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Abstract
We introduce a representation of the integers based only on Fibonacci numbers
of odd index. Then we give an elementary combinatorial proof of the fact that a
positive integer n is a Fibonacci number of even index if and only if hn'i+ 1

n > 1.

1. Introduction

The Fibonacci numbers are recursively defined from F1 = F2 = 1 by Fn+2 =
Fn+1 +Fn, for all n 2 N. We say that m is a Fibonacci number of even (resp. odd)
index if there exists an even (resp. odd) number n such that m = Fn.

In the rest of the paper, we denote by ' the so called “golden section”, i.e.,
' = 1+

p
5

2 . For all x 2 R, we denote by hxi and by bxc the fractional and the
integer part of x, respectively. Clearly hxi = x� bxc.

Some characterizations of the Fibonacci numbers of even and odd index appear
in the literature. In [2], Herrmann showed a property related to the local min-
ima/maxima of the sequence of fractional parts of multiples of the golden section.
More precisely, ([2], Theorem 2.3), n is a Fibonacci number of even index if and
only if hn'i > hi'i for all 1  i < n, while it is a Fibonacci number of odd index if
and only if hn'i < hi'i for all 1  i < n. A completely di↵erent characterization is
stated in [1]: n is a Fibonacci number if and only if 5n2 + 4 or 5n2 � 4 is a square
and, more precisely, n is a Fibonacci number of even index if and only if 5n2 + 4 is
a square (see [3]).

In this note, we introduce a representation of the integers based only on Fibonacci
numbers of odd index, which di↵ers from the well known Zeckendorf representation
(see [7]). Then, we prove a characterization for the Fibonacci numbers of even
index. From a result of Möbius (see [4]), we deduce the corresponding condition for
the odd case.

2. Preliminaries

In [7], Zeckendorf proved that any positive integer can be represented uniquely as
the sum of one or more distinct Fibonacci numbers in such a way that the sum
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does not include any two consecutive Fibonacci numbers. We observe that, under
some assumptions, we can restrict such a sum only to Fibonacci numbers of odd
index. Namely, every positive integer has a (not unique) ternary decomposition of
the following form.

Proposition 1 (Fibonacci odd index ternary representation). Let n be a
positive integer, then it can be written in the form

n =
sX

h=0

ahF2h+1 (1)

for some s � 0 with a0 2 {0, 1}, ah 2 {0, 1, 2} for 0 < h < s and as 2 {1, 2}. In this
case, we write n = (a0 . . . as). In the sequel, we will refer to such representation
simply as “the representation of n”.

Proof. The property easily follows by applying an algorithm of successive divisions
starting from the greatest Fibonacci number of odd index less or equal than n.

The procedure above gives a “normal representation”, but in general such rep-
resentation is not unique, e.g., 41 = (1222) = (01101) and F9 = (00001) = (1112).
It is clear that, as we start from the greatest Fibonacci number of odd index less
or equal than n, the normal representation for n is the longest representation of
n. Nevertheless, there is an interesting class of integers for which we can prove the
uniqueness.

Proposition 2. Every Fibonacci number of even index has the unique representa-
tion (1 . . . 1).

Proof. Let n = F2m. Then n has the representation (1 . . . 1) of length m, which is
the longest representation of n. Suppose (a0 . . . ah), with h  m� 1, is a di↵erent
representation of n. If we perform the element-wise di↵erence between the two
representations, we get the non-zero string (b1 . . . bm�1) = (a0 . . . ah) � (1 . . . 1)
with bi 2 {�1, 0, 1}, for all 0  i  m� 1. Then we have

Pm�1
i=0 biF2i+1 = 0. Now,

let A = {i 2 [0,m� 1] | bi = 1} and let B = {i 2 [0,m� 1] | bi = �1}. Obviously
A 6= B. From the previous equation, we get

P
i2A F2i+1 =

P
i2B F2i+1, which is

absurd, as, from [7], every positive integer is represented uniquely as the sum of
nonconsecutive Fibonacci numbers.

The next two propositions recall some known properties of Fibonacci numbers.

Proposition 3 ([5], identity 28; [6], p. 52). Let n be a positive integer, then:

Fn' = Fn+1 + (�1)n+1('� 1)n, (2)

and
Fn' + Fn�1 = 'n. (3)
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Proposition 4. Let n be a positive integer, then

bFn'c =
⇢

Fn+1, if n is odd;
Fn+1 � 1, if n is even.

Proof. Identity 103b of [6] states that Fn+1 � Fn' = (�1)n

Fn�1+Fn' . From the identity
(3) and observing that 1

' = ' � 1, we have Fn' = Fn+1 � (1 � ')n, and then the
thesis.

From the previous propositions immediately follows the next.

Proposition 5 ([2], Lemma 2.1). Let n be a positive integer, then

hFn'i =
⇢

('� 1)n, if n is odd;
1� ('� 1)n, if n is even. (4)

A direct consequence of the previous is the following inequality.

Proposition 6. Let r, s integers such that 1  r  s. Then
sX

h=r

hF2h+1'i < ('� 1)2r. (5)

Proof. From the equality (4), and observing that ('� 1)2 � 1 = 1� ', we have:

sX

h=r

hF2h+1'i =
sX

h=r

('� 1)2h+1 = ('� 1)2r+1
s�rX

h=0

('� 1)2h

= ('� 1)2r+1 (('� 1)2)s�r+1 � 1
('� 1)2 � 1

= ('� 1)2r+1 1� ('� 1)2s�2r+2

'� 1
= ('� 1)2rhF2(s�r+1)'i < ('� 1)2r.

3. Main Result

Before proving the main result, we need to observe that every representation (a0 . . . as)
of a positive integer n belongs to one of the following six types:

(1) a0 = 0, ai 2 {0, 1, 2} for all 1  i < s, and as 2 {1, 2};

(2) ai = 1 for all 0  i  s;

(3) ai = 1 for all 0  i < s� 1, as�1 = 0, and as = 1;

(4) ai = 1 for all 0  i < s� 1, as�1 = 0, and as = 2;
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(5) there is r with 1  r < s � 1 such that ai = 1 for all 0  i < r, ar = 0,
aj 2 {0, 1, 2} for all r < j < s, and as 2 {1, 2};

(6) there is r with 1  r  s such that ai = 1 for all 0  i < r, ar = 2, aj 2 {0, 1, 2}
for all r < j < s, and as 2 {1, 2}.

For example, the representations (1212 . . . 12) and (122 . . . 2) are of type (6), while
(111012) is of type (5). We can now prove the main result by analyzing the six
types above, recalling that, from Proposition 2, n is a Fibonacci number of even
index if and only if its representation is of type (2).

Theorem 1. Let n be a positive integer. Then n is a Fibonacci number of even
index if and only if hn'i+ 1

n > 1.

Proof. Let (a0 . . . as) be a representation of n. We analyze the six cases above and
prove that only in case (2) we have hn'i+ 1

n > 1.

(1) Let a0 = 0. Then

hn'i =

*
sX

h=1

ahF2h+1'

+


sX

h=1

ah hF2h+1'i  2
sX

h=1

hF2h+1'i ,

and from the inequality (5) it follows that

hn'i < 2('� 1)2 <
4
5
.

If n � 5, then hn'i + 1
n < 1. By direct calculation, the same inequality also

holds for n = 2 and n = 4.

(2) Let a0 = . . . = as = 1. In this case n = F2m for some m. From the identity
(4), we have hn'i = hF2m'i = 1� ('� 1)2m, while from the identity (3) we
have F2m < F2m' + F2m�1 = '2m. Then

hn'i+
1
n

> 1� ('� 1)2m +
1

'2m
= 1� ('� 1)2m + ('� 1)2m = 1.

(3) Let a0 = . . . = as�2 = 1, as�1 = 0 and as = 1. Then, from the identity (5), we
have

hn'i = h(F2s�2 + F2s+1)'i  hF2s�2'i+ hF2s+1'i
< 1� ('� 1)2s�2 + ('� 1)2s+1.

On the other hand, from the identity (4) we have

n =
s�2X

h=0

F2h+1 + F2s+1 = F2s�2 + F2s+1 > F2s�2 + F2s�1' = '2s�1,
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i.e., 1
n <

⇣
1
'

⌘2s�1
= ('� 1)2s�1. Then,

hn'i+
1
n

< 1� ('� 1)2s�2 + ('� 1)2s+1 + ('� 1)2s�1

= 1� ('� 1)2s+2 < 1,

where in the last step we used the identity 1� ('� 1)3 � ('� 1) = ('� 1)4.

(4) Let a0 = . . . = as�2 = 1, as�1 = 0 and as = 2. We proceed analogously to the
previous case. From the identity (5), we have

hn'i = h(F2s�2 + 2F2s+1)'i  hF2s�2'i+ 2 hF2s+1'i
< 1� ('� 1)2s�2 + 2('� 1)2s+1.

From the identity (4), we have

n =
s�2X

h=0

F2h+1 + 2F2s+1 = F2s�2 + F2s�1 + F2s+2 > F2s�1 + F2s' = '2s,

i.e., 1
n <

⇣
1
'

⌘2s
= ('� 1)2s. Then

hn'i+
1
n

< 1� ('� 1)2s�2 + 2('� 1)2s+1 + ('� 1)2s

= 1� ('� 1)2s+2 < 1,

where in the last step we used the identity 1�2('�1)3� ('�1)2 = ('�1)4.

(5) Let a0 = . . . = ar�1 = 1, ar = 0 for some 1  r < s � 1, aj 2 {0, 1, 2} for
r < j < s, and as 2 {1, 2}. Then

n =
r�1X

h=0

F2h+1 +
sX

h=r+1

ahF2h+1 = F2r +
sX

h=r+1

ahF2h+1. (6)

From the previous equation, we get

hn'i =

* 

F2r +
sX

h=r+1

ahF2h+1

!

'

+

=

*

F2r' +
sX

h=r+1

ahF2h+1'

+

 hF2r'i+ 2
sX

h=r+1

hF2h+1'i .

From the identity (4) and the inequality (5), we get

hn'i < 1� ('� 1)2r + 2('� 1)2r+2.
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Coming back to the equation (6), remembering that in this case s � r+2 and
having in mind the identity (3), we have

n � F2r + F2r+5 = F2r + F2r+2 + 2F2r+3 > F2r+2 + F2r+3' = '2r+3,

i.e., 1
n < ('� 1)2r+3. Then

hn'i+
1
n

< 1� ('� 1)2r + 2('� 1)2r+2 + ('� 1)2r+3 = 1,

where in the last step we used the identity 2('� 1)2 + ('� 1)3 = 1.

(6) Let a0 = . . . = ar�1 = 1, ar = 2 for some 1  r  s, aj 2 {0, 1, 2} for r < j < s,
and as 2 {1, 2}. Proceeding as in the previous case, we have

n =
r�1X

h=0

F2h+1 + 2F2r+1 +
sX

h=r+1

ahF2h+1 = F2r+3 +
sX

h=r+1

ahF2h+1.

Then

hn'i =

* 

F2r+3 +
sX

h=r+1

ahF2h+1

!

'

+

=

*

F2r+3' +
sX

h=r+1

ahF2h+1'

+

 hF2r+3'i+ 2
sX

h=r+1

hF2h+1'i .

From the identity (4) and the inequality (5), we get

hn'i < ('� 1)2r+3 + 2('� 1)2r+2  ('� 1)5 + 2('� 1)4 <
2
5
.

Then, as n > 1, we have hn'i+ 1
n < 1.

From the following result of Möbius [4], we easily obtain the characterization for
the Fibonacci numbers of odd index.

Theorem 2 ([4]). Let n be a positive integer. Then n is a Fibonacci number if
and only if the real open interval

�
n'� 1

n , n' + 1
n

�
contains exactly one integer.

Corollary 1. Let n be a positive integer. Then n is a Fibonacci number of odd
index if and only if hn'i � 1

n < 0.

Proof. Let hn'i � 1
n < 0, m =

⌃
n'� 1

n

⌥
and suppose n > 1. From the hypothesis,

hn'� 1
n i = hn'i � 1

n + 1 and then

n'� 1
n

=
�
n'� 1

n

⌫
+
⌧

'� 1
n

�
= m� 1 + hn'i � 1

n
+ 1 = m + hn'i � 1

n
< m.
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On the other hand,

n' +
1
n

= n'� 1
n

+
2
n

= m + hn'i+
1
n

> m,

and then the interval
�
n'� 1

n , n' + 1
n

�
contains exactly one integer, so n is a

Fibonacci number. Moreover

hn'i+
1
n

= hn'i � 1
n

+
2
n

<
2
n

< 1,

and, by Theorem 1, it does not have even index. Conversely, suppose n = F2m+1.
From the identity (4), hF2m+1'i = (' � 1)2m+1, and from the well known Binet’s
formula (see [6], p. 52) we have F2m+1 = '2m+1+('�1)2m+1

p
5

. Then, with some
straightforward calculation, we get

hF2m+1'i�
1
n

= ('�1)2m+1� 1
F2m+1

= ('�1)2m+1�
p

5
'2m+1 + ('� 1)2m+1

< 0.
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[4] M. Möbius, Wie erkennt man eine Fibonacci zahl?, Math. Semesterber. 45(2) (1998), 243–
246.

[5] S. Rabinowitz. Algorithmic manipulation of Fibonacci identities, In Applications of Fibonacci
Numbers: Proceedings of the Sixth International Research Conference on Fibonacci Numbers
and their Applications, volume 6, pages 389–408, 1996.

[6] S. Vajda, Fibonacci & Lucas Numbers, and the Golden Section, Ellis Horwood Limited, New
York, 1989.

[7] E. Zeckendorf, Représentation des nombres naturels par une somme de nombres de Fibonacci
ou de nombres de Lucas, Bull. Soc. Roy. Sci. Liège 41 (1972), 179–182.


