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Abstract
In this paper, we answer an open problem raised by Katz and Stenson. They
considered the tilings of a (2 ⇥ n)-board using a colors of squares and b colors
of dominoes. The number of such tilings, denoted by Ka,b

n , is a generalization of
the Fibonacci numbers. Obtaining a Binet-style formula for these numbers is such
problem. We obtain a generalized Binet formula for Ka,b

n .

1. Introduction

The sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, . . . ,

denoted by (Fn)n�0, of Fibonacci numbers (sequence number A000045 in [19]) is
defined by the recurrence relation Fn = Fn�1 + Fn�2 (n � 2) and initial values
F0 = 0 and F1 = 1 [6]. By substituting Fn = rn, we get the characteristic equation
r2 � r � 1 = 0. Its roots are (1 ±

p
5)/2 and so,

Fn =
1p
5

" 
1 +

p
5

2

!n

�
 

1�
p

5
2

!n#

.

Now, the assignments ↵ = (1+
p

5)/2 and � = (1�
p

5)/2 give us the representation

Fn =
↵n � �n

↵� � ,

1Corresponding author.
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Figure 1: A (1⇥ n)-board with n cells.

· · ·
· · ·

Figure 2: A (2⇥ n)-board with n columns.

where ↵ ⇡ 1.618 is known as the golden ratio. This is referred to as the Binet
formula, although it was known earlier to Euler and de Moivre [14].

Leonardo of Pisa, known as Fibonacci, introduced this sequence to European
mathematics by his book Liber Abaci [17]. As he showed in his book, if we assume
a newly born pair of rabbits, one male and one female, then the growth of an
idealized rabbit population follows the Fibonacci sequence. It is noticeable that this
sequence appears in connection with the basic units in Sanskrit prosody and had
been presented earlier by Indian mathematician Virahanka [18]. However, Fibonacci
numbers appear in many situations and count several combinational problems. For
example, Fn is the number of sequences of 1’s and 2’s that sum to n � 1 and the
sequence (Fn)n�0 are used to measure the running time of some algorithms such
as the Euclid’s algorithm, the Fibonacci search technique and the Fibonacci heap
data structure [11, 12].

It is possible to generalize Fibonacci numbers in many ways. One of the most
famous generalizations is defined by adding k � 2 numbers to generate the next
number [5] and called the k-generalized Fibonacci numbers, generalized Fibonacci
numbers of order k or k-bonacci numbers. In other words, if (F (k)

n )n�0 be such
sequence then the k initial values are 0, 0, . . . , 0, 1 and F (k)

n = F (k)
n�1 + F (k)

n�2 + · · ·+
F (k)

n�k for any n � k. The characteristic polynomial of F (k)
n is  k(r) = rk � rk�1 �

· · ·� 1. It can be shown that  k(r) 2 Q[r] is irreducible with only one zero outside
the unit ball [4]. According to [5, Thm 1], we have

F (k)
n =

kX

i=1

↵i � 1
2 + (k + 1)(↵i � 2)

↵n�1
i , (1)

where ↵1, . . . ,↵k are the roots of the characteristic equation. It is possible to
interpret Equation (1) as a generalization of the Binet formula. Notice that F (2)

n =
Fn and F (3)

n ’s are also called the Tribonacci numbers. Also, we can generalize the
Fibonacci numbers by preserving the recurrence relation Hn = Hn�1+Hn�2 (n � 2)
but changing the initial values, i.e., H0 = p and H1 = q, where p and q are arbitary
integers [8]. Now, the sequence

p, q, p + q, p + 2q, 2p + 3q, 3p + 5q, 5p + 8q, 8p + 13q, . . .
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is deduced and the Binet’s type formula

Hn =
(q � p�)↵n � (q � p↵)�n

↵� �
is obtained by the same classical method. Moreover, for any integer k � 1, the k-
Fibonacci sequence (Fk,n)n2N is defined by the recurrence relation Fk,n = kFk,n�1+
Fk,n�2 (n � 2) and initial values Fk,0 = 0 and Fk,1 = 1 [3]. Hence,

Fk,n =
↵n � �n

↵� � ,

where ↵ = (k +
p

k2 + 4)/2 and � = (k �
p

k2 + 4)/2 are the roots of the char-
acteristic equation r2 � kr � 1 = 0. For further generalization of the Fibonacci
numbers and their generalized Binet formulas, see [1, 13, 16, 20, 21, 22]. As it
is seen, there exists a generalized Binet formula for any of the above generalized
Fibonacci numbers.

A combinatorial interpretation for the Fibonacci numbers is the tiling of a (1⇥n)-
board (see Figure 1) by squares and dominoes. If fn denotes the number of such
tiling then fn = Fn+1 [2]. By this interpretation, Benjamin and Quinn [2] proved
many identities for Fibonancci numbers. Moreover, McQuistan and Lichtman [15]
used such tilings for placing dumbbells on a lattice. They found a recurrence relation
and Grimson [7] studied the generating function for dumbbells on a (2⇥ n)-board
(see Figure 2). Katz and Stenson [10] also expanded the board and studied the
tiling of a (2 ⇥ n)-board with colored squares and dominoes. They showed that if
Ka,b

n counts the tilings of a (2⇥ n)-board using a colors of squares and b colors of
dominoes, where a and b are nonnegative integers, then

Ka,b
n = (a2 + 2b)Ka,b

n�1 + a2bKa,b
n�2 � b3Ka,b

n�3 (n � 3) (2)

with the initial values Ka,b
0 = 1, Ka,b

1 = a2 + b and Ka,b
2 = a4 + 4a2 + 2b2. Since

K0,1
n = fn, we can say that Ka,b

n is a generalization of the Fibonancci numbers and
it is possible to generalize some Fibonancci identities for the numbers Ka,b

n [10].
Recently, the first author has obtained some identities for the sequence (Ka,b

n )(n�0)

[9]. Katz and Stenson then proposed an open problem: Is it possible to obtain
an expression for Ka,b

n which is analogous to the Binet formula for the Fibonancci
numbers? In this paper, we answer this open problem and find a generalized Binet
formula for Ka,b

n .

2. A Generalized Binet Formula

Consider the recurrence relation (2) and let Ka,b
n = rn. Upon substitution, we get

the characteristic equation

r3 � (a2 + 2b)r2 � a2br + b3 = 0. (3)
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Set y(r) = r3 � (a2 + 2b)r2 � a2br + b3. Since y(r) is a cubic, it has at most three
real roots. If b = 0 then it is easy to see that Ka,b

n = Ka,0
n = a2n. Now, suppose

that b > 0. Then, we have y ! �1 as r ! �1, y(0) = b3 > 0,

y
�
2(a2 + 2b)/3

�
= �(4a6 + 42a4b + 84a2b2 + 5b3)/27 < 0

and y !1 as r !1. This shows that y has at least three real roots, and hence it
has exactly three distinct real roots ↵ < 0 < � < �, and so the general solution is

Ka,b
n = c1↵

n + c2�
n + c3�

n. (4)

To solve for c1, c2 and c3, we use the given initial values. Hence,
8
><

>:

c1 + c2 + c3 = 1,
c1↵+ c2� + c3� = a2 + b,

c1↵2 + c2�2 + c3�2 = a4 + 4a2b + 2b2,

and we have

c1 =
1

(↵� �)(↵� �)
�
�� � (a2 + b)(� + �) + a2 + 4a2b + 2b2

�
,

c2 =
1

(� � ↵)(� � �)
�
↵� � (a2 + b)(↵+ �) + a2 + 4a2b + 2b2

�
,

c3 =
1

(� � ↵)(� � �)
�
↵� � (a2 + b)(↵+ �) + a2 + 4a2b + 2b2

�
.

Now, the relations between coe�cients and roots of the characteristic equation gives
8
><

>:

↵+ � + � = a2 + 2b,
↵� + �� + �↵ = �a2b,

↵�� = �b3.

This implies that a2 + b = ↵+ � + � + 3
p
↵�� and a4 + 4a2b + 2b2 = (↵+ � + �)2�

2(↵��)2/3. Then,
�
�� � (a2 + b)(� + �) + a2 + 4a2b + 2b2

�
= ↵(↵+ 3

p
↵��),

�
↵� � (a2 + b)(↵+ �) + a2 + 4a2b + 2b2

�
= �(� + 3

p
↵��),

�
↵� � (a2 + b)(↵+ �) + a2 + 4a2b + 2b2

�
= �(� + 3

p
↵��)

and so, our main result is deduced:

Theorem 1. Let Ka,b
n be the number of the tilings of a (2⇥n)-board using a colors

of squares and b colors of dominoes, where a � 0 and b > 0. Let ↵ < � < � be the
roots of characteristic Equation (3). Then,

Ka,b
n =

↵n+1(↵+ 3
p
↵��)

(↵� �)(↵� �) +
�n+1(� + 3

p
↵��)

(� � ↵)(� � �) +
�n+1(� + 3

p
↵��)

(� � ↵)(� � �)
. (5)
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In the special case a = 0 and b = 1, our formula still holds true; the characteristic
equation is r3 � 2r2 + 1 = 0 and hence, its roots are ↵ = (1 �

p
5)/2, � = 1 and

� = (1 +
p

5)/2. Since ↵ + � = 1 and ↵� = �1, by replacing them in Equation
(5), we get the Binet formula Fn+1 = K0,1

n = �n+1�↵n+1

��↵ . Thus, we can say that
Equation (5) is a generalized Binet formula.

Example. In [10, Table 1], Katz and Stenson obtained some values of K2,3
n by the

recurrence relation (2). In this example, we obtain these same values by the formula
(5). Characteristic Equation (3) becomes r3 � 10r2 � 12r + 27 = 0 and the roots
are easily calculated to be ↵ ⇡ �2.0729, � ⇡ 1.1977, and � ⇡ 10.8751. Formula (5)
thus becomes

Ka,b
n ⇡(�2.0729)n+1(�2.0729� 3)

42.3477
+

(1.1977)n+1(1.1977� 3)
�31.6509

+
(10.8751)n+1(10.8751� 3)

125.3030
,

where we have used that ↵�� = �b3 and so in this specific example 3
p
↵�� = �3.

This gives us K2,3
1 ⇡ 7, K2,3

2 ⇡ 82, K2,3
3 ⇡ 877, K2,3

4 ⇡ 9565, and if done with
enough precision we could also obtain the subsequent numbers 103960, 1130701,
and so on. See the sequence number A253265 in [19].
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