
#A89 INTEGERS 18 (2018)

THE COMBINATORICS OF EVENLY SPACED BINOMIAL
COEFFICIENTS

Nicholas A. Loehr1

Dept. of Mathematics, Virginia Tech, Blacksburg, Virginia
nloehr@vt.edu

T. S. Michael
Dept. of Mathematics, U. S. Naval Academy, Annapolis, Maryland

Received: 2/6/18, Accepted: 10/21/18, Published: 10/26/18

Abstract
A curious identity for binomial coe�cients states that

X

k

✓
n

km

◆
=

1
m

m�1X

j=0

(1 + e2⇡ij/m)n.

There are similar formulas for the sum of
�n

a

�
over all a’s with a given remainder mod

m. This paper undertakes a combinatorial exploration of these formulas empha-
sizing bijective proofs. We derive multivariate generating functions for these sums
using both linear-algebraic arguments and sign-reversing involutions. Next we o↵er
a combinatorial explanation of why these sums are “almost” 2n/m. We give a bijec-
tive proof that the minimum of the sums

P
k

� n
km+r

�
equals (2n�`(n,m))/m, where

the “error term” `(n,m) has an explicit combinatorial interpretation involving words
satisfying certain parenthesis-matching conditions. Among other consequences, this
leads to a novel combinatorial model for alternate Lucas numbers.

Dedication. This paper is dedicated to my late coauthor T. S. Michael, a wonderful
friend, collaborator, teacher, and mathematician, whose untimely death in 2016
saddened us all.

1This work was partially supported by a grant from the Simons Foundation (#244398 to
Nicholas Loehr).

INTEGERS: 18 (2018) 2

1. Introduction

The following binomial coe�cient identities are very well known:

X

k�0

✓
n

k

◆
= 2n for n � 0;

X

k�0

✓
n

2k

◆
=

X

k�0

✓
n

2k + 1

◆
= 2n�1 for n � 1.

A less widely known formula gives the sum of evenly spaced binomial coe�cients
in terms of a complex root of unity: given integers r,m, n with 0  r < m, we have

X

k�0

✓
n

km + r

◆
=

1
m

m�1X

j=0

!�jr(1 + !j)n, where ! = e2⇡i/m. (1)

This formula is stated in Gould’s encyclopedic compendium of binomial coe�cient
identities [4, Formula (1.53)], and a special case is given as Problem 1.42(f) in
Lovász’s book [9].

Formula (1) can be proved algebraically by expanding the right side using the
Binomial Theorem and using the fact that

Pm�1
i=0 (!j)i is m if m divides j and is 0

otherwise. Guichard [5] gives the details of this derivation and proves the following
trigonometric version of the formula (also stated in [4, Formula (1.54)]):

X

k�0

✓
n

km + r

◆
=

2n

m

2

41 + 2
b(m�1)/2cX

k=1

cosn ⇡k

m
cos

⇡k(n� 2r)
m

3

5 . (2)

Benjamin, Chen, and Kindred [1] gave a combinatorial proof of (1) by showing that
both sides count walks in a cycle graph with loops, where each walk is weighted by
a certain power of !.

For small values of m, the right side of (1) can be simplified to expressions that
do not involve complex numbers or cosines. For example,

X

k�0

✓
n

3k

◆
=

2n + ✏(n)
3

,

where ✏(n) 2 {±1,±2} depends on n mod 6. Benjamin and Scott [2] gave combina-
torial proofs of this formula and a similar formula for m = 4. For m = 5 and m = 10,
Howard and Witt [6] obtained formulas involving Fibonacci numbers, Lucas num-
bers, and Pell numbers by algebraic methods. Results based on the combinatorial
trace method appear in [3, 8].

This paper further explores the rich combinatorics of the sums S(n,m, r) =P
k�0

� n
km+r

�
using a variety of tools: generating functions, deterministic finite

automata (DFAs), linear algebra, recursions, involutions, and bijections. Our initial
goal (proposed by my late coauthor T. S. Michael in 2015) was to find bijective proofs
of identities involving the sums S(n,m, r). However, since the right side of (1) is

INTEGERS: 18 (2018) 3

an expression involving the complex quantity !, one must first clarify what one
even means by a bijective proof in this situation. We give several answers to this
question in this paper.

Our first answer involves a concise generating function for the sums S(n,m, r):

X

n�0

S(n,m, r)xn =
xr(1� x)m�1�r

(1� x)m � xm
for 0  r < m. (3)

Initially, we derive this generating function by analyzing a DFA and using Cramer’s
Rule to solve a nearly-diagonal linear system. Then we provide a fully bijective
proof of (3) by defining a sign-reversing, weight-preserving involution on a certain
set of objects. Taking the partial fraction expansion of (3) leads back to the original
summation formula (1). We also give some multivariate extensions of this generating
function, including a version for q-binomial coe�cients.

The next part of the paper provides a bijective explanation of the fact that
S(n,m, r) is “almost” equal to 2n/m. Let Wn = {0, 1}n denote the set of binary
strings of length n. For each w 2 Wn, let N1(w) (resp. N0(w)) be the number of
1’s (resp. 0’s) in w. For each fixed m > 0, Wn can be written as the union of m
pairwise disjoint sets Wn,m,r for 0  r < m, where

Wn,m,r = {w 2 {0, 1}n : N1(w) ⌘ r (mod m)}.

Since
�n

b

�
counts binary strings w 2 {0, 1}n with N1(w) = b, it is clear that

S(n,m, r) = |Wn,m,r|. We would like to find bijections between the sets Wn,m,r

(as r varies), which would show that all of these sets have size 2n/m. For instance,
we could look for a bijection f : Wn ! Wn such that for all w 2 {0, 1}n,

N1(f(w)) ⌘ N1(w) + 1 (mod m) and fm(w) = w. (4)

Of course, such maps f cannot possibly exist for general m, since 2n/m is not even
an integer!

We modify this initial idea by restricting the domain and codomain of f to some
subset of Wn consisting of “good” binary strings. For example, consider n = 7 and
m = 5. By a variation of Pascal’s Triangle (see §3.1), we can quickly compute

S(7, 5, 0) = 22, S(7, 5, 1) = 14, S(7, 5, 2) = 22, S(7, 5, 3) = 35, S(7, 5, 4) = 35.

Certain symmetries in this list (i.e., two sets of size 22 and two sets of size 35) are
easily explained. We are more interested in the minimum value of S(n,m, r) as r
varies; in this case, the minimum value is 14. Any bijection f having the properties
described in the last paragraph can have at most 14 5-cycles, since each such cycle
visits a di↵erent element of W7,5,1. Thus, the best possible bijection of this form
could only visit 14 objects from each remainder category W7,5,r, leaving 8 unused

INTEGERS: 18 (2018) 4

words in W7,5,0, 0 unused words in W7,5,1, 8 unused words in W7,5,2, 21 unused
words in W7,5,3, 21 unused words in W7,5,4, and 58 total leftover words in {0, 1}7.

For general n and m, the “bottleneck” in the bijection is caused by the minimum
sum

µ(n,m) = min
r: 0r<m

S(n,m, r). (5)

Define the total number of leftover input objects to be

`(n,m) = 2n �m · µ(n,m). (6)

For fixed n and m, an optimal bijection of the form proposed above would consist
of a set D ✓ {0, 1}n and a map f : D ! D satisfying (4) for all w in D, together
with a decomposition of {0, 1}n into pairwise disjoint sets A0, A1, . . . , Am�1, L such
that: Ar ✓ Wn,m,r for 0  r < m, |Ar| = µ(n,m) for 0  r < m, |L| = `(n,m),
and D =

Sm�1
r=0 Ar. The conditions on |Ar| and |L| are equivalent to requiring that

for some r, Ar is the entire set Wn,m,r. Rearranging (6), we see that the map f
provides a bijective proof of the formula

min
r: 0r<m

X

k�0

✓
n

km + r

◆
=

2n � `(n,m)
m

. (7)

We construct such bijections in this paper for all n and m and provide explicit
combinatorial interpretations for the sets Ar and L. In particular, we will see that
`(n,m) counts strings of left and right parentheses of length n such that every prefix
has at most m � 2 unmatched parentheses within that prefix. For small values of
m, the numbers `(n,m) have predictable structure. For example:

• `(n, 2) = 0 for all n > 0;

• `(n, 3) is 1 for n even and 2 for n odd;

• `(n, 4) = 21+bn/2c for n > 0;

• `(n, 5) = Lucn+1 for n even and 2Lucn for n odd, where Luci is the ith Lucas
number (defined recursively by Luc0 = 2, Luc1 = 1, Lucn = Lucn�1 +Lucn�2

for n � 2).

The special cases m = 3 and m = 4 yield bijective evaluations of S(n, 3, r) and
S(n, 4, r) that are likely equivalent (up to notation translation) to the proofs given
in [2]. The m = 5 result provides a novel combinatorial interpretation for alternate
Lucas numbers in terms of parenthesis-matching conditions. For larger values of m,
the numbers `(n,m) are less predictable. But, the generating functions for these
numbers can be computed by simple recursive formulas. We derive these recursions
by analyzing more deterministic finite automata.

INTEGERS: 18 (2018) 5

The rest of this paper is organized as follows. Section 2 gives linear-algebraic
and bijective proofs of the generating function (3) and its generalizations. Section 3
constructs the optimal bijections proving (7). Section 4 studies the leftover numbers
`(n,m) more closely, obtaining explicit trigonometric formulas and recursions for the
associated generating functions. We conclude by proving the unexpected formula
for `(n, 5) involving the odd-indexed Lucas numbers.

2. Generating Functions for S(n, m, r)

This section gives a linear-algebraic proof and a bijective proof of the following
two-variable version of the generating function (3). Recall that Wn,m,r is the set of
words w in {0, 1}n where the number of 1’s in w is congruent to r modulo m, and
S(n,m, r) = |Wn,m,r|.

Theorem 1. For all m > 0 and 0  r < m, we have

Gm,r(y, z) :=
1X

n=0

X

w2Wn,m,r

yN1(w)zN0(w) =
yr(1� z)m�1�r

(1� z)m � ym
. (8)

Since N1(w)+N0(w) = n for all w 2 {0, 1}n, specializing y = x and z = x in (8)
produces (3).

2.1. Proof via Finite Automata and Linear Algebra

Fix m > 0 and 0  r < m. It turns out that the set of strings W⇤,m,r =
S

n�0 Wn,m,r

is a regular language that can be recognized by a deterministic finite automaton
(DFA). We refer the reader to Sipser’s textbook [10] for the definition of finite
automata and related notation used here.

The following DFA, denoted DFAm,r, recognizes the language W⇤,m,r. The set of
states is {0, 1, . . . ,m�1}. State 0 is the start state, and state r is the only accepting
state. For 0  i < m � 1, there is a transition from state i to state i + 1 labeled
by the symbol 1. There is also a transition from state m� 1 to state 0 labeled by
1. For 0  i < m, there is a transition from state i to itself labeled by 0. Figure 1
illustrates this DFA in the particular case m = 5, r = 2.

Each binary word w 2 {0, 1}⇤ is processed by the DFA as follows. We begin in
the start state. We read each symbol in w and follow the appropriate transition
to a new state. After reading all symbols of w, the DFA accepts w if and only if
our current state is an accepting state. It is routine to check that the set of strings
accepted by DFAm,r is precisely W⇤,m,r. The key point is that at every stage of
processing, we are in state i if and only if the number of 1’s seen so far is congruent
to i mod m. Thus, for every i between 0 and m� 1, the generating function for the

INTEGERS: 18 (2018) 6

start
0 1 2 3 4

0 0 0 0 0

1 1 1 1

1

Figure 1: DFA recognizing the language W⇤,5,2.

words w that end in state i of DFAm,r is Gm,i(y, z). For brevity (recall m is fixed),
we abbreviate Gm,i(y, z) as Gi in the following discussion.

The m unknown formal power series G0, G1, . . . , Gm�1 are related by m linear
equations coming from the DFA. Consider state 0, for example. To reach state 0
at the end of the computation, we either append the symbol 0 to a word counted
by G0, or append the symbol 1 to a word counted by Gm�1, or use the empty
word (since state 0 is the start state). Since each 0 is weighted by z and each
1 is weighted by y, the previous sentence is encoded by the generating function
equation G0 = zG0 + yGm�1 + 1. Similarly, for each state i with 0 < i < m,
we follow transitions in the DFA to get Gi = zGi + yGi�1. These m equations
constitute a linear system Ax = b, where x is the column vector of Gi’s, b = e0

has a 1 in position 0 and zeroes elsewhere, and A is a circulant matrix with entries
1 � z on the main diagonal and �y on the next lower diagonal (as well as the
0, (m� 1)-entry). For example, when m = 5 and r = 2, the linear system is:

2

66664

1� z 0 0 0 �y
�y 1� z 0 0 0
0 �y 1� z 0 0
0 0 �y 1� z 0
0 0 0 �y 1� z

3

77775

2

66664

G0

G1

G2

G3

G4

3

77775
=

2

66664

1
0
0
0
0

3

77775
. (9)

Since state r is the only accepting state, we must solve for Gr in this linear
system. (In fact, varying r does not change the system, so we really need to find
all the unknowns G0, . . . , Gm�1.) Evidently, the column vector of Gi’s is the first
column in the inverse of the coe�cient matrix A. We can quickly compute each Gi

using Cramer’s Rule for solving linear systems: Gi = det(A[i])/det(A), where A[i]
is the matrix obtained from A by replacing column i by the right side e0 (indexing
rows and columns starting at 0). Expanding the determinant along the first row,
we see that det(A) = (1 � z)m � ym. On the other hand, expanding A[r] along
column r, we get det(A[r]) = yr(1�z)m�1�r. For instance, when m = 5 and r = 2,

INTEGERS: 18 (2018) 7

computing det(A[2]) as indicated leads to the 4⇥ 4 block-diagonal determinant

det

2

664

�y 1� z 0 0
0 �y 0 0
0 0 1� z 0
0 0 �y 1� z

3

775 = y2(1� z)5�1�2.

By Cramer’s Rule, we deduce Gr = yr(1�z)m�1�r/((1�z)m�ym), which completes
our first proof of Theorem 1.

Remark 2. We can get an even more refined generating function by using a dif-
ferent variable for every transition in the DFA. Specifically, for 0  i < m, let the
power of zi (resp. yi) count the number of occurrences of 0’s (resp. 1’s) in a word
such that the number of 1’s strictly preceding this occurrence is congruent to i mod
m. The analysis given above proves that

Gm,r(y0, . . . , ym�1, z0, . . . , zm�1)

=
y0y1 · · · yr�1(1� zr+1)(1� zr+2) · · · (1� zm�1)
(1� z0)(1� z1) · · · (1� zm�1)� y0y1y2 · · · ym�1

. (10)

Theorem 1 is obtained by specializing all zi to z and all yi to y.

2.2. Bijective Proof of Theorem 1

Clearing denominators in (8) and rearranging terms, we can rewrite Theorem 1 in
the equivalent form

(1� z)mGm,r(y, z) = yr(1� z)m�1�r + ymGm,r. (11)

We now give a bijective proof of this identity. The proof consists of three steps: first,
model the left side of (11) by a set X of signed, weighted objects; second, introduce
a sign-reversing, weight-preserving involution I : X ! X that cancels most of the
objects; third, show that the right side of (11) is the generating function for the
remaining uncancelled objects.

For the first step, let X consist of all pairs (v, w), where v = v0v1 · · · vm�1 2
{e, 0}m is a sequence of e’s and 0’s of length m, and w is a word in W⇤,m,r.
Here, e stands for “empty.” Define the sign of (v, w) to be (�1)N0(v), so the ob-
ject (v, w) is negative i↵ v contains an odd number of 0’s. Define the weight of
(v, w) to be yN1(w)zN0(v)+N0(w). For example, when m = 5 and r = 2, the object
(ee0e0, 11101001011) in X has sign (�1)2 = +1 and weight y7z6. In general, we can
build v 2 {e, 0}m by choosing an e (with signed weight 1) or a 0 (with signed weight
�z) in each of m positions. Recall Gm,r is the generating function for the set W⇤,m,r.
It follows that the generating function for X, namely

P
(v,w)2X sgn(v, w)wt(v, w),

is indeed given by (1� z)mGm,r(y, z).

INTEGERS: 18 (2018) 8

For the second step, we define the involution I : X ! X as follows. Given
(v, w) 2 X, write w 2 W⇤,m,r in the “factored” form

w = 0a010a110a21 · · · 10ar10ar+1 · · · 0am�11w0,

where: 0ai denotes a string of ai copies of 0 with ai � 0; w0 is the part of w following
the m’th 1 in w (possibly empty); and the part of the factorization starting 10ar+1

is not present if w only has r copies of 1. In the latter case, ar+1, . . . , am�1, w0 are
undefined. To compute (v0, w0) = I(v, w), look for the least i < m such that ai is
defined and (vi = 0 or ai > 0). If no such i exists, define I(v, w) = (v, w). If i exists
and vi = 0, replace vi by e and add one more 0 to the string 0ai in w. If i exists and
vi = e, replace vi by 0 and remove one 0 from the string 0ai in v. It is immediate
that I preserves weights and (for non-fixed points) reverses signs. Furthermore,
doing I twice in succession restores the original object, so I is an involution. For
our example object above, a0 = a1 = a2 = 0, a3 = 1, a4 = 2, w0 = 011, so i = 2.
I sends this object to (eeee0, 110101001011), which has signed weight �y7z6. As
another example, I(e000e, 00010010) = (0000e, 0010010).

For the third step, we examine the fixed points of I. We ask: for which objects
(v, w) does i not exist? This can happen in two ways. First, if w has only r
copies of 1 (so that ar+1, . . . , am�1, w0 are undefined) and v0 = · · · = vr = e and
a0 = · · · = ar = 0, then i does not exist. (An example when m = 5 and r = 2 is
(eee0e, 11).) In this case w must be 1r, and the last m�1�r symbols of v could each
be e or 0. So the generating function for these fixed points is yr(1�z)m�1�r. Second,
if w has at least m copies of 1 and v0 = · · · = vm�1 = e and a0 = · · · = am�1 = 0,
then i does not exist. (An example when m = 5 and r = 2 is (eeeee, 1111100101).)
In this case, w must begin with the string 1m, and deleting this string from w gives
an arbitrary word w0 2 W⇤,m,r counted by Gm,r. Thus, the generating function for
these fixed points is ymGm,r. Combining the expressions for the two types of fixed
points gives the right side of (11). This completes the bijective proof of Theorem 1.
The same argument proves the refined version (10), as is readily checked.

2.3. Extensions of Theorem 1

Theorem 1 can be extended to give the generating function for certain sums of
multinomial coe�cients. For example, we can prove

X

a,b,c,d�0:
(a+b) mod m=r

✓
a + b + c + d

a, b, c, d

◆
xa

1x
b
2x

c
3x

d
4 =

(x1 + x2)r(1� x3 � x4)m�1�r

(1� x3 � x4)m � (x1 + x2)m

for 0  r < m. The left side is a four-variable generating function for words in
{1, 2, 3, 4}⇤, where the power of xi counts the number of i’s in the word, and the
total number of 1’s and 2’s in the word must be congruent to r mod m. To prove this,

INTEGERS: 18 (2018) 9

modify DFAm,r by replacing each loop transition labeled 0 with two loops labeled 3
and 4, and adding new transitions labeled 2 from state i to state i + 1 mod m. The
bijective proof readily extends to this situation. We can also refine the generating
function by using a di↵erent variable for each transition.

Next we consider extensions of Theorem 1 to q-binomial coe�cients. For any
binary word w, the inversion count inv(w) is the number of pairs i < j with wi = 1
and wj = 0. The q-binomial coe�cient

⇥n
k

⇤
q

can be defined combinatorially as the
sum of qinv(w) over all words w consisting of k copies of 1 and n�k copies of 0, where
q is a formal variable. The bijective proof of the refined generating function (10)
extends to this setting, leading to the formula:

(1� z0)(1� qz1) · · · (1� qm�1zm�1)Gm,r(y0, . . . , ym�1, z0, . . . , zm�1; q)
= y0 · · · yr�1(1� qr+1zr+1) · · · (1� qm�1zm�1)

+ y0 · · · ym�1Gm,r(y0, . . . , ym�1, q
mz0, . . . , q

mzm�1; q). (12)

Extra powers of q have been added to ensure that the involution I still preserves
the q-weight of objects (v, w) 2 X. To see how these powers arise, consider the case
where I changes vi from 0 to e and increases ai by 1. This action puts one new
0 after the i’th 1 in w, which increases the inversion count of w by exactly i. To
balance this, we must weight a 0 in position i of v by qi, explaining why each factor
1� zi becomes 1� qizi in (12). Next consider fixed points of I of the form (em, w)
where w = 1mw0. If w0 has c zeroes, then inv(w) = mc + inv(w0) due to the m
initial 1’s in w. To account for the extra power qmc, we must replace each variable
zi by qmzi in the generating function for w0 appearing in the third line of (12).

We can obtain a more concise formula by specializing the formal variable q to
be ! = e2⇡i/m (or any other m’th root of unity), which eliminates the extra powers
qm. Specializing every yi and zi to x, we obtain the generating function

X

n�0

X

k�0


n

km + r

�

!

xn =
xr(1� !r+1x) · · · (1� !m�1x)

(1� x)(1� !x) · · · (1� !m�1x)� xm

for 0  r < m.

3. The Minimum Sums µ(n, m)

This section studies the minimum sums

µ(n,m) = min
r: 0r<m

X

k�0

✓
n

km + r

◆
. (13)

Our main goal is a bijective proof of the formula µ(n,m) = (2n�`(n,m))/m, where
`(n,m) counts strings of left and right parentheses of length n such that every prefix

INTEGERS: 18 (2018) 10

has at most m�2 unmatched parentheses within that prefix. But first, we describe
a variation of Pascal’s Triangle that lets us compute particular sums S(n,m, r)
recursively. This allows us to identify which r’s attain the minimum sum in (13).

3.1. Pascal’s Triangle on a Cylinder

For fixed m > 0, we can compute all the sums S(n,m, r) for n � 0 and 0  r < m
by the following construction. Form an initially empty array with rows indexed
by n = 0, 1, 2, . . . , and columns indexed by r = 0, 1, . . . ,m � 1. The entry in row
n and column r of this array will be S(n,m, r). Start by filling in row 0 with 1
followed by m � 1 zeroes. Having already filled in row n � 1, fill in row n via the
rule S(n,m, r) = S(n � 1,m, r) + S(n � 1,m, r � 1), where r � 1 is reduced mod
m. This rule follows immediately from the definition of S(n,m, r) and Pascal’s
recursion

�n
a

�
=

�n�1
a

�
+

�n�1
a�1

�
for binomial coe�cients. In visual terms, we get the

entry in column 0 of the new row by adding the entries in the leftmost column and
the rightmost column of the previous row. In every other column of the new row,
we get the new entry by adding the entries directly above it and northwest of it.
The beginning of the array for m = 5 is shown below, where the minimum sum(s)
in each row n � 4 are underlined:

n r = 0 r = 1 r = 2 r = 3 r = 4
0 1 0 0 0 0
1 1 1 0 0 0
2 1 2 1 0 0
3 1 3 3 1 0
4 1 4 6 4 1
5 2 5 10 10 5
6 7 7 15 20 15
7 22 14 22 35 35
8 57 36 36 57 70
9 127 93 72 93 127

10 254 220 165 165 220
11 474 474 385 330 385
12 859 948 859 715 715

We now ask: which r’s attain the minimum in µ(n,m) = minr S(n,m, r)? The
pattern in the table above suggests that these r’s increase (mod m) at rate 1/2
compared to n. Starting in the appropriate column, the entries in each row also
appear to increase from the minimum sum to the maximum sum and then decrease
through the same values. The next theorem gives a precise statement of these
observations.

Theorem 3. Let r1(n,m) = d(n�m)/2e mod m and r2(n,m) = b(n�m)/2c mod
m. For n � m�1, µ(n,m) = S(n,m, r) if and only if r = r1(n,m) or r = r2(n,m).

INTEGERS: 18 (2018) 11

Moreover, the m entries in row n of the Pascal array (starting in column r1(n,m)
and wrapping around at the end) have the form shown in the table below, where
a1 < a2 < . . . < ah+1.

Parity of m Parity of n Row n starting in column r1(n,m)
m = 2h is even n is odd a1, a2, . . . , ah, ah, . . . , a2, a1

m = 2h is even n is even a1, a2, . . . , ah, ah+1, ah, . . . , a2

m = 2h + 1 is odd n is even a1, a2, . . . , ah, ah+1, ah, . . . , a2, a1

m = 2h + 1 is odd n is odd a1, a2, . . . , ah, ah+1, ah+1, ah, . . . , a2

Proof. For fixed m, all claims in the theorem are routinely proved simultaneously by
induction on n � m� 1. The base case n = m� 1 follows from known unimodality
and symmetry properties of binomial coe�cients, since row m� 1 of the m-column
array agrees with row m�1 of the ordinary Pascal’s Triangle. To avoid cumbersome
notation, we illustrate one case of the induction step when m = 7 (although the
argument is completely general). Suppose the theorem is already known for some
odd n � m � 1; we prove the theorem for the even row n + 1. Starting in column
r1(n,m), row n of the 7-column array looks like a, b, c, d, d, c, b where a < b < c < d
(by induction hypothesis). Applying the recursion, we see that row n + 1 (still
starting in column r1(n,m)) looks like a0, a0, b0, c0, d0, c0, b0 where a0 = a+b, b0 = b+c,
c0 = c + d, d0 = 2d, and a0 < b0 < c0 < d0. Now r1(n + 1,m) = r1(n,m) + 1 in
this case, so row n+1 starting in column r1(n+1,m) looks like a0, b0, c0, d0, c0, b0, a0.
This has the form in row 3 of the table, and the minimum sum in this row (namely
a0) does occur in columns r1(n+1,m) and r2(n+1,m) = r1(n,m), as needed. The
other cases are checked in the same way.

3.2. The Optimal Bijection

Fix m and n � m� 1. We now construct the sets D,A0, A1, . . . , Am�1, L and the
bijection f : D ! D with the properties stated below (6). Here, D = {0, 1}n \ L =Sm�1

r=0 Ar. Throughout this discussion, we regard binary strings w 2 {0, 1}n as
strings of parentheses by interpreting each 0 as a right parenthesis and each 1 as
a left parenthesis. For any binary word w, let U(w) be the maximum number
of unmatched parentheses in any prefix of w. Here and below, when counting
how many parentheses in a prefix are unmatched, we look only at symbols within
that prefix. For instance, the prefix ((() of the word ((())) has two unmatched
parentheses. The U -value of this prefix and the overall word is 3. Define the leftover
set

L = L(n,m) = {w 2 {0, 1}n : U(w) < m� 1}.

For 0  r < m, define Ar = Wn,m,r \ L. So, a binary word w 2 {0, 1}n belongs to
Ar if and only if N1(w) ⌘ r (mod m) and there exists a prefix of w with at least
m � 1 unmatched parentheses. Since adding one symbol to a prefix increases the

INTEGERS: 18 (2018) 12

number of unmatched parentheses by at most 1, we see that some prefix of w 2 Ar

has exactly m� 1 unmatched parentheses.
Clearly, {0, 1}n is the disjoint union of A0, . . . , Am�1, L. Given w 2 Ar, define

f(w) as follows. Find the shortest prefix of w with exactly m � 1 unmatched
parentheses; say this prefix has length p. The subword of unmatched parentheses in
this prefix must have the form)a(m�1�a. Change this subword to)a�1(m�1�(a�1)

interpreting exponents mod m. Then N1(f(w)) ⌘ N1(w) + 1 (mod m), as needed.
Now suppose we apply f to f(w). We claim that the same shortest prefix length p
will be found, and the subword of unmatched parentheses within this prefix will be
in the same positions in f(w) as in w. We verify this claim following the example
below. Using the claim repeatedly, we see that iterating f causes the subword in
question to cycle through the m words of the form)b(m�1�b, for 0  b < m. In
particular, fm(w) = w, as needed. Thus, f : D ! D is a bijection satisfying (4) for
all w 2 D.

Example 4. Let n = 17 and m = 5. Given the word w = 01101110100111010,
first rewrite w as)(()((()())((()(). Next, scan prefixes and look for unmatched
parentheses (which are underlined below):

prefix length prefix unmatched count
1) 1
2)(2
3)((3
4)(() 2
5)(()(3
6)(()((4

The substring of unmatched parentheses in the prefix of length six looks like)(((.
Repeatedly applying the map f changes this substring as follows:

)(((f7�! ((((f7�!)))) f7�!)))(f7�!))((f7�!)(((.

Therefore

w =)(()((()())((()() f7�! ((()((()())((()() f7�!))()))()())((()()

f7�!))())(()())((()() f7�!))()((()())((()() f7�!)(()((()())((()() = w.

Now we prove the claim. For concreteness, we consider the case m = 8 and
a = 3, although the argument is perfectly general. The critical prefix for w can be
written in the form

w1w2 · · ·wp = w(1)) w(2)) w(3)) w(4) (w(5) (w(6) (w(7) (, (14)

INTEGERS: 18 (2018) 13

where each w(i) is a binary word, and the displayed underlined parentheses are all
the unmatched parentheses in this prefix. Clearly, the final symbol in the prefix
must be an unmatched parenthesis, by minimality of p. Define Mi to be the set
of binary words w such that: U(w)  i, the full word w is balanced (i.e., has no
unmatched parentheses), and no prefix of w has an unmatched right parenthesis.
In particular, M0 consists of the empty word alone.

The key observation about (14) is that we must have w(i) 2 M7�i for 1 
i  7. Consider w(1) first. An unmatched right parenthesis in w(1) (or any of
its prefixes) would remain unmatched in any longer prefix of w, contradicting the
assumption that all unmatched parentheses in w1 · · ·wp are displayed separately
in (14). An unmatched left parenthesis in w(1) would match with the first displayed
right parenthesis in (14), contradicting the assumption that that right parenthesis
is unmatched. Thus, w(1) must be balanced. Also, U(w(1))  6 by minimality
of p, since otherwise some prefix of w(1) would be the shortest prefix of w with
7 unbalanced parentheses. Thus, w(1) 2 M6. The same argument shows that
w(2) must be balanced, and no prefix of w(2) has any unmatched right parentheses.
Moreover, since there is already one unmatched right parenthesis prior to w(2) in
w (which can never be matched with any later symbol), we must have U(w(2))  5
by minimality of p. Thus, w(2) 2 M5. Similarly, w(3) 2 M4.

Next consider w(4). As before, there cannot be any unmatched right parenthesis
in w(4) or any of its prefixes, or this parenthesis would have been displayed sepa-
rately in (14). Every prefix of w(4) has at most 3 unmatched left parentheses, by
minimality of p. Finally, the full word w(4) cannot have any unmatched left paren-
thesis. For, such a left parenthesis must later be matched with a right parenthesis
in w1 · · ·wp coming from w(5), w(6), or w(7). But this cannot happen, since such
a right parenthesis would have instead matched with the displayed (unmatched)
left parenthesis following w(4). Thus, w(4) 2 M3. When we reach w(5), we see
that w(5) and its prefixes cannot have any unmatched right parentheses, since one
of these would match with the displayed (unmatched) left parenthesis immediately
preceding w(5). The same argument used for w(4) shows that w(5) is balanced
and U(w(5))  2, so that w(5) 2 M2. We similarly show that w(6) 2 M1 and
w(7) 2 M0 (in particular, w(7) must be empty).

When we apply f to w, (14) changes to the prefix

w0
1w

0
2 · · ·w0

p = w(1)) w(2)) w(3) (w(4) (w(5) (w(6) (w(7) ((15)

of f(w). Now that we know each w(i) is balanced with U(w(i))  7 � i, we can
check by inspection that every proper prefix of (15) has fewer than 7 unmatched
parentheses. Moreover, the full prefix shown has exactly 7 unmatched parentheses,
which are exactly the ones displayed separately and underlined. Thus, when we
apply f to f(w), the map acts on the same set of 7 displayed positions. This
completes the proof of the claim. It is easy to check that our argument works for all

INTEGERS: 18 (2018) 14

m and a, including the extreme cases a = 0 (where the displayed prefix (14) has no
unmatched right parentheses) and a = m� 1 (where this prefix has no unmatched
left parentheses).

3.3. Proof of Optimality

We must still prove that our bijection f satisfies the optimality property |Ar| =
µ(n,m) for 0  r < m. Recall that each Ar is a subset of Wn,m,r and N1(f(w)) ⌘
N1(w) + 1 mod m for all w 2 Ar. The restriction of f to Ar is a bijection from Ar

to Ar+1 mod m for each r, so the sets A0, A1, . . . , Am�1 all have the same size. It
su�ces to show that there exists an r (which must, in fact, be r1(n,m) or r2(n,m)
from Theorem 3) such that Ar is the whole set Wn,m,r.

Our proof will use induction on n, holding m fixed. For a binary word w 2 {0, 1}n

of any length n, let us say that w is good mod m if and only if w is in the domain
{0, 1}n \L(n,m) of the bijection f constructed above. This means that some prefix
of w has exactly m� 1 unmatched parentheses.

Lemma 1. Suppose w is good mod m and w0 is obtained from w by adding two
consecutive symbols 10 anywhere in w. Then w0 is good mod m.

Proof. Fix a word w that is good mod m. Consider the shortest prefix w1w2 · · ·wp

of w with exactly m� 1 unmatched parentheses, as in (14). We get w0 from w by
adding consecutive symbols () at some position. If this position is after wp, then
w1 · · ·wp is also a prefix of w0, so that w0 is good mod m in this case. Otherwise,
we obtain w0 from w by adding a consecutive pair of matched parentheses to one
of the words w(i) shown in (14). The new w(i) is still balanced. If the new w(i) is
still in Mm�1�i, then the prefix of w0 ending at wp (now of length p + 2) still has
exactly m� 1 unmatched parentheses. It is also possible that the new w(i) now has
U(w(i)) = m� i. But in this event, some prefix of w0 ending before wp has exactly
m� 1 unmatched parentheses. Thus, in all cases, w0 is still good mod m.

The converse of the lemma is false: for example, taking w = 0010 and w0 =
001100, w0 is good mod 5 but w is not.

Theorem 5. For all n � m � 1, every word in Wn,m,r1(n,m) and Wn,m,r2(n,m) is
good mod m.

Proof. We fix m and use induction on n � m � 1. For the base case n = m � 1,
we have r1 = 0 and r2 = m � 1, so we must show that every word in Wm�1,m,0

and Wm�1,m,m�1 is good mod m. The only word in Wm�1,m,0 is 0m�1 (a string of
m � 1 right parentheses), and the only word in Wm�1,m,m�1 is 1m�1 (a string of
m� 1 left parentheses). These words are certainly good mod m. For the base case
n = m, we have r1 = r2 = 0. Here, Wm,m,0 = {0m, 1m}, and these two words are
both good mod m.

INTEGERS: 18 (2018) 15

Now fix n � m + 1. By induction, we may assume that all words in Wn�2,m,r

and Wn�2,m,r0 are good mod m, where r = r1(n � 2,m) and r0 = r2(n � 2,m).
Since r1(n,m) = r +1 and r2(n,m) = r0+1 (taking all additions mod m), we must
prove that all words in Wn,m,r+1 and Wn,m,r0+1 are good. Let w0 be an arbitrary
word in Wn,m,r+1. If w0 has no consecutive substring 10, then w0 must have the
form 0a1n�a (i.e., a right parentheses followed by n� a left parentheses), and this
word is certainly good mod m. Otherwise, let w be the word obtained from w0 by
deleting the first occurrence of the substring 10. Then w 2 Wn�2,m,r, hence w is
good mod m by induction hypothesis, hence w0 is good mod m by Lemma 1. The
same argument works for words w0 2 Wn,m,r0+1.

This theorem proves that all the bijections f are optimal, completing our bijective
proof of (7).

4. Analysis of L(n, m)

We have characterized the “error term” `(n,m) in (7) as counting the set L(n,m)
of words w in {0, 1}n such that every prefix of w has at most m � 2 unmatched
parentheses. It is natural to ask for other descriptions of `(n,m) such as explicit
formulas or generating functions. On one hand, by comparing (7) and (2) and using
Theorem 3, we have

`(n,m) = �2n+1
b(m�1)/2cX

k=1

cosn ⇡k

m
cos

⇡k(n� 2r0)
m

when r0 = r1(n,m) or r0 = r2(n,m). On the other hand, as noted in the Intro-
duction, for small values of m these strange trigonometric expressions simplify to
integer sequences with predictable structure.

In this section, we use more DFAs to derive recursions for the generating func-
tions

P
n�0 `(n,m)xn and their bivariate analogues. When m = 5, this leads to a

surprising combinatorial interpretation for odd-indexed Lucas numbers.

4.1. DFA for the Language Mk

Recall that Mk is the set (language) of balanced binary words w such that every
prefix of w has no unmatched right parentheses and at most k unmatched left
parentheses. Define the generating functions

Bk(y, z) =
X

w2Mk

yN1(w)zN0(w).

Each Mk is a regular language recognized by a DFA denoted DFAk. This DFA
has state space {0, 1, 2, . . . , k,⌦}, where 0 is the start state and ⌦ is a “death state.”

INTEGERS: 18 (2018) 16

For 0  i < k, there is a transition labeled 1 (left parenthesis) from state i to state
i+1. For 0 < i  k, there is a transition labeled 0 (right parenthesis) from state i to
state i� 1. We can also transition from state k to state ⌦ via symbol 1, from state
0 to state ⌦ via symbol 0, or from state ⌦ to itself via symbols 0 and 1. State 0 is
the only accepting state. The automaton DFA4 is drawn in Figure 2; the death
state is not shown.

0
0 1 2 3 4

start 1 1 1 1

0 0 0

Figure 2: DFA recognizing M4.

It is routine to check that DFAk recognizes the language Mk. The key point
is that this DFA reaches state i 6= ! upon reading a given prefix of input w only
if that prefix has i unmatched left parentheses. We enter state ! and never leave
if and only if some prefix of the input has an unmatched right parenthesis or too
many unmatched left parentheses. Finally, since the only accepting state is state 0,
we only accept inputs where the full word is balanced.

We could find a formula for Bk(y, z) by inverting a matrix, as we did in §2.1.
However, a simpler approach is based on the observation that there is a “copy” of
DFAk�1 inside DFAk to the right of state 0. We can classify all words w in Mk

based on how many times the transition from state 0 to state 1 is taken on input
w. If this transition is taken j � 0 times, then w can be uniquely factorized

w = 1w(1)0 1w(2)0 1w(3)0 · · · 1w(j)0,

where w(1), . . . , w(j) are strings in Mk�1. Passing to generating functions, it follows
that

Bk(y, z) =
1X

j=0

(yBk�1(y, z)z)j for k > 0.

Summing this formal geometric series, we get the recursion and initial condition

Bk(y, z) =
1

1� yzBk�1(y, z)
for k > 0; B0(y, z) = 1. (16)

We can interpret this as a formal continued fraction. It is routine to check (by
induction on k) that we can write Bk(y, z) = pk�1(y, z)/pk(y, z) for all k > 0,
where (pk(y, z) : k � 0) is the sequence of polynomials defined recursively by

p0 = 1, p1 = 1� yz, pk = pk�1 � yzpk�2 for k � 2.

INTEGERS: 18 (2018) 17

Another induction proof shows that

pk(y, z) =
X

i�0

✓
k + 1� i

i

◆
(�yz)i for k � 0. (17)

We need the following variant of the languages Mk. Modify DFAk by making
every state an accepting state except for the death state ⌦. The new DFA recognizes
the language Mp

k consisting of all prefixes of words in Mk. Equivalently, a binary
word w is in Mp

k i↵ every prefix of w has no unmatched right parentheses and
at most k unmatched left parentheses, but w itself need not be balanced. Let
Ak(y, z) =

P
w2Mp

k
yN1(w)zN0(w) be the generating function for Mp

k. Each word
w 2 Mp

k either is in Mk or can be factored uniquely as w = u1v, where u 2 Mk

and v 2 Mp
k�1. Here, the displayed 1 is the last symbol in w causing DFAk to

transition from state 0 to state 1. We deduce the recursion and initial condition

Ak = Bk(1 + yAk�1) for k > 0; A0 = 1. (18)

By solving this equation for Bk, inserting the resulting expressions into (16), and
simplifying, we are led to the recursion

Ak =
(1 + yAk�1)(1 + yAk�2)

1 + yAk�2 � yzAk�1
for k � 2; A0 = 1, A1 =

1 + y

1� yz
.

Using (18) and Bk = pk�1/pk, one sees by induction on k that each Ak is a rational
function with denominator pk(y, z).

Remark 6. By looking at how input words move through the states of DFAk,
we can regard the languages Mk and Mp

k as encoding certain random walks.
Interpret 1 (resp. 0) as a unit step right (resp. left) on a number line.2 Words
w 2 Mk encode random walks starting and ending at x = 0 that never visit
x = �1 or x = k + 1. For Mp

k, the requirement of ending at x = 0 is dropped.

4.2. DFA for the Language Lk

Let Lk be the set (language) of binary words w such that every prefix of w has
at most k unmatched parentheses. Then L(n,m) is the set of words of length n in
Lm�2 and `(n,m) = |L(n,m)|. This section describes a DFA recognizing Lk and
derives a recursion for the generating function

Ck(y, z) =
X

w2Lk

yN1(w)zN0(w).

The DFA recognizing Lk is obtained by “gluing together” vertical copies of
DFAi for i = k, k� 1, . . . , 2, 1, 0, as shown in Figure 3 for the case k = 3. For each

2So a right step corresponds to a left parenthesis, and a left step corresponds to a right paren-
thesis.

INTEGERS: 18 (2018) 18

(i, j) with i + j  k, there is an accepting state labeled (i, j). State (0, 0) is the
start state. Transitions are as indicated in the figure. Transitions not shown in the
figure go from states (i, j) with i + j = k to a non-accepting death state ⌦.

30
start

1

1

1

0

0

0

1

1

0

0

1 0

0 0 0

03

02

01

00

12

11

10 20

21

Figure 3: DFA recognizing L3.

It is routine to check that we reach state (i, j) after reading some prefix v of an
input w if and only if v has i unmatched right parentheses and j unmatched left
parentheses, and all prefixes of v have at most k unmatched parentheses (compare
to our analysis of (14)). Hence, this DFA does recognize the language Lk.

Theorem 7. The generating functions Ck(y, z) for the languages Lk satisfy the
recursion and initial condition

Ck = Ak + zBkCk�1 = Bk(1 + yAk�1 + zCk�1) for k > 0; C0 = 1;

where Ak and Bk are characterized by (18) and (16). Each Ck is a rational function
with denominator pk(y, z) given by (17).

Proof. For k > 0, a word w 2 Lk either belongs to Mp
k or can be uniquely

factorized w = u0v where u 2 Mk and v 2 Lk�1. The displayed 0 (weighted by z)
is the symbol causing the DFA to transition from state (0, 0) to state (1, 0). Passing
to generating functions, we immediately obtain the recursion Ck = Ak + zBkCk�1.
The second formula for Ck follows from this one using (18). The final statement of
the theorem follows from the recursion by induction on k, since Bk = pk�1/pk and
Ak has denominator pk.

INTEGERS: 18 (2018) 19

One consequence of our DFA analysis is that for all n and m,

if n < m� 2 or n�m is odd, then `(n + 1,m) = 2`(n,m). (19)

To prove this, consider an arbitrary word w 2 L(n,m) ✓ Lm�2. Because of the
assumption on m and n, this word must be accepted by a state (i, j) in the DFA
with i + j 6= m� 2. Adding either of the two symbols 0 or 1 to the end of w leads
from this state to another accepting state of the DFA. So we have a bijection from
L(n,m)⇥ {0, 1} to L(n + 1,m), as needed.

Remark 8. Words in Lk encode random walks satisfying these restrictions: the
walk starts at x = 0; the walk never goes left of x = �k; and at all times, the walk
is never more than k units right of the least x-coordinate visited so far.

4.3. Connection to Lucas Numbers

Using the recursions derived earlier, we compute

B0 = 1, B1 = 1
1�yz , B2 = 1�yz

1�2yz , B3 = 1�2yz
1�3yz+y2z2 ,

A0 = 1, A1 = 1+y
1�yz , A2 = 1+y+y2�yz

1�2yz , A3 = 1+y+y2+y3�2yz�y2z
1�3yz+y2z2 ,

C0 = 1, C1 = 1+y+z
1�yz , C2 = 1+y+y2+z+z2

1�2yz , C3 = 1+y+y2+y3+z�yz+z2+z3

1�3yz+y2z2 .

Using these generating functions (setting y = z = x), it is routine to confirm the
values for `(n, 2), `(n, 3), and `(n, 4) stated in the Introduction. We now use C3 to
explain the formula for `(n, 5) in terms of Lucas numbers.

Theorem 9. For all even n � 0, `(n, 5) = Lucn+1. For all odd n > 0, `(n, 5) =
2Lucn.

Proof. The statement for odd n follows from the statement for even n and (19), so
we focus on the case of even n. Start with F (x) = C3(x, x) =

P
n�0 `(n, 5)xn =

1+2x+x2+2x3

1�3x2+x4 . To isolate the even powers of x, we compute

F (x) + F (�x)
2

=
X

n even

`(n, 5)xn =
1 + x2

1� 3x2 + x4
.

On the other hand, the generating function for Lucas numbers is

G(x) =
X

n�0

Lucn xn =
2� x

1� x� x2
.

Isolating the odd powers of x gives

G(x)�G(�x)
2

=
X

n odd

Lucn xn = x
X

n even

Lucn+1 xn =
x + x3

1� 3x2 + x4
.

Dividing by x, we see that the two generating functions agree.

INTEGERS: 18 (2018) 20

To the authors’ knowledge, the combinatorial interpretation for odd-indexed Lu-
cas numbers in Theorem 9 has not appeared before. It would be interesting to prove
this theorem by finding a bijection between the set of words L(n, 5) and one of the
standard collections of objects counted by the Lucas numbers (see, for instance, [7]).

References

[1] Arthur Benjamin, Bob Chen, and Kimberly Kindred, Sums of evenly spaced binomial coef-
ficients, Math. Mag. 83 no. 5 (2010), 370–373.

[2] Arthur Benjamin and Jacob Scott, Third and fourth binomial coe�cients, Fibonacci Quart.
49 no. 2 (2011), 99–101.

[3] Keith Dsouza and Mike Krebs, A combinatorial trace method: counting closed walks to assay
graph eigenvalues, Rocky Mountain J. Math. 43 (2013), 469–478.

[4] Henry Gould, Combinatorial Identities, Morgantown Printing and Binding, Morgantown
WV, 1972.

[5] David Guichard, Sums of selected binomial coe�cients, College Math. J. 26 no. 3 (1995),
209–213.

[6] F. T. Howard and Richard Witt, Lacunary sums of binomial coe�cients, Applications of
Fibonacci Numbers 7 (1998), 185–195.

[7] Thomas Koshy, Fibonacci and Lucas Numbers With Applications, Wiley, New York, 2001.

[8] Mike Krebs and Natalie Martinez, The combinatorial trace method in action, College Math.
J. 44 no. 1 (2013), 32–36.

[9] László Lovász, Combinatorial Problems and Exercises (second edition), AMS, Providence,
2007.

[10] Michael Sipser, Introduction to the Theory of Computation (third edition), Cengage Learn-
ing, Boston, 2013.

