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Abstract

It is classically known that the proportion of lattice points visible from the origin
via functions of the form f(x) = nx with n ∈ Q is 1

ζ(2) , where ζ(s) is the classical
Reimann zeta function. Goins, Harris, Kubik and Mbirika generalized this and
determined that the proportion of lattice points visible from the origin via functions
of the form f(x) = nxb with n ∈ Q and b ∈ N is 1

ζ(b+1) . In this article, we complete
the analysis of determining the proportion of lattice points that are visible via power
functions with rational exponents, and simultaneously generalize these previous
results.

1. Introduction

In classical lattice point visibility, a point (r, s) ∈ Z×Z is said to be visible (from the
origin) if there are no other integer lattice points on the line segment joining (0, 0)
and (r, s). One early result in this field showed that determining the proportion of
lattice points visible from the origin is equivalent to determining the probability that
two integers are relatively prime, which is classically known to be 1/ζ(2) = 6/π2,
where

ζ(s) =
∞∑

n=1

1/ns =
∏

p prime

(1 − 1/ps)−1

is the classical Riemann zeta function, as was first established (independently) by
Cesàro and Sylvester in 1883 [5, 15].
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Since the introduction of lattice point visibility by Herzog and Stewart in 1971 [8],
some related problems and their generalizations continues to intrigue present day
mathematicians [1–4, 6, 7, 9–11, 14]. One recent generalization, by Goins, Harris,
Kubik, and Mbirika, fixed a positive integer b and defined a lattice point (r, s) to
be b-visible (from the origin) if the point lies on the graph of a power function
f(x) = nxb with n ∈ Q and no other integer lattice point lies on this curve between
(0, 0) and (r, s) [7]. Note that when b = 1 this is the classical lattice point visibility
setting. One of their main results ( [7, Theorem 1]) established that the proportion
of b-visible integer lattice points is given by 1/ζ(b + 1). In this short note, we
complete the analysis by determining the proportion of visible lattice points when
the lines of sight are power functions with rational exponents. Our main result is
as follows.

Theorem 1 (Main Theorem). Fix a rational b/a > 0 with gcd(a, b) = 1. Let
N = {1, 2, 3, . . .} and Na be the set of integers of the form ℓa with ℓ ∈ N. Then the
proportion of points in Na × N that are (b/a)-visible is 1

ζ(b+1) , and the proportion

of points in Na × N that are (−b/a)-visible is 1
ζ(b) .

We note that we consider the density of visible points with respect to the set
Na × N because a point (r, s) lies on the graph of the function f(x) = nxb/a with
n, b/a ∈ Q only when r = ℓa for some integer ℓ ∈ N. If we instead considered the
density of visible points with respect to N × N, the density would be 0. Indeed,
since the points (r, s) that are visible must have that r is an a-th power, the visible

points are a subset of the set {(ℓa, s) : ℓ, s ∈ N}. This set has density
a√N
N if we

restrict to points in the grid [N ] × [N ] (here [N ] := {1, 2, . . . , N}) and this tends
to 0 as N → ∞ for values a ≥ 2. However, when a = 1, Na = N so there is no
difference.

2. Main Result

It is important to note that the graph of f(x) = nxb/a with n, b/a ∈ Q passes
through the origin only when b/a > 0. In this case, we continue to consider lattice
point visibility from the origin. In the case where b/a < 0, we define visibility
from a point at “infinity.” That is, since f(x) = nxb/a monotonically decreases to
0 as x goes to positive infinity we think of visibility from the point at infinity on
the positive x-axis. We make these definitions precise shortly, but illustrate the
concepts in Figure 1 where we provide lines of sight f1(x) = 3x1/2 in blue and
f2(x) = 10x−1 in red. Note that the point (1, 3) is the only visible point on f1(x)
(from the origin) and (10, 1) is the only visible point on f2(x) (from infinity).

We begin by recalling the definition of a lattice point being b-visible when b ∈ N.
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Figure 1: Lines of sight f1(x) = 3x1/2 (in blue) and f2(x) = 10x−1 (in red) with
visible (unfilled) and invisible (filled) points.

Definition 1. Fix b ∈ N. A point (r, s) ∈ N × N is said to be b-visible if it lies on
the graph of f(x) = nxb for some n ∈ Q and there does not exist another point in
N × N on the graph of f(x) lying between (0, 0) and (r, s).

Observe that for a fixed value of b, the point (r, s) ∈ N × N lies on exactly one
power function f(x) = nxb, the one in which n = s/rb. This makes the previous
definition well-defined because for a fixed b it is impossible for the point (r, s) to be
b-visible with respect to one such power function and not b-visible with respect to
another (since there is only one such function f). A similar observation holds for
power functions with more general exponents (see Definition 2 and Definition 3).

Moreover, suppose (r, s) on the graph of f(x) = nxb is b-visible. Then any other
point in N × N on the graph of f has larger y-coordinate (when f(x) is graphed
in the xy-plane) because f is monotonically increasing. This observation holds for
Definition 2 as well, but is slightly different for Definition 3, as we address below.
Such a perspective will be useful in our subsequent proofs.

We will also need the following proposition that gives a number-theoretic char-
acterization of a point being b-visible.

Proposition 1. Fix b ∈ N. Then the lattice point (r, s) ∈ N × N is b-visible if and
only if s = nrb for some n ∈ Q and there does not exists a prime p such that p|r
and pb|s.

Proposition 1 is useful in the computations leading up to the proof of Theorem
1. The statement in this proposition is equivalent to the definition of b-visibility
in [7], but the link between the intuitive definition provided in Definition 1 and
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the mathematical implications of Proposition 1 was not established. We provide a
proof of this result for sake of completion.

Proof of Proposition 1. Suppose (r, s) ∈ N × N lies on the curve f(x) = nxb.

For the forward direction, we prove the contrapositive and suppose that there is
a prime p for which p|r and pb|s. Then the point (r/p, s/pb) lies on the graph of
f(x) = nxb and is between (0, 0) and (r, s). Thus (r, s) is not b-visible.

For the backward direction, we prove the contrapositive and suppose that (r, s)
is not b-visible. So there exists (r′, s′) ∈ N × N on the curve f(x) = nxb and lying
between (0,0) and (r, s). Observe that

s′ = f(r′) = n(r′)b =
s(r′)b

rb
.

Since s′ < s, it must be the case that r′

r < 1 so we can write r′

r as a fraction α
β

where α,β ∈ N, gcd(α,β) = 1 and β ≥2. Furthermore, we can assume α|r′ and
β|r. From this, s′ = sαb

βb . Since β ≥ 2 it has some prime factor p. Since s′ is an

integer and gcd(α,β) = 1, it must be the case that pb divides s. Furthermore, since
p|β, p|r.

For the remainder of this article we assume that b/a is rational with gcd(a, b) = 1.
A natural definition for (b/a)-visibility when b/a > 0 is as follows.

Definition 2. Fix b/a > 0. Suppose the point (r, s) lies on the curve f(x) = nxb/a.
The point (r, s) is said to be (b/a)-visible if there does not exist another point in
N × N on the graph of f(x) lying between (0, 0) and (r, s).

Similar to how Proposition 1 gave a number-theoretic characterization of Defini-
tion 1, a similar paradigm occurs for Definition 2 and Proposition 2.

Proposition 2. Fix b/a > 0. Then the lattice point (r, s) ∈ N× N is (b/a)-visible if
and only if s = nrb/a for some n ∈ Q, r = ℓa for some ℓ ∈ N, and (ℓ, s) is b-visible.

Proof. Notice first that if (r, s) is (b/a)-visible then r = ℓa for some positive integer
ℓ because rb/a = s/n is rational. Now, if (r′, s′) is another point with integer
coordinates on the graph of f(x) = nxb/a, then similarly r′ = (ℓ′)a for some positive
integer ℓ′. We observe that (ℓ′, s′) lies on g(x) = nxb. Now notice that (ℓ′, s′) lies
on the graph of g(x) = nxb between (0, 0) and (ℓ, s) if and only if (r′, s′) lies on the
graph of f(x) = nxb/a between (0, 0) and (r, s). So (r, s) is (b/a)-visible if and only
if (ℓ, s) is b-visible.

We now determine the proportion of (b/a)-visible points in Na × N for b/a > 0.

Lemma 1. Fix b/a > 0. Then the proportion of points in Na × N that are (b/a)-
visible is 1

ζ(b+1) .
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Proof. Define [N ] := {1, 2, . . . , N} and [N ]a := {1a, 2a, . . . , ⌊ a
√
N⌋a}. Let r, s be

two numbers picked independently with uniform probability in [N ]a and [N ] respec-
tively, and fix a prime p in [N ]. Let Pp,N denote the probability that r = ℓa for some
ℓ ∈ N, p divides ℓ and pb divides s. By Propositions 1 and 2, and the independence
of divisibility by different primes, it suffices to compute lim

N→∞

∏

p prime
p≤ N

(1 − Pp,N ).

The integers r ∈ [N ]a for which p divides r are precisely the integers in {1, 2, . . . ,
⌊ a
√
N⌋} that are divisible by p, because ℓa is divisible by p if and only if ℓ is. The

number of such integers is
⌊
⌊ a√N⌋

p

⌋
. Thus the probability that r ∈ [N ]a and p

divides ℓ is 1
⌊ a√N⌋

⌊
⌊ a√N⌋

p

⌋
. There are

⌊
N
pb

⌋
integers in [N ] that are divisible by pb;

namely pb, 2pb, . . . ,
⌊
N
pb

⌋
pb. Thus the probability that pb divides s is 1

N

⌊
N
pb

⌋
.

By mutual independence, the probability that (r, s) ∈ [N ]a × [N ] has p dividing

r and pb dividing s is Pp,N = 1
N⌊ a√N⌋

⌊
⌊ a√N⌋

p

⌋ ⌊
N
pb

⌋
. Therefore, the probability that

the pair (r, s) ∈ [N ]a × [N ] has p not dividing r, or pb not dividing s is 1 − Pp,N .
Since Pp,N → 1

pb+1 as N → ∞, by multiplying over all of the primes we have that

the probability that all primes p satisfy that p does not divide r or that pb does not
divide s is

lim
N→∞

∏

p prime
p≤ N

(1 − Pp,N ) =
∏

p prime

(
1 − 1

pb+1

)
=

1

ζ(b + 1)
.

In determining the density of visible points, we computed the limit as N → ∞
of densities in the rectangles [N ]a × [N ]. One might suspect that determining the
density by approximating Na × N by other regions might give a different limit.
Though this might be the case, our approach is consistent with similar density
computations throughout the literature. For such examples, see [7, 12, 13].

We now consider rational exponents −b/a < 0. Note that the corresponding
power functions f(x) = nx−b/a with n ∈ Q do not go through the origin. To
stay consistent with the pictorial interpretation that a visible lattice point should
obstruct the visibility of all lattice points behind it, we think of viewing lattice
points from (∞, 0) instead of (0, 0). In this case, a visible point will consequently
have a y-coordinate that is minimal among all lattice points lying on the graph
of f(x) = nx−b/a. This is because f(x) is monotonically decreasing. Note that
one could consider augmenting the perspective by viewing visibility from (0,∞)
instead. This will recover an integer point whose x-coordinate is minimal. However,
by replacing −b/a with −a/b, this becomes equivalent to our perspective of viewing
lattice points from (∞, 0).

Definition 3. Fix −b/a < 0. Suppose the point (r, s) lies on the curve f(x) =
nx−b/a. The point (r, s) is said to be (−b/a)-visible if there does not exist another
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point in N × N on the graph of f(x) lying between (r, s) and (∞, 0).

We begin analyzing (−b/a)-visibility when a = 1 with the following number-
theoretic characterization of (−b)-visibility.

Proposition 3. Let b be a positive integer. Then the lattice point (r, s) ∈ N× N is
(−b)-visible from (∞, 0) if and only if there does not exist a prime p such that pb|s.

Proof. The proof is very similar to that of Proposition 1 so we omit it.

We now determine the proportion of (−b)-visible points in N × N.

Lemma 2. Fix an integer −b < 0. Then the proportion of points in N× N that are
(−b)-visible is 1

ζ(b) .

Proof. Fix a prime p in [N ] and let s be a number picked independently with
uniform probability in [N ]. Let Pp,N denote the probability that pb divides s. By
Proposition 3, and the independence of divisibility by different primes, it suffices to
compute lim

N→∞

∏

p prime
p≤ N

(1 − Pp,N ).

There are
⌊
N
pb

⌋
integers in [N ] that are divisible by pb; namely pb, 2pb, . . . ,

⌊
N
pb

⌋
pb.

Thus the probability that pb divides s is 1
N

⌊
N
pb

⌋
. Therefore, the probability that

the pair (r, s) ∈ [N ] × [N ] has pb not dividing s is 1 − Pp,N . Since Pp,N → 1
pb as

N → ∞, by multiplying over all of the primes we have that the probability that all
primes p satisfy that pb does not divide s is

lim
N→∞

∏

p prime
p≤ N

(1 − Pp,N ) =
∏

p prime

(
1 − 1

pb

)
=

1

ζ(b)
.

We now prove our main theorem.

Proof of Theorem 1. By Lemmas 1 and 2 the only remaining case to consider is
negative non-integer exponents −b/a where a > 1. Suppose we have a point (r, s)
that is (−b/a)-visible. Then it would need to be the case that there is some rational
n such that s = nr−b/a, which is equivalent to srb/a = n. Consequently r = ℓa

for some positive integer ℓ. From this, sℓb = n. By an argument similar to that in
Proposition 2, (r, s) will then be (−b/a)-visible if and only if (ℓ, s) is (−b)-visible. A
similar argument as in Lemma 1 extends Lemma 2 to give us a density of 1

ζ(b) .
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