⌘(15z)

⌘(z)⌘(45z)
� 2

⌘2(z)⌘(3z)⌘(15z)⌘2(45z)
⌘(5z)⌘(9z)

+L5(z)� 2
3
L9(z)� 2

5
L15(z)� 14

15
L45(z)

56 F56A(z) = �4
⌘(4z)⌘3(14z)⌘(28z)

⌘(2z)
� 2

⌘10(4z)⌘4(56z)
⌘4(2z)⌘4(8z)⌘2(28z)

+
3
2
L2(z)� 1

2
L4(z) +

3
7
L7(z)� 9

14
L14(z) +

3
14

L28(z)

56 F56B(z) = �4
⌘3(4z)⌘(8z)⌘2(14z)⌘(56z)

⌘2(2z)⌘(28z)
+ 2

⌘(2z)⌘2(4z)⌘6(28z)
⌘(8z)⌘3(14z)⌘(56z)
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Level Newform Eta quotients and Eisenstein series

+
3
2
L2(z)� 1

2
L4(z)� L7(z) +

3
2
L14(z)� 1

2
L28(z)

Table 1: Newforms in S2(�0(N)) for N = 30, 33, 34, 35, 38, 40, 42, 44,

45, 56

Proof. In [3, Table 3] each newform in S2(�0(N)) for N < 1000 has been given by
listing its Fourier coe�cients for primes up to 100. Using the results from [3, p.
25] together with [3, Table 3] we determine the first S(N) + 1 terms of the Fourier
series expansions of all the newforms in S2(�0(N)) for N = 30, 33, 34 35, 38, 40,
42, 44, 45, 56. We give them in Table 2 below.

N First S(N) + 1 terms of the newforms in S2(�0(N))

30 q � q2 + q3 + q4 � q5 � q6 � 4q7 � q8 + q9 + q10 + q12 + O(q13),

33 q + q2 � q3 � q4 � 2q5 � q6 + 4q7 � 3q8 + O(q9),

34 q + q2 � 2q3 + q4 � 2q6 � 4q7 + q8 + O(q9)

35 q + q3 � 2q4 � q5 + q7 + O(q9),

38A q � q2 + q3 + q4 � q6 � q7 � q8 � 2q9 + O(q11),

38B q + q2 � q3 + q4 � 4q5 � q6 + 3q7 + q8 � 2q9 � 4q10 + O(q11),

40 q + q5 � 4q7 � 3q9 + 4q11 + O(q13),

42 q + q2 � q3 + q4 � 2q5 � q6 � q7 + q8 + q9 � 2q10 � 4q11 � q12

+6q13 � q14 + 2q15 + q16 + O(q17),

44 q + q3 � 3q5 + 2q7 � 2q9 � q11 + O(q13),

45 q + q2 � q4 � q5 � 3q8 � q10 + 4q11 + O(q13),

56A q + 2q5 � q7 � 3q9 � 4q11 + 2q13 + O(q17),

56B q + 2q2 � 4q4 + q6 + q8 � 8q14 � 2q16 + O(q17).

Table 2: First S(N) + 1 terms of the Fourier series expansions of
the newforms in S2(�0(N))

Let us consider the function F30(z) from Table 1. By (1) and (2), we have
F30(z) 2 M2(�0(30)). Using MAPLE we determine the first 13 terms of the Fourier
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series expansion of F30(z) as

F30(z) = q � q2 + q3 + q4 � q5 � q6 � 4q7 � q8 + q9 + q10 + q12 + O(q13),

which are the same as the first 13 terms of the newform in S2(�0(30)) in Table 2.
Thus, by Theorem 1, F30(z) must be equal to the newform in S2(�0(30)) in Table
2. The remaining cases can be proven similarly. Note that there are two di↵erent
newforms in S2(�0(38)) and S2(�0(56)), we follow the notation in [3, Table 3] and
label them as A and B in our tables.

4. Main Results

We first note that if E is an elliptic curve over Q with conductor N , then by
modularity theorem there exists a newform f 2 S2(�0(N)) such that

[p]fE(z) = p + 1� |E(Zp)| for p - N,

see [5, p. 120], [4, Theorem 8.8.1]. We deduce Theorem 3 from [3, Table 1].

Theorem 3. Table 3 below is a list of elliptic curves, more specifically strong Weil
curves, corresponding to the newforms given in Table 1.

Newform Strong Weil curve a1 a2 a3 a4 a6

F30(z) E30A 1 0 1 1 2

F33(z) E33A 1 1 0 �11 0

F34(z) E34A 1 0 0 �3 1

F35(z) E35A 0 1 1 9 1

F38A(z) E38A 1 0 1 9 90

F38B(z) E38B 1 1 1 0 1

F40(z) E40A 0 0 0 �7 �6

F42(z) E42A 1 1 1 �4 5

F44(z) E44A 0 1 0 3 �1

F45(z) E45A 1 �1 0 0 �5

F56A(z) E56A 0 0 0 1 2

F56B(z) E56B 0 �1 0 0 �4

Table 3: y2 + a1xy + a3y = x3 + a2x2 + a4x + a6
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We are now ready to present our main results in Theorem 4 below. We use
Theorems 2 and 3 to give generating functions for the group orders |EN (Zp)| of
elliptic curves in Table 3. Among many other possibilities, we have chosen the
linear combinations of eta quotients and Eisenstein series in Table 1 in a way that
we can deduce the congruences for these group orders in Corollary 1.

Theorem 4. Consider the elliptic curves listed in Table 3. We have

|E30A(Zp)| = �6[p]

✓
⌘(z)⌘(3z)⌘3(10z)⌘3(30z)

⌘(2z)⌘(5z)⌘(6z)⌘(15z)

◆
for all p - 30,

|E33A(Zp)| = 2[p]

✓
5

⌘3(3z)⌘3(33z)

⌘(z)⌘(11z)
+ ⌘(z)⌘(3z)⌘(11z)⌘(33z)

◆
for all p - 33,

|E34A(Zp)| =
3(p + 1)

2
� 3[p]

⇣
2

⌘4(4z)⌘4(68z)

⌘2(2z)⌘2(34z)
+

1

8

⌘10(2z)⌘10(34z)

⌘4(z)⌘4(4z)⌘4(17z)⌘4(68z)

⌘
for all p - 34,

|E35A(Zp)| = 3(p + 1)� [p]

✓
3

⌘3(5z)⌘3(7z)

⌘(z)⌘(35z)
�

⌘3(z)⌘3(35z)

⌘(5z)⌘(7z)

◆
for all p - 35,

|E38A(Zp)| =
6

7
(p + 1)�

3

7
[p]

✓
⌘3(z)⌘3(38z)

⌘(2z)⌘(19z)
� 6

⌘4(2z)⌘4(38z)

⌘2(z)⌘2(19z)
�

⌘3(2z)⌘3(19z)

⌘(z)⌘(38z)

�
3

4

⌘4(z)⌘4(19z)

⌘2(2z)⌘2(38z)

◆
for all p - 38,

|E38B(Zp)| = (p + 1)� [p]

✓
⌘3(2z)⌘3(19z)

⌘(z)⌘(38z)
+

⌘3(z)⌘3(38z)

⌘(2z)⌘(19z)

◆
for all p - 38,

|E40A(Zp)| = 4[p]

✓
⌘2(z)⌘2(5z)⌘2(8z)⌘2(40z)

⌘(2z)⌘(4z)⌘(10z)⌘(20z)

◆
for all p - 40,

|E42A(Zp)| = 8[p]

✓
⌘(2z)⌘(3z)⌘2(7z)⌘2(42z)

⌘(z)⌘(6z)
+

⌘(z)⌘(6z)⌘2(14z)⌘2(21z)

⌘(2z)⌘(3z)

◆
for all p - 42.

|E44A(Zp)| = 3(p + 1)� 3[p]

✓
⌘3(4z)⌘3(11z)

⌘(z)⌘(44z)
�

⌘3(z)⌘3(44z)

⌘(4z)⌘(11z)

◆
for all p - 44,

|E45A(Zp)| = 2(p + 1)�2[p]

✓
⌘(3z)⌘2(5z)⌘2(9z)⌘(15z)

⌘(z)⌘(45z)
�

⌘2(z)⌘(3z)⌘(15z)⌘2(45z)

⌘(5z)⌘(9z)

◆
for all p - 45,

|E56A(Zp)| = 2[p]

✓
2

⌘(4z)⌘3(14z)⌘(28z)

⌘(2z)
+

⌘10(4z)⌘4(56z)

⌘4(2z)⌘4(8z)⌘2(28z)

◆
for all p - 56,

|E56B(Zp)| = 2[p]

✓
2

⌘3(4z)⌘(8z)⌘2(14z)⌘(56z)

⌘2(2z)⌘(28z)
�

⌘(2z)⌘2(4z)⌘6(28z)

⌘(8z)⌘3(14z)⌘(56z)

◆
for all p - 56.

Proof. We just prove the equalities for |E30A(Zp)| and |E45A(Zp)| as the remaining
ones can be proven similarly. By Theorems 2, 3 and modularity theorem, for all
p - 30, we have

|E30A(Zp)| = p + 1� [p]F30A(z)

= p + 1� [p]
⇣
6
⌘(z)⌘(3z)⌘3(10z)⌘3(30z)
⌘(2z)⌘(5z)⌘(6z)⌘(15z)

+ 2L2(z) + L3(z) +
1
5
L5(z)� 2L6(z)� 2

5
L10(z)� 1

5
L15(z) +

2
5
L30(z)

⌘

= p + 1� 6[p]
⇣⌘(z)⌘(3z)⌘3(10z)⌘3(30z)

⌘(2z)⌘(5z)⌘(6z)⌘(15z)

⌘
� �(p)
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= �6[p]
⇣⌘(z)⌘(3z)⌘3(10z)⌘3(30z)

⌘(2z)⌘(5z)⌘(6z)⌘(15z)

⌘
,

which completes the proof of the first equality.
Again by Theorems 2, 3 and modularity theorem, for all p - 45, we have

|E45A(Zp)| = p + 1� [p]F45(z)

= p + 1� [p]
⇣
2
⌘(3z)⌘2(5z)⌘2(9z)⌘(15z)

⌘(z)⌘(45z)
� 2

⌘2(z)⌘(3z)⌘(15z)⌘2(45z)
⌘(5z)⌘(9z)

+ L5(z)� 2
3
L9(z)� 2

5
L15(z)� 14

15
L45(z)

⌘

= p + 1� 2[p]
⇣⌘(3z)⌘2(5z)⌘2(9z)⌘(15z)

⌘(z)⌘(45z)
� ⌘2(z)⌘(3z)⌘(15z)⌘2(45z)

⌘(5z)⌘(9z)

⌘
+ �(p)

= 2(p + 1)� 2[p]
⇣⌘(3z)⌘2(5z)⌘2(9z)⌘(15z)

⌘(z)⌘(45z)
� ⌘2(z)⌘(3z)⌘(15z)⌘2(45z)

⌘(5z)⌘(9z)

⌘
,

which completes the proof of the last equality.

The following congruences follow immediately from Theorem 4.

Corollary 1. We have

|E30A(Zp)| ⌘ 0 (mod 6) for all p - 30,
|E33A(Zp)| ⌘ 0 (mod 2) for all p - 33,
|E34A(Zp)| ⌘ 0 (mod 3) for all p - 34,
|E38A(Zp)| ⌘ 0 (mod 3) for all p - 38,
|E40A(Zp)| ⌘ 0 (mod 4) for all p - 40,
|E42A(Zp)| ⌘ 0 (mod 8) for all p - 42,
|E44A(Zp)| ⌘ 0 (mod 3) for all p - 44,
|E45A(Zp)| ⌘ 0 (mod 2) for all p - 45,
|E56A(Zp)| ⌘ 0 (mod 2) for all p - 56,
|E56B(Zp)| ⌘ 0 (mod 2) for all p - 56.

5. Alternative Representations for Newforms in S2(�0(N)) for N = 11,
14, 15, 20, 24, 33, 40, 42 and Further Congruences

We use a computer algorithm to go through all possible linear combinations of
eta quotients and Eisenstein series which correspond to newforms in S2(�0(N))
with N = 30, 33, 34,35, 38, 40, 42, 44, 45 and 56. In Table 1 we give the linear
combinations which are suitable for deducing the congruences for the group orders
in Corollary 1. In Table 4 below we give alternative representations for the newforms
FN (z) in S2(�0(N)) for N = 33, 40, 42, which have fewer number of functions in
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the linear combinations. We note that the representation for F 0
33(q) is the same as

that of the one in [10].

Level Newform Eta quotients and Eisenstein series

33 F 0
33(q) = 3⌘2(3z)⌘2(33z) + 3⌘(z)⌘(3z)⌘(11z)⌘(33z) + ⌘2(z)⌘2(11z)

40 F 0
40(q) = 2⌘2(2z)⌘2(10z)� ⌘(2z)⌘2(8z)⌘5(20z)

⌘(4z)⌘(10z)⌘2(40z)

42 F 0
42(q) =

⌘2(2z)⌘2(3z)⌘2(14z)⌘2(21z)
⌘(z)⌘(6z)⌘(7z)⌘(42z)

� ⌘2(z)⌘2(6z)⌘2(7z)⌘2(42z)
⌘(2z)⌘(3z)⌘(14z)⌘(21z)

Table 4: Alternative Representations for Newforms in M2(�0(N)),
where N = 33, 40, 42.

In [8], Martin and Ono represented all the newforms in S2(�0(N)) for N = 11,
14, 15, 20, 24, 27, 32, 36, 48, 64, 80, 144 in terms of single eta quotients. In Table
5 below we give alternative representations for the newforms FN (z) 2 S2(�0(N))
for N = 11, 14, 15, 20, 24 by using arguments from this paper. We then deduce
congruence relations similar to Corollary 1 for the group orders of the corresponding
strong Weil curves with conductors 11, 14, 15, 20 and 24.

Level Newform Eta quotients and Eisenstein series

11 F11(z) =�5
⌘4(2z)⌘4(22z)
⌘2(z)⌘2(11z)

� 4⌘2(2z)⌘2(22z) +
1
2
L2(z) + L11(z)� 1

2
L22(z)

14 F14(z) =
6
5

⌘5(z)⌘5(14z)
⌘3(2z)⌘3(7z)

+
13
5

L2(z)� 13
5

L7(z) + L14(z)

15 F15(z) =�4
⌘3(3z)⌘3(15z)

⌘(z)⌘(5z)
+

1
3
L3(z) + L5(z)� 1

3
L15(z)

20 F20(z) =�6⌘20[0,�2, 4, 0,�2, 4](z)

+3
2L2(z)� 1

2L4(z)� L5(z) + 3
2L10(z)� 1

2L20(z)
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Level Newform Eta quotients and Eisenstein series

24 F24(z) = �2⌘24[4,�2, 0, 0, 0, 0,�2, 4](z) + 3
2L2(z) + L3(z)

+3
2L4(z)� 3

2L6(z)� L8(z)� 3
2L12(z) + L24(z)

Table 5: Alternative Representations for Newforms in M2(�0(N)),
where N = 11, 14, 15, 20, 24.

Corresponding strong Weil curves with conductors 11, 14, 15, 20 and 24 are

E11A : y2 + y = x3 � x2 � 10x� 20,
E14A : y2 + xy + y = x3 + 4x� 6,
E15A : y2 + xy + y = x3 + x2 � 10x� 10,
E20A : y2 = x3 + x2 + 4x + 4,
E24A : y2 = x3 � x2 � 4x + 4,

respectively, see [3, Table 1] and [8]. Similar to Theorem 4, we obtain

|E11A(Zp)| = 5[p]
✓

⌘4(2z)⌘4(22z)
⌘2(z)⌘2(11z)

◆
for all p - 11,

|E14A(Zp)| = �6
5
[p]

✓
⌘5(z)⌘5(14z)
⌘3(2z)⌘3(7z)

◆
for all p - 14,

|E15A(Zp)| = 4[p]
✓

⌘3(3z)⌘3(15z)
⌘(z)⌘(5z)

◆
for all p - 15,

|E20A(Zp)| = 6[p]
✓

⌘4(4z)⌘4(20z)
⌘2(2z)⌘2(10z)

◆
for all p - 20,

|E24A(Zp)| = 2[p]
✓

⌘4(z)⌘4(24z)
⌘2(2z)⌘2(12z)

◆
for all p - 24.

Thus, similar to Corollary 1, we deduce the congruence relations

|E11A(Zp)| ⌘ 0 (mod 5) for all p - 11,
|E14A(Zp)| ⌘ 0 (mod 6) for all p - 14,
|E15A(Zp)| ⌘ 0 (mod 4) for all p - 15,
|E20A(Zp)| ⌘ 0 (mod 6) for all p - 20,
|E24A(Zp)| ⌘ 0 (mod 2) for all p - 24.
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