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Abstract
Let �a denote the generalized sum of divisors function. We prove that given any
integers a, n, and s with a � 0, n � 1, and s � 1, there exist infinitely many pairs
(k,N) such that �a(N) = k · 2n, where k is a Riesel number and N has exactly s
distinct prime factors. In the case a = 1, we also show that additional conditions
can be imposed to guarantee that N is square-free.

1. Introduction

In 1960, Sierpiński [4] published an article that proved the existence of infinitely
many odd integers k such that k ·2n+1 is composite for all positive integers n. Such
numbers today are known as Sierpiński numbers. For Euler’s totient function �, it
follows from the definition that if k is a Sierpiński number, then k · 2n 6= �(q) for
any prime q and any positive integer n. Very recently Gonzalez, Luca, and Huguet
[2] published a proof of the following theorem.

Theorem 1. For all integers n � s � 2 there exist infinitely many Sierpiński
numbers k such that the equation

2n · k = �(N)

holds with some positive integer N having exactly s distinct prime factors.

We note that if it is possible to loosen the restriction n � s in Theorem 1, the best
scenario would be the restriction n � s�1. To see this, let q1, q2, . . . , qs�1 be distinct
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odd primes, let `0, `1, . . . , `s�1 be positive integers, and let N = 2`0q`1
1 q`2

2 · · · q`s�1
s�1 .

Then

�(N) = 2`0�1
s�1Y

i=1

q`i�1
i (qi � 1).

Since each qi is odd, it follows that �(N) ⌘ 0 (mod 2s�1). Thus, if 2n · k = �(N)
for some odd integer k, then n must be at least the number of distinct odd prime
divisors of N .

Predating Sierpiński’s article, in 1956 Riesel [3] published an article that proved
the existence of infinitely many odd integers k such that k · 2n � 1 is composite for
all positive integers n. Such numbers are known as Riesel numbers. Let �a be the
generalized sums of divisors function defined by

�a(N) =
X

d|N

da.

It follows from the definition that if k is a Riesel number, then k · 2n 6= �1(q) for
any prime q and any positive integer n. In this article we will prove an analogue of
Theorem 1 for the equation 2n · k = �a(N) where k is a Riesel number. In this new
setting, the restriction n � s in Theorem 1 is not required (see Theorem 6). We
will also show that when a = 1 we can take N to be square-free (see Theorem 5).

2. Preliminary Results

An important concept to the proofs in this paper, originally due to Erdos [1], is that
of a covering system of the integers. A covering system of the integers (or covering)
is a finite collection of congruences such that every integer satisfies at least one of the
congruences in the collection. Chen [5] provided the following definition regarding
covering systems.

Definition 2. A covering system C = {ri (mod mi)}t
i=1 is called a (2, 1)-primitive

covering if C is a covering system and there exist distinct primes p1, p2, . . . , pt such
that pi is a primitive prime divisor of 2mi � 1 for 1  i  t.

Throughout this article we will present a (2, 1)-primitive covering as a set of
triples

C = {(ri,mi, pi)}t
i=1

where the ri (mod mi) are the congruences of the covering system, and the pi are
distinct primitive prime divisors of 2mi � 1.

Though Chen’s definition came long after Sierpiński and Riesel’s articles, (2, 1)-
primitive covering systems were instrumental in proving their results. In fact, Chen
showed that if C is a (2, 1)-primitive covering such that every integer satisfies at
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least M congruences of C, then there exist infinitely many Sierpiński numbers k
such that k · 2n +1 has at least M +1 distinct prime factors for all positive integers
n. Though not mentioned in his paper, Chen’s result can easily be adjusted to prove
the analogous result on Riesel numbers. To illustrate how (2, 1)-primitive coverings
will be used in this article, we end this section with a proof of Riesel’s result.

Theorem 3. There exist infinitely many odd integers k such that k · 2n � 1 is
composite for all positive integers n.

Proof. Let C = {(ri,mi, pi)}t
i=1 be a (2, 1)-primitive covering. Notice that since pi

is a prime divisor of 2mi�1, if n ⌘ ri (mod mi), then 2n ⌘ 2ri (mod pi). Thus, for
each 1  i  t, choosing k so that k ·2ri�1 ⌘ 0 (mod pi) guarantees that k ·2n�1 is
divisible by pi. Since k needs to be odd, we add the condition that k ⌘ 1 (mod 2).
We note that infinitely many such k can be found using the Chinese remainder
theorem since the definition of (2, 1)-primitive covering ensures that each pi is odd
and distinct. Choosing k large enough ensures that for any n, k ·2n�1 6= pi for any
1  i  t. Since every positive integer n satisfies some congruence in C, our choice
of k guarantees that k · 2n � 1 is composite for all positive integers n.

We now illustrate the execution of this technique using the (2, 1)-primitive cov-
ering

C = {(0, 2, 3), (1, 4, 5), (1, 3, 7), (11, 12, 13), (15, 18, 19), (27, 36, 37), (3, 9, 73)}.

Notice that

n ⌘ 0 (mod 2), k ⌘ 1 (mod 3) implies k · 2n � 1 ⌘ 0 (mod 3);

n ⌘ 1 (mod 4), k ⌘ 3 (mod 5) implies k · 2n � 1 ⌘ 0 (mod 5);

n ⌘ 1 (mod 3), k ⌘ 4 (mod 7) implies k · 2n � 1 ⌘ 0 (mod 7);

n ⌘ 11 (mod 12), k ⌘ 2 (mod 13) implies k · 2n � 1 ⌘ 0 (mod 13);

n ⌘ 15 (mod 18), k ⌘ 8 (mod 19) implies k · 2n � 1 ⌘ 0 (mod 19);

n ⌘ 27 (mod 36), k ⌘ 31 (mod 37) implies k · 2n � 1 ⌘ 0 (mod 37);

n ⌘ 3 (mod 9), k ⌘ 64 (mod 73) implies k · 2n � 1 ⌘ 0 (mod 73).

Thus, any k ⌘ 140022313 (mod 2 ·3 ·5 ·7 ·13 ·19 ·37 ·73) will be a Riesel number.

Definition 4. If a Riesel number k arises, as in the proof of Theorem 3, from the
(2, 1)-primitive covering C, then we call k a C-Riesel number.

Remark 1. Using the proof of Theorem 3, it follows that if  is a C-Riesel number,
then any integer k satisfying k ⌘  (mod 2 · p1 · p2 · · · pt) is also a C-Riesel number.
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3. Main Results

In this section we investigate the equation �a(N) = k · 2n. Suppose k is an odd
integer and let q1, q2, . . . , qs be distinct odd primes. If N = q1 · q2 · · · qs, then
�a(N) =

Qs
i=1(q

a
i + 1). Since each qi is odd, it follows that �a(N) ⌘ 0 (mod 2s).

Thus, if k is odd, N is square-free, and �a(N) = k · 2n, then n must be at least the
number of distinct prime divisors of N . Hence, the restriction n � s is necessary in
the following theorem.

Theorem 5. Let C = {(rj ,mj , pj)}t
j=1 with 3  p1 < p2 < · · · < pt be a (2, 1)-

primitive covering and let  be a C-Riesel number. For integers n � s � 2, if one
of the conditions

(i) p1 � 5,

(ii) p1 = 3,  · 2n ⌘ 1 (mod 3) and s is even, or

(iii) p1 = 3,  · 2n ⌘ 2 (mod 3) and s is odd,

holds, then there exist infinitely many pairs (k,N), where k is a C-Riesel number
and N is a square-free odd positive integer with s distinct prime divisors, such that
�1(N) = k · 2n.

Proof. For each j with 1  j  t, if pj � 5 we let q1, q2, . . . , qs be primes satisfying

sY

i=1

(qi + 1) ⌘  · 2n (mod pj)

in the following way.
Suppose that s is even. If pj does not divide  · 2n + 1, then we choose q1 ⌘

�( · 2n + 1) (mod pj) and for 2  i  s we choose qi ⌘ �2 (mod pj). If pj

does divide  · 2n + 1, then it does not divide  · 2n�1 + 1. In this case we choose
q1 ⌘ �( · 2n�1 + 1) (mod pj), q2 ⌘ �3 (mod pj), and for 3  i  s we choose
qi ⌘ �2 (mod pj).

Now suppose that s is odd. If pj does not divide  · 2n � 1, then we choose
q1 ⌘  · 2n � 1 (mod pj) and for 2  i  s we choose qi ⌘ �2 (mod pj). If pj

does divide  · 2n � 1, then it does not divide  · 2n�1 � 1. In this case we choose
q1 ⌘  ·2n�1�1 (mod pj), q2 ⌘ �3 (mod pj), and for 3  i  s we choose qi ⌘ �2
(mod pj).

If p1 = 3, then also let qi ⌘ 1 (mod 3) for 1  i  s. Further, let

q1 ⌘ 2n�s+1 � 1 (mod 2n�s+2), (1)

qi ⌘ 1 (mod 4) for 2  i  s. (2)
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Since the pj are distinct odd primes, the Chinese remainder theorem allows us to
find positive integers qi satisfying each of the required conditions, and by Dirichlet’s
theorem on primes in an arithmetic progression, we may require additionally that
each qi be prime. Now let N = q1q2 · · · qs. Notice that for each 1  j  t,

�1(N) =
sY

i=1

(qi + 1) ⌘  · 2n (mod pj).

Furthermore, (1) and (2) guarantee that k = �1(N)/2n is an odd integer. Thus, k
is an integer satisfying k ⌘  (mod 2 · p1 · p2 · · · pt). By Remark 1, k is a C-Riesel
number and �1(N) = k · 2n, as desired.

Let q1, q2, . . . , qs be distinct odd primes and let M = q1 · q2 · · · qs. If qi ⌘ �2
(mod p) for each i and some prime p, then �1(qi) ⌘ �1 (mod p) since �1(qi) = qi+1.
Thus, �1(M) ⌘ (�1)s (mod p). This observation plays a crucial role in the proof of
Theorem 5 and explains the need for (ii) and (iii) in the statement of the theorem.
In the concluding remarks of this article we will present a totient function analogue
of Theorem 5. We note here that if qi ⌘ 2 (mod p) for each i and some prime p,
then �(qi) ⌘ 1 (mod p) since �(qi) = qi � 1. Therefore, �(M) ⌘ 1 (mod p). This
observation will allow us to ignore the parity of s in the totient function results at
the end of this article.

Example 1. Suppose n = s = 2. In the proof of Theorem 3 we proved that
 = 140022313 is a C-Riesel number for the (2, 1)-primitive covering

C = {(0, 2, 3), (1, 4, 5), (1, 3, 7), (11, 12, 13), (15, 18, 19), (27, 36, 37), (3, 9, 73)}.

Following the proof of Theorem 5 we select q1 = 140415097 and q2 = 2311664353.
Let N = q1 · q2 = 324592574357937241 and let k = 81148144202504173. Then k is
a C-Riesel number, and �1(N) = k · 2n. Table 1 provides more examples for small
values of n and s using the covering system C.
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n s qi k

2 2 140415097
231164353 81148144202504173

4 2 5044888231
2311664353 728880518489280133

6 2 22067227807
763181053 263145159021367963

8 2 152449857151
2311664353 1376612892776056093

3 3
619269913
189040213
2311664353

33827427401861235921698623

5 3
3023664967
798574957
2311664353

174431193937684642949939743

7 3
3512480863
110079253
2311664353

6982874731886299575240433

4 4

701761261
2311664353
5674085233
8476102633

4876253181299890612056417864929223643

6 4

6936333847
763181053
2311664353
5674085233

1084921275064059379558490666346206533

5 5

81546697
798574957
2311664353
5674085233
8476102633

226250176939959213459503006978362438695668263

7 5

2952077383
110079253
2311664353
5674085233
8476102633

282253986164145432879309224321736867939712663

Table 1: Small values of n

Notice that if q is an odd prime and ` is even, then �a(q`) = 1+qa+q2a+· · ·+q`a is
odd. Thus, if we remove the square-free condition on N in Theorem 5, the restriction
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n � s � 2 may no longer be necessary. This observation leads us to the following
theorem.

Theorem 6. Let C be a (2, 1)-primitive covering. Let a, n, and s be integers with
a � 0, n � 1, and s � 1. There exist infinitely many pairs (k,N), where k is a
C-Riesel number and N is an odd positive integer with s distinct prime divisors,
such that �a(N) = k · 2n.

Proof. Let C = {(ri,mi, pi}t
i=1 and let  be a C-Riesel number. For each 1  j  t,

we let q1, q2, . . . , qs be primes and `1, `2, . . . , `s be positive integers satisfying

sY

i=1

⇣
1 + qa

i + q2a
i + · · · + q`ia

i

⌘
⌘  · 2n (mod pj) (3)

in the following way. For 1  i  s, let qi ⌘ 1 (mod pj) so that

1 + qa
i + q2a

i + · · · + q`ia
i ⌘ 1 + `i (mod pj).

Now let `1 ⌘  · 2n � 1 (mod pj) and for 2  i  s let `i ⌘ 0 (mod pj). These
conditions then ensure that (3) holds. We now impose the following additional
conditions:

qi ⌘ 1 (mod 2n+1) for 1  i  s, (4)

`1 ⌘ 2n � 1 (mod 2n+1), (5)

`i ⌘ 0 (mod 2n+1) when 2  i  s. (6)

The Chinese remainder theorem guarantees the existence of qi and `i satisfying the
mentioned conditions, and Dirichlet’s theorem on primes in an arithmetic progres-
sion further allows us to require that each qi be prime. Now let N = q`1

1 q`2
2 · · · q`s

s .
Then

�a(N) =
sY

i=1

⇣
1 + qa

i + q2a
i + · · · + q`ia

i

⌘
.

Notice that (4), (5), and (6) ensure that

1 + qa
1 + q2a

1 + · · · + q`1a
1 ⌘ 2n (mod 2n+1)

and for 2  i  s,

1 + qa
i + q2a

i + · · · + q`ia
i ⌘ 1 (mod 2n+1)

so that k = �a(N)/2n is an odd integer. Thus, k is an integer satisfying k ⌘ 
(mod 2 · p1 · p2 · · · pt). By Remark 1, k is a C-Riesel number and �a(N) = k · 2n, as
desired.
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Explicit examples of (N, k) for Theorem 6 do not lend themselves as easily as
those given after Theorem 5. The construction laid out in the proof of Theorem 6
requires each `i to be significantly large. Specifically, for 2  i  s we need
`i �

Qt
j=1 pj . Thus, if we were to use the covering system C that was presented in

the proof of Theorem 3, we would need each `i � 70050435. This makes examples
(N, k) far too large to give an explicit example in this article.

4. Concluding Remarks

Techniques similar to those used in the proofs in this article can be used to prove
the following theorems, which we state without proof.

The following two theorems are the Sierpiński analogues of Theorems 5 and 6,
respectively.

Theorem 7. Let C = {(rj ,mj , pj)}t
j=1 with 3  p1 < p2 < · · · < pt be a (2, 1)-

primitive covering and let  be a C-Sierpiński number. For integers n � s � 2, if
one of the conditions

(i) p1 � 5,

(ii) p1 = 3,  · 2n ⌘ 1 (mod 3) and s is even, or

(iii) p1 = 3,  · 2n ⌘ 2 (mod 3) and s is odd,

holds, then there exist infinitely many pairs (k,N), where k is a C-Sierpiński number
and N is a square-free odd positive integer with s distinct prime divisors, such that
�1(N) = k · 2n.

Theorem 8. Let C be a (2, 1)-primitive covering. Let a, n, and s be integers with
a � 0, n � 1, and s � 1. There exist infinitely many pairs (k,N), where k is a
C-Sierpiński number and N is an odd positive integer with s distinct prime divisors,
such that �a(N) = k · 2n.

The next two theorems are totient function analogues of Theorems 5 and 6,
respectively.

Theorem 9. Let C = {(rj ,mj , pj)}t
j=1 with 3  p1 < p2 < · · · < pt be a (2, 1)-

primitive covering and let  be a C-Riesel number. For integers n � s � 2, if one
of the conditions

(i) p1 � 5 or

(ii) p1 = 3 and  · 2n ⌘ 1 (mod 3)
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holds, then there exist infinitely many pairs (k,N), where k is a C-Riesel number
and N is a square-free positive integer with s distinct prime divisors, such that
�(N) = k · 2n.

Theorem 10. Let C be a (2, 1)-primitive covering. For integers n � s � 2 there
exist infinitely many pairs (k,N), where k is a C-Riesel number and N is a positive
integer with s distinct prime divisors, such that �(N) = k · 2n.

The last two theorems are totient function analogues of Theorems 7 and 8, re-
spectively.

Theorem 11. Let C = {(rj ,mj , pj)}t
j=1 with 3  p1 < p2 < · · · < pt be a (2, 1)-

primitive covering and let  be a C-Sierpiński number. For integers n � s � 2, if
one of the conditions

(i) p1 � 5 or

(ii) p1 = 3 and  · 2n ⌘ 1 (mod 3)

holds, then there exist infinitely many pairs (k,N), where k is a C-Sierpiński number
and N is a square-free positive integer with s distinct prime divisors, such that
�(N) = k · 2n.

Theorem 12. Let C be a (2, 1)-primitive covering. For integers n � s � 2 there
exist infinitely many pairs (k,N), where k is a C-Sierpiński number and N is a
positive integer with s distinct prime divisors, such that �(N) = k · 2n.
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