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Abstract
Given a base b, a “digit map” is a map f : Z�0 ! Z�0 of the form f(

Pn
i=0 aibi) =Pn

i=0 f⇤(ai) where
P

i aibi is the base b representation and f⇤ : {0, 1, . . . , b� 1} !
Z�0 satisfies f⇤(0) = 0, f⇤(1) = 1, and gcd(f⇤(b� 1), b) = 1. Suppose further there
exists some m⇤, 0  m⇤  b � 1, such that f(m⇤) � m⇤ is relatively prime to
f(b� 1). We generalize recent results on so-called ‘happy numbers’ to general digit
maps, showing that any periodic point, that is, under iterates of the digit map, can
eventually be reached by arbitrarily long sequences of consecutive positive integers.

1. Introduction

Functions that act on digits of an integer, such as digit sums, are natural to study.
In this paper, we look at functions that take in a positive integer and output the
sum of its values on the digits of that integer. Precisely, for a fixed base b, we start
with a function f⇤ that acts on the digits in base b, i.e., f⇤ : {0, 1, . . . , b � 1} !
Z�0. Then, we extend f⇤ to a function f on the non-negative integers given by
f(

Pn
i=0 aibi) =

Pn
i=0 f⇤(ai) where 0  ai  b� 1.

In Richard Guy’s book “Unsolved Problems in Number Theory”, Guy poses
many questions regarding (2, 10)-happy numbers [2]. An (e, b)-happy number is a
number that, under iterates of the digit map f induced by f⇤(m) = me (in base b),
eventually reaches 1. In [1], Pan proved that there exist arbitrarily long sequences
of consecutive (e, b)-happy numbers assuming that if a prime p divides b� 1, then
the integer p� 1 does not divide e� 1. As we will show, this is a special case of our
main result.

A question appearing in Guy’s book [2] is that of gaps in the happy number
sequence. In this paper, we give an answer to this question by, in particular, showing
that there are arbitrarily large gaps in the (e, b) happy number sequence, assuming
that if a prime p divides b� 1, then p� 1 does not divide e� 1.

We study more general digit maps f . It is well-known and easy to see that any
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positive integer eventually ends up in some finite cycle under digit maps, where
here a finite cycle is some collection of positive integers {n1, . . . , nk} such that
f(ni) = ni+1 for 1  i  k�1 and f(nk) = f(n1). For example, the cycles generated
by the (2, 10)-happy number digit map are {1} and {4, 16, 37, 58, 89, 145, 42, 20}. A
gap in the happy number sequence, therefore, corresponds to consecutive numbers
that end up in the latter cycle. In this paper, a special case of what we prove
is that indeed for any u in an (e, b)-happy number cycle, we can find arbitrarily
long sequences of consecutive integers that end up in the same cycle as u. More
interestingly, we show that for any digit map satisfying certain weak hypotheses, and
any positive integer in a cycle, we can find arbitrarily long sequences of consecutive
positive integers ending up in that cycle.

Fix a base b and a digit function f . We call a positive integer u in some cycle a
cycle number and any positive integer ending up in that cycle a u-integer.

Theorem 1.1. Fix a base b. Suppose f is a digit map such that f(0) = 0, f(1) =
1, gcd(f(b�1), b) = 1, and there is some digit 0  m⇤  b�1 such that f(m⇤)�m⇤
is relatively prime to f(b�1). Then for any cycle number u and any positive integer
n, there exist n consecutive u-integers.

For example, working in base 10, if we construct the digit map f⇤ : {0, . . . , 9} !
Z�0 given by f⇤(0) = 0, f⇤(1) = 1 and f⇤(9) = 7, then no matter where we send
2, 3, 4, 5, 6, 7, and 8, we are guaranteed that there will exist arbitrarily long sequences
of consecutive positive integers such that when we apply f enough times, they will
end up at 1, say. The result of Theorem 1.1 consumes the work of H. Pan [1], H.
Grundman and E. A. Teeple in [3], and E. El-Sedy and S. Siksek in [4].

Note that the assumption in the theorem statement about the existence of m⇤
cannot be removed. Indeed, in base 10, consider the map f⇤(j) = j for 0  j  9.
The cycles are {1}, {2}, . . . , {9}, and the obtained f : N ! N preserves the residue
mod 3 of the input. So, for example, we cannot have two consecutive 1-integers.

2. Proof of Theorem 1.1

We use a few short results in Pan’s proof of Theorem 1.1, and introduce new tech-
niques and results in Lemma 2.3 and Corollary 2.2. Specifically, the proofs of Lemma
2.1, Corollary 2.1, and Lemma 2.2 are basically identical to the proofs given by Pan;
we just fit them to our notation.

Lemma 2.1. Let x and m be arbitrary positive integers. Then for each r � 1, there
exists a positive integer l such that

fr(l + y) = fr(l) + fr(y) = x + fr(y)
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for each 1  y  m.

Proof. We use induction on r. When r = 1, choose a positive integer s such that
bs > m and let

l1 =
x�1X

j=0

bs+j .

Clearly for any 1  y  m,

f(l1 + y) = f(l1) + f(y) = x + f(y).

Now assume r > 1 and the assertion of Lemma 2.1 holds for the smaller values of
r. Note there exists an m0 such that f(y)  m0 for 1  y  m. Therefore, by
induction hypothesis, there exists an lr�1 such that

fr�1(lr�1 + f(y)) = fr�1(lr�1) + fr�1(f(y)) = x + fr(y)

for 1  y  m. Let

lr =
lr�1�1X

j=0

bs+j

where s satisfies bs > m. Then,

fr(lr) = fr�1(f(lr)) = fr�1(lr�1) = x

and for each 1  y  m,

fr(lr + y) = fr�1(f(lr + y)) = fr�1(f(lr) + f(y))
= fr�1(lr�1 + f(y)) = fr�1(lr�1) + fr(y) = fr(lr) + fr(y).

Definition 2.1. Let D = D(f⇤, b) be the set of all positive integers that are in some
cycle, that is n 2 D if and only if fr(n) = n for some r � 1. It is easy to see that
D is finite.

Definition 2.2. Take some u 2 D. Then we say a positive integer n is a u-integer
if fr(n) = u for some r � 1. Further, we say two positive integers m,n are concur-
rently u-integers if for some r � 1, fr(m) = fr(n) = u.

Note that two u-integers m,n are not concurrently u-integers only if u belongs
to a cycle of length greater than 1 in D and m,n are at di↵erent places in the cycle
at a certain time. Note “concurrently u-integers” is a transitive relation. Now fix u
and we will prove that there are arbitrarily long sequences of consecutive u-integers.
First, we make a reduction.
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Corollary 2.1. Assume that there exists h 2 Z+ such that h+x is a u-integer for all
x 2 D. Then for arbitrary m 2 Z+, there exists l 2 Z+ such that l+1, l+2, . . . , l+m
are u-integers.

Proof. By the definition of D, there exists r 2 Z+ such that fr(y) 2 D for all
1  y  m. By Lemma 2.1, there exists l 2 Z+ so that

fr(l + y) = h + fr(y)

for 1  y  m. Since fr(l+y) is then a u-integer, l+y is as well, for 1  y  m.

Lemma 2.2. Assume that for each x 2 D there exists hx 2 Z+ such that hx + u
and hx + x are concurrently u-integers. Then there exists h 2 Z+ such that h + x
is a u-integer for each x 2 D.

Proof. We shall prove that, under the assumption of Lemma 2.2, for each subset X
of D containing u, there exists hX 2 Z+ such that hX + x is a u-integer for each
x 2 X.

The cases |X| = 1 and |X| = 2 are clear. Assume |X| > 2 and that the assertion
holds for every smaller value of |X|. Take some x 2 X, with x 6= u. Then hx+u and
hx +x are concurrently u-integers, so take r 2 Z+ large enough so that fr(hx +u) =
fr(hx + x) = u and fr(hx + y) 2 D for all y 2 X. Let X⇤ = {fr(hx + y)|y 2 X}.
Then, X⇤ is clearly a subset of D containing u with |X⇤| < |X|. Therefore, by
induction, there exists hX⇤ 2 Z+ such that hX⇤ + fr(hx + y) is a u-integer for each
y 2 X. By Lemma 2.1, there exists l 2 Z+ satisfying

fr(l + hx + y) = hX⇤ + fr(hx + y)

for every y 2 X. Thus, hX := l + hx works.

We now proceed to prove the hypothesis of Lemma 2.2. Note that it su�ces to
show that for any fixed di↵erence d, we can find two concurrent u-integers with
di↵erence d. This is the statement of Corollary 2.2.

Lemma 2.3. Let h be a u-integer. Then for every integer a, there exists a u-integer
l such that l ⌘ a (mod f(b�1)), and such that l and h are concurrently u-integers.

Proof. Let l1 be a u-integer such that l1 > f(b� 1)f(m⇤). We show we can take l2
such that l2 ⌘ a (mod f(b� 1)) and f(l2) = l1.

Since f(m⇤)�m⇤ is relatively prime to f(b� 1), we can solve

l1 � r(f(m⇤)�m⇤) ⌘ a (mod f(b� 1))
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with 0  r < f(b�1). Note there are infinitely many j � 1 with bj ⌘ 1 (mod f(b�
1)). Let j1 < j2 < · · · < jl1�rf(m⇤) < t1 < t2 < · · · < tr satisfy bji ⌘ bti ⌘ 1
(mod f(b� 1)) and btj+1 > m⇤btj . Now let

l2 =
l1�rf(m⇤)X

n=1

bjn + m⇤b
t1 + · · · + m⇤b

tr .

Note by our choice of l1, the indices of the j’s and of the sum are valid. So,

f(l2) = l1 � rf(m⇤) + rf(m⇤) = l1

and
l2 ⌘ l1 � rf(m⇤) + rm⇤ ⌘ a (mod f(b� 1)),

as desired.
Now we generate l3, l4, . . . inductively by choosing ln+1 so that ln+1 ⌘ a (mod f(b�

1)) and f(ln+1) = ln. Note that since the cycle that u is in is finite, it must be that
one of the ln’s is concurrently a u-integer with h.

Corollary 2.2. For each x 2 Z+, there is a u-integer l such that l and l + x are
concurrently u-integers.

Proof. Fix x 2 Z+. Take s 2 Z+ such that bs > x. Let x1 = bs � x. Take a
u-integer h0 such that

h0 ⌘ f(x1) (mod f(b� 1)).

Let V be the cycle set that u is in. By Lemma 2.3, for each v0 2 V , there exists lv0

such that lv0 ⌘ 1 (mod f(b� 1)), and lv0 and v0 are concurrently u-integers. Fixing
an lv0 for each v0 2 V , let M = maxv02V lv0 .

Since the proof of Lemma 2.3 guarantees infinitely many u-integers in a given
residue, we may (and do) fix h > f(x1) + M to be a u-integer with h ⌘ f(x1)
(mod f(b � 1)). Let v be in the cycle of u so that h and v are concurrently u-
integers. Now take the u-integer N = lv so that N ⌘ 1 (mod f(b� 1)), and N and
v are concurrently u-integers. Take a positive integer t so that bt > bs+b h

f(b�1) c+1.
Let x2 = x1 + bt

PN�1
j=1 bj . Note f(x2) = f(x1) + (N � 1) since bt > bs > x1. Thus,

f(x2) ⌘ f(x1) ⌘ h (mod f(b� 1)).

Also note, f(x2) = f(x1)+(N�1)  f(x1)+M�1 < h. Write h = f(b�1)k+f(x2)
and note that we have k > 0. Also note k  b h

f(b�1)c+ 1 < t� s. Let

l = x2 +
k�1X

j=0

(b� 1)bs+j .
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Then,

f(l) = f

0

@x1 + bt
N�1X

j=1

bj + bs
k�1X

j=0

(b� 1)bj

1

A

= f

0

@x1 + bs[bt�s
N�1X

j=1

bj +
k�1X

j=0

(b� 1)bj ]

1

A

= f(x1) + f(bt�s
N�1X

j=1

bj +
k�1X

j=0

(b� 1)bj),

and since
Pk�1

j=0 (b� 1)bj = bk � 1 < bt�s,

f(l) = f(x1) + (N � 1) + kf(b� 1) = f(x2) + kf(b� 1) = h.

Further,

f(l + x) = f

0

@bs +
k�1X

j=0

(b� 1)bs+j + bt
N�1X

j=1

bj

1

A = f

0

@bs+k + bt
N�1X

j=1

bj

1

A

which is equal to N . Since h and N are concurrently u-integers, it follows that l
and l + x are concurrently u-integers, as desired.

Theorem 1.1 now follows from Corollary 2.1, Lemma 2.2, and Corollary 2.2.

We finish by showing that, in the generalized happy number setup, the assump-
tion in Theorem 1.1 is satisfied (clearly f(0) = 0, f(1) = 1, and gcd(b, f(b�1)) = 1).
Recall we assume that if a prime p divides b � 1, then p � 1 does not divide
e � 1. Write b � 1 = p↵1

1 . . . p↵k
k for distinct primes pi. For all i, let gi satisfy

( b�1
p

↵i
i

gi)e 6⌘ b�1
p

↵i
i

gi (mod pi) — any generator of Z⇥pi
times ( b�1

p
↵i
i

)�1 (mod pi) will do.

Then let g =
P

i
b�1
p

↵i
i

gi so that g ⌘ b�1
p

↵i
i

gi (mod pi), and thus for all i, ge ⌘ ( b�1
p

↵i
i

)ege
i

(mod pi) which is indeed not congruent to g (mod pi) by our choice of gi. Now just
reduce g (mod b� 1) so that we get a digit g that satisfies f(g)� g 6⌘ 0 (mod pi)
for every pi | b� 1. Hence gcd(f(g)� g, f(b� 1)) = gcd(f(g)� g, (b� 1)e) = 1, as
desired.
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