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Abstract
We discuss the problem of determining all positive-definite ternary quadratic forms
with integral coe�cients which represent all positive integers n ⌘ 1 (mod 4) and
similarly for all n ⌘ 3(mod 4).

1. Introduction

Throughout this paper F denotes a positive-definite ternary quadratic form with
integral coe�cients. We let

F = F (x, y, z) := ax2 + by2 + cz2 + dxy + exz + fyz. (1.1)

If d, e and f are all even the form F is said to be even. If at least one of d, e and
f is odd then F is said to be odd. The matrix A(F ) of the form F is the 3 ⇥ 3
symmetric matrix with integer entries given by

A(F ) :=

8
>>>>>>>>>><

>>>>>>>>>>:

2

64
a d/2 e/2

d/2 b f/2
e/2 f/2 c

3

75 if F is even,

2

64
2a d e

d 2b f

e f 2c

3

75 if F is odd.

(1.2)

1corresponding author
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As F is a positive-definite quadratic form, the matrix A(F ) is a positive-definite
matrix. Thus the determinant of A(F ) is a positive integer and we define the
discriminant d(F ) of the form F to be the positive integer given by

d(F ) := detA(F ) =

(
abc + 1

4 (def � af2 � be2 � cd2) if F is even,
8abc + 2(def � af2 � be2 � cd2) if F is odd.

(1.3)

A positive integer n is said to be represented by the form F if there exist integers
x, y and z such that F (x, y, z) = n. Let k and l be positive integers with l  k. If
F represents all positive integers km + l (m = 0, 1, 2, . . .) the form F is said to be
(k, l)-universal. It is a classical result that a positive-definite ternary quadratic form
with integral coe�cients cannot represent all positive integers, see for example [1],
[3] and [6]. Thus F cannot be (1, 1)-universal. In 1995 Kaplansky [13] tackled the
problem of determining the positive-definite ternary quadratic forms with integral
coe�cients which are (2, 1)-universal, that is represent all odd positive integers. He
proved that there are at most 23 such forms, and proved that 19 of the 23 forms
represent all odd positive integers. The remaining four forms he called “plausible
candidates” and noted that they represent every odd positive integer less than 214.
In 1996 Jagy [8] proved that one of these four forms, namely x2+3y2+11z2+xy+7yz,
does in fact represent all odd positive integers. The remaining three have not yet
been shown to represent all odd positive integers and Rouse [16, p. 1695] formally
conjectures that they do.

In this paper we begin the problem of determining all the positive-definite ternary
quadratic forms with integral coe�cients which are (4, 1)-universal and those which
are (4, 3)-universal. This problem cannot be completely solved as the corresponding
problem for (2, 1)-universal positive-definite integral ternary quadratic forms is not
yet solved.

2. The Equation Ar2 + Ers + Bs2 = Ct2

In Section 3 we need to know that certain equations of the form Ar2 +Ers+Bs2 =
Ct2 have no solutions in integers r, s and t except (r, s, t) = (0, 0, 0). To this end
we prove the following result.

Theorem 1. Let A, B and C be positive integers. Let E be an integer such that

|E| < 2
p

AB, (2.1)

so that 4AB�E2 > 0. Let G2 (G > 0) be the largest square dividing 4AB�E2 and
J2 (J > 0) the largest square dividing 4AC. Let

L :=
✓

4AB �E2

G2
,
4AC

J2

◆
. (2.2)
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Define

H :=
4AB �E2

G2L
, K :=

4AC

J2L
. (2.3)

Then G,H, J,K and L are positive integers such that

4AB �E2 = G2LH, 4AC = J2LK, (2.4)
L,H,K squarefree, (2.5)
(L,H) = (L,K) = (H,K) = 1. (2.6)

If

- LH is a quadratic nonresidue (mod K) (2.7)

or

LK is a quadratic nonresidue (mod H) (2.8)

or

HK is a quadratic nonresidue (mod L) (2.9)

then the only solution in integers r, s and t to the equation

Ar2 + Ers + Bs2 = Ct2 (2.10)

is (r, s, t) = (0, 0, 0).

Proof. Suppose that r, s and t are integers such that (2.10) holds. Then, by (2.4)
and (2.10), we have

(2Ar + Es)2 = 4A(Ar2 + Ers + Bs2 � Ct2)� (4AB �E2)s2 + 4ACt2

= �G2LHs2 + J2LKt2

⌘ 0 (mod L).

As L is squarefree we deduce that

2Ar + Es ⌘ 0 (mod L).

Hence we can define integers x, y and z by

x =
2Ar + Es

L
, y = Gs, z = Jt. (2.11)

Then, by (2.4), (2.10) and (2.11), we deduce

L(Lx2 + Hy2 �Kz2) = (2Ar + Es)2 + (4AB �E2)s2 � 4ACt2
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= 4A(Ar2 + Ers + Bs2 � Ct2) = 0

so that

Lx2 + Hy2 �Kz2 = 0. (2.12)

Equation (2.12) is Legendre’s equation. As L, H and �K are nonzero integers not
all of the same sign, L,H and K are all squarefree and coprime in pairs, we know
from Legendre’s theorem [5, Theorem 91, p. 117] under the assumption of (2.7),
(2.8) or (2.9) that (2.12) has only the solution (x, y, z) = (0, 0, 0) in integers x, y
and z. Hence, by (2.11), (r, s, t) = (0, 0, 0) is the only solution in integers r, s and t
to the equation (2.10).

The following result is a simple application of Theorem 1.

Corollary 1. The only solution in integers r, s and t to each of the following
equations is (r, s, t) = (0, 0, 0) :

r2 + wrs + 5s2 = 13t2 (w = 0,±1,±3),
r2 + wrs + 5s2 = 21t2 (w = ±2,±4),
3r2 + wrs + 7s2 = 11t2 (w = 0,±2,±3,±5,±6,±7,±8,±9),
3r2 + wrs + 7s2 = 15t2 (w = ±1,±4).

Proof. We just give the details for the equation 3r2 + 9rs + 7s2 = 11t2. Here
A = 3, B = 7, C = 11, E = 9, 4AB � E2 = 3, 4AC = 132, G = 1, J = 2,
L = 3, H = 1 and K = 11. Thus,

��LH
K

�
=

��3
11

�
= �1. Hence, by (2.7),

3r2 + 9rs + 7s2 = 11t2 has only the solution (r, s, t) = (0, 0, 0).

We deduce the following result from Theorem 1.

Theorem 2. Let A and B be positive integers. Let E be an integer such that (2.1)
holds. Then there exists a positive integer C such that the only solution to (2.10)
is (r, s, t) = (0, 0, 0).

Proof. As 4AB �E2 > 0, E2 � 4AB is not a perfect square so there exists a prime
p such that [7, p. 57] ✓

E2 � 4AB

p

◆
= �1.

Clearly p 6= 2, p - A, p - B and p - 4AB � E2. Choose C = p. Then p - G, p||4AC,
p - J , p - L, p - H and p||K. Moreover

✓
�LH

p

◆
=
✓
�(4AB �E2)/G2

p

◆
=
✓

E2 � 4AB

p

◆
= �1.

Hence �LH is a quadratic nonresidue (mod p) and so, as p|K, �LH is quadratic
nonresidue (mod K). Thus, by Theorem 1, the only solution in integers r, s and t
to (2.10) is (r, s, t) = (0, 0, 0).
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3. Bound for d(F )

Given that the positive-definite integral ternary quadratic form F represents certain
positive integers we give an upper bound for d(F ). As usual Z and Q denote the
sets of integers and rational numbers respectively.

Theorem 3. Let A and B be fixed positive integers such that

A < B, AB 6= M2 for any integer M.

For each integer E with
(
|E| < 2

p
AB, E ⌘ 0 (mod 2) if F is even,

|E| < 2
p

AB if F is odd,

there exists by Theorem 2 a positive integer C(E) such that the only solution in
integers r, s and t to

Ar2 + Ers + Bs2 = C(E)t2

is (r, s, t) = (0, 0, 0). As Ar2 + Ers + Bs2 and Ar2 � Ers + Bs2 represent exactly
the same integers we may choose C(E) = C(�E). Suppose F represents all of the
integers

(
A,B,C(E) (0  E < 2

p
AB, E ⌘ 0 (mod 2)) if F is even,

A,B,C(E) (0  E < 2
p

AB) if F is odd.

Then

d(F ) 

8
>><

>>:

AB max
0E<2

p
AB

E⌘0 (mod 2)

C(E) if F is even,

8AB max
0E<2

p
AB

C(E) if F is odd.

Proof. As F (x, y, z) represents both the integers A and B there exist (x1, y1, z1) 2
Z3 and (x2, y2, z2) 2 Z3 such that

F (x1, y1, z1) = A, F (x2, y2, z2) = B. (3.1)

Since F (0, 0, 0) = 0 and A,B > 0 we have

(x1, y1, z1) 6= (0, 0, 0), (x2, y2, z2) 6= (0, 0, 0). (3.2)

We now show that (x1, y1, z1) and (x2, y2, z2) are linearly independent over Q. Sup-
pose not. Then there exist u, v 2 Q with (u, v) 6= (0, 0) such that

u(x1, y1, z1) + v(x2, y2, z2) = (0, 0, 0).



INTEGERS: 18 (2018) 6

If v = 0 then u 6= 0 and we have (x1, y1, z1) = (0, 0, 0), contradicting (3.2). Hence
v 6= 0. Thus

(x2, y2, z2) = �u

v
(x1, y1, z1).

Appealing to (1.1) and (3.1), we have

B = F (x2, y2, z2) =
✓
�u

v

◆2

F (x1, y1, z1) =
u2

v2
A

so that AB =
�

uA
v

�2. As AB is a positive integer, the rational number uA
v must be

an integer M , so AB = M2, a contradiction. This proves the linear independence
of (x1, y1, z1) and (x2, y2, z2) over Q.

For integers r and s we have

F (r(x1, y1, z1) + s(x2, y2, z2)) = Ar2 + Ers + Bs2, (3.3)

where the integer E is given by

E = 2ax1x2 + 2by1y2 + 2cz1z2 + d(x1y2 + x2y1) + e(x1z2 + x2z1) + f(y1z2 + y2z1).
(3.4)

We note that

E ⌘ 0 (mod 2) if F is even. (3.5)

As (x1, y1, z1) and (x2, y2, z2) are linearly independent over Q (and thus over Z),
we have for r, s 2 Z

r(x1, y1, z1) + s(x2, y2, z2) = (0, 0, 0) () (r, s) = (0, 0). (3.6)

Thus, as F (x, y, z) is positive-definite, we see from (3.3) and (3.6) that the inte-
gral binary quadratic form Ar2 + Ers + Bs2 is also positive-definite. Hence the
discriminant E2 � 4AB of Ar2 + Ers + Bs2 is negative and so |E| < 2

p
AB.

For integers E satisfying
(
|E| < 2

p
AB, E ⌘ 0 (mod 2) if F is even,

|E| < 2
p

AB if F is odd,
(3.7)

F represents C(E) = C(�E), and so there exists (x(E), y(E), z(E)) 2 Z3 with
(x(E), y(E), z(E)) = (x(�E), y(�E), z(�E)) such that

F (x(E), y(E), z(E)) = C(E). (3.8)

Thus for all t 2 Z we have

F (tx(E), ty(E), tz(E)) = C(E)t2. (3.9)
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Now by the definition of C(E) we have

Ar2 + Ers + Bs2 = C(E)t2 =) (r, s, t) = (0, 0, 0) (3.10)

so appealing to (3.3), (3.9) and (3.10) we deduce that

(tx(E), ty(E), tz(E)) 6= r(x1, y1, z1) + s(x2, y2, z2) (3.11)

for all r, s, t 2 Z with (r, s, t) 6= (0, 0, 0). Thus the system of three linear equations
in r, s and t

8
><

>:

x1r + x2s� x(E)t = 0,
y1r + y2s� y(E)t = 0,
z1r + z2s� z(E)t = 0,

(3.12)

has only the trivial solution (r, s, t) = (0, 0, 0). Let

X(E) :=

2

4
x1 x2 x(E)
y1 y2 y(E)
z1 z2 z(E)

3

5 2M3(Z). (3.13)

Clearly

X(E) = X(�E), detX(E) 6= 0. (3.14)

As detX(E) 2 Z we see from (3.14) that

(detX(E))2 � 1. (3.15)

From (1.1) and (1.2) we have

F (x, y, z) =

(
xT A(F )x if F is even,
1
2xT A(F )x if F is odd,

(3.16)

where x =

2

4
x
y
z

3

5. A short calculation using (1.2), (3.1), (3.4), (3.8) and (3.13) shows

that

X(E)T A(F )X(E) =

8
>>>>>>>>>><

>>>>>>>>>>:

2

64
A E/2 k

E/2 B l

k l C(E)

3

75 if F is even,

2

64
2A E k

E 2B l

k l 2C(E)

3

75 if F is odd,

(3.17)
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for some integers k and l. If F is even, as

A > 0,
����

A E/2
E/2 B

���� =
1
4
(4AB �E2) > 0

and
������

A E/2 k
E/2 B l
k l C(E)

������
= det(X(E)T A(F )X(E)) = det(X(E))2 det(A(F )) > 0,

the matrix X(E)T A(F )X(E) is positive-definite. If F is odd, as

2A > 0,
����
2A E
E 2B

���� = 4AB �E2 > 0

and
������

2A E k
E 2B l
k l 2C(E)

������
= det(X(E)T A(F )X(E)) = det(X(E))2 det(A(F )) > 0,

the matrix X(E)T A(F )X(E) is positive-definite in this case too. Thus in both
cases X(E)T A(F )X(E) is a positive-definite symmetric matrix and we have that
det(X(E)T A(F )X(E)) is less than or equal to the product of the diagonal entries
of X(E)T A(F )X(E) [14, Theorem 13.5.2, p. 417]. Thus if F is even we have by
(1.3), (3.15) and (3.17)

d(F ) = detA(F )  (det(X(E))2 detA(F ) = det(X(E)T A(F )X(E))
 AB max

0E<2
p

AB
E⌘0 (mod 2)

C(E)

and if F is odd we have

d(F ) = detA(F )  (det(X(E))2 detA(F ) = det(X(E)T A(F )X(E))

 (2A)(2B)
✓

2 max
0E<2

p
AB

C(E)
◆

= 8AB max
0E<2

p
AB

C(E)

as asserted.

Our next theorem, which is a simple application of Theorem 3, bounds the dis-
criminant of a (4, 1)-universal ternary quadratic form and the discriminant of a
(4, 3)-universal ternary quadratic form.
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Theorem 4. (i) If F is even and represents

1, 5, 13, 21,

then
d(F )  105.

(ii) If F is odd and represents
1, 5, 13, 21,

then
d(F )  840.

(iii) If F is even and represents

3, 7, 11, 15,

then
d(F )  315.

(iv) If F is odd and represents
3, 7, 11, 15,

then
d(F )  2520.

Proof. (i) We chose A = 1 and B = 5. The integers E such that |E| < 2
p

AB =
2
p

5 ⇡ 4.47 with E ⌘ 0 (mod 2) are E = 0,±2,±4. By Corollary 1 we may take

C(0) = 13, C(±2) = C(±4) = 21.

Hence if F is even and represents

1, 5, 13 and 21,

then by Theorem 3 we have

d(F )  1⇥ 5⇥ 21 = 105.

(ii) We choose A = 1 and B = 5. The integers E such that |E| < 2
p

AB = 2
p

5 ⇡
4.47 are E = 0,±1,±2,±3,±4. By Corollary 1 we may take

C(0) = C(±1) = C(±3) = 13, C(±2) = C(±4) = 21.

Hence if F is odd and represents

1, 5, 13 and 21,

then by Theorem 3 we have d(F )  8⇥ 1⇥ 5⇥ 21 = 840.
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(iii) We chose A = 3 and B = 7. The integers E such that |E| < 2
p

AB = 2
p

21 ⇡
9.16 with E ⌘ 0 (mod 2) are E = 0,±2,±4,±6,±8. By Corollary 1 we may take

C(0) = C(±2) = C(±6) = C(±8) = 11, C(±4) = 15.

Hence if F is even and represents 3, 7, 11 and 15, then by Theorem 3 we have

d(F )  3⇥ 7⇥ 15 = 315.

(iv) We choose A = 3 and B = 7. The integers in E such that |E| < 2
p

AB =
2
p

21 ⇡ 9.16 are E = 0,±1,±2,±3,±4,±5,±6,±7,±8,±9. By Corollary 1 we may
take

C(0) = C(±2) = C(±3) = C(±5) = C(±6) = C(±7) = C(±8) = C(±9) = 11

and C(±1) = C(±4) = 15. Hence if F is odd and represents 3, 7, 11 and 15, then
by Theorem 3 we have d(F )  8⇥ 3⇥ 7⇥ 15 = 2520.

4. Method for Determining All (4, 1)-universal Ternaries and All (4, 3)-
universal Ternaries

It is convenient to let N denote the set of positive integers and N0 = N [ {0} . We
recall that a positive-definite integral ternary quadratic form f(x, y, z) is said to be
regular if there exists a finite number of progressions

�
Ak(Bl + C)| k, l 2 N0

 
such

that n 2 N is represented by f(x, y, z) if and only if n does not belong to any of
these progressions. For example, by Legendre’s theorem x2 + y2 + z2 is regular as
n is represented by x2 + y2 + z2 if and only if n 6= 4k(8l + 7) for any k, l 2 N0.

The progressions corresponding to regular ternaries can be found in [4, pp. 112
- 113], [12] or deduced from Jones’ theorem [10, Theorem, p. 99], [11, Theorem 5,
p. 123]. The gcd of the coe�cients of an integral ternary quadratic form divides
any integer represented by the form. Thus, if the form represents 1 or two coprime
integers the gcd of the coe�cients of the form must be 1, that is, the form is prim-
itive. Hence (4, 1)-universal and (4, 3)-universal integral ternary quadratic forms
must be primitive. Thus to determine all (4, 1)-universal ternary quadratic forms
we need only consider integral ternary quadratic forms which are positive-definite
and primitive. Similarly for (4, 3)-universal forms. It is a result of Schiemann [17]
that a positive-definite primitive integral ternary quadratic form is equivalent to
one and only one reduced form, that is, a form ax2 + by2 + cz2 + dxy + exz + fyz
satisfying the following thirteen conditions:

1. gcd(a, b, c, d, e, f) = 1,

2. 0 < a  b  c,
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3. �b < f  b,

4. 0  e  a,

5. 0  d  a,

6. a + b � d + e� f ,

7. if d = 0 or e = 0 then f � 0,

8. if a = b then | f | e,

9. if b = c then e  d,

10. if d = a then e  2f ,

11. if e = a then d  2f ,

12. if f = b then d  2e,

13. if a + b� d� e + f = 0 then 2a� 2e� d  0.

Since equivalent forms represent the same integers in order to determine all (4, 1)-
universal and all (4, 3)-universal ternaries, it su�ces to consider only reduced prim-
itive positive-definite integral ternary quadratic forms. By Theorem 4, we need
only consider such forms with discriminant less than or equal to 105 in the case of
(4, 1)-universal even forms, with discriminant less than or equal to 315 in the case
of (4, 3)-universal even forms, with discriminant less than or equal to 840 in the
case of (4, 1)-universal odd forms, and with discriminant less than or equal to 2520
in the case of (4, 3)-universal odd forms.

Our computer search for even reduced primitive positive-definite integral
ternary quadratic forms of discriminant  105 representing all the integers 1, 5, 9,
. . . , 1001 yielded 24 forms. Thus there are at most 24 equivalence classes of positive
-definite primitive integral ternary quadratic forms which are (4, 1)-universal. The
table of regular ternary quadratic forms due to Jagy, Kaplansky and Schiemann [9]
showed that 19 of these 24 forms are regular. A check of the congruence conditions
(given in the comments column) for the representability of integers by these 19
regular forms showed that they all represent every positive integer ⌘ 1 (mod 4) and
so are (4, 1)-universal. All (4, 1)-universal even reduced primitive positive-definite
integral ternary quadratic forms ax2 + by2 + cz2 +dxy + exz + fyz are contained in
Table 1. ”R” indicates that the form is regular and that it is (4, 1)-universal. For
example, the form x2 + 3y2 + 3z2 + 2yz is regular (see the table of Jagy, Kaplansky
and Schiemann [9]) and the positive integers n represented by this form are precisely
those n for which n 6= 4l + 2, 4k(16l + 14) for any k, l 2 N0. ”NR” indicates that
the form is not regular. A theorem in the comments column by a non-regular form
gives a proof that the form is (4, 1)-universal. An asterisk by a non-regular form
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indicates that there is as yet no proof of its (4, 1)-universality and that the form
has been checked to represent all n 2 N satisfying n ⌘ 1 (mod 4) and n  100, 000.

Table 1: (4,1)-universal even ternary quadratic forms

disc a b c d e f R/NR comments
1 1 1 1 0 0 0 R 4k(8l + 7)
2 1 1 2 0 0 0 R 4k(16l + 14)
4 1 1 4 0 0 0 R 8l + 3, 4k(8l + 7)
4 1 2 2 0 0 0 R 4k(8l + 7)
5 1 1 5 0 0 0 R 4k(8l + 3)
6 1 2 3 0 0 0 R 4k(16l + 10)
8 1 1 8 0 0 0 R 4l + 3, 16l + 6, 4k(16l + 14)
8 1 2 4 0 0 0 R 4k(16l + 14)
8 1 3 3 0 0 2 R 4l + 2, 4k(16l + 14)
9 1 2 5 0 0 2 R 4k(8l + 7)
14 1 3 5 0 0 2 R 4k(16l + 2)
16 1 1 16 0 0 0 R 4l + 3, 8l + 6, 32l + 12, 4k(8l + 7)
16 1 4 4 0 0 0 R 4l + 2, 4l + 3, 4k(8l + 7)
16 1 4 5 0 0 4 R 8l + 2, 8l + 3, 32l + 12, 4k(8l + 7)
20 1 4 5 0 0 0 NR Theorem 5
24 1 5 5 0 0 2 R 4l + 3, 16l + 2, 4k(16l + 10)
29 1 5 6 0 0 2 NR *
32 1 4 8 0 0 0 R 4l + 2, 4l + 3, 4k(16l + 14)
32 1 4 9 0 0 4 NR Theorem 6
36 1 5 8 0 0 4 NR Theorem 7
56 1 5 12 0 0 4 R 4l + 3, 8l + 2, 4k(16l + 2)
64 1 4 16 0 0 0 R 4l + 2, 4l + 3, 16l + 2, 4k(8l + 7)
64 1 4 17 0 0 4 NR Theorem 8
64 1 5 13 0 0 2 R 8l + 2, 8l + 3, 32l + 8, 32l + 12,

128l + 48, 4k(8l + 7)

From Table 1 we see that the only diagonal ternaries which are (4, 1)-universal are
the 13 forms

x2 + y2 + z2, x2 + y2 + 2z2, x2 + y2 + 4z2, x2 + 2y2 + 2z2,

x2 + y2 + 5z2, x2 + 2y2 + 3z2, x2 + y2 + 8z2, x2 + 2y2 + 4z2,

x2 + y2 + 16z2, x2 + 4y2 + 4z2, x2 + 4y2 + 5z2, x2 + 4y2 + 8z2,

x2 + 4y2 + 16z2.

This result was proved by the authors in [15].
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A computer search for the even reduced primitive positive-definite integral ternary
quadratic forms of discriminant 315 representing all the integers 3, 7, 11, 15, . . . , 1003
yielded 57 forms. Thus there are at most 57 equivalence classes of primitive,
positive-definite, integral ternary quadratic forms which are (4, 3)-
universal. From the table of Jagy, Kaplansky and Schiemann [9], we see that 28 of
these forms are regular. A check of the congruence conditions for the representability
of positive integers by these 28 forms showed that they all represent every positive
integer n ⌘ 3 (mod 4) and so are (4, 3)-universal. For example, 2x2 + 3y2 + 7z2 +
2xy + 2xz + 2yz of discriminant 32 is regular and represents every positive integer
not of the types 4l + 1, 8l + 6, 16l + 4, 32l + 24, 4k(256l + 224) for any k, l 2 N0.
Since 4l + 3 is not of any of these types, the form is (4, 3)-universal. All (4, 3)-
universal even reduced primitive positive-definite integral ternary quadratic forms
ax2 + by2 + cz2 + dxy + exz + fyz are contained in Table 2. ”R” indicates that
the form is regular and that it is (4, 3)-universal. “NR” indicates that the form
is not regular. A theorem in the comments column by a non-regular form gives a
proof that the form is (4, 3)-universal. If the letter (c) follows the theorem number
the proof is conditional upon another form of smaller discriminant being (4, 3)-
universal. An asterisk by a non-regular form indicates that there is as yet no proof
of the (4, 3)-universality of the form and that the form has been checked to represent
all n 2 N satisfying n ⌘ 3 (mod 4) and n  100, 000.

Table 2: (4,3)-universal even ternary quadratic forms

disc a b c d e f R/NR comments
2 1 1 2 0 0 0 R 4k(16l + 14)
3 1 2 2 0 0 2 R 4k(8l + 5)
6 1 2 3 0 0 0 R 4k(16l + 10)
7 2 2 3 2 2 2 R 4k(8l + 1)
8 1 2 4 0 0 0 R 4k(16l + 14)
8 1 3 3 0 0 2 R 4l + 2, 4k(16l + 14)
8 2 2 3 0 2 2 R 4l + 1, 16l + 6, 4k(16l + 14)
11 1 2 6 0 0 2 R 4k(8l + 5)
12 1 2 6 0 0 0 R 4k(8l + 5)
12 2 3 3 2 2 2 R 8l + 1, 4k(8l + 5)
14 1 3 5 0 0 2 R 4k(16l + 2)
15 2 3 3 2 0 0 R 4k(8l + 1)
23 2 3 5 2 0 2 R 4k(8l + 1)
24 3 3 3 2 0 0 R 4l + 1, 16l + 2, 4k(16l + 10)
26 1 3 9 0 0 2 NR *
28 2 3 5 0 0 2 R 4k(8l + 1)
28 2 3 6 2 0 2 R 8l + 5, 4k(8l + 1)
31 2 3 6 0 2 2 NR *
32 1 3 11 0 0 2 NR Theorem 9



INTEGERS: 18 (2018) 14

32 2 3 7 2 2 2 R 4l + 1, 8l + 6, 16l + 4, 32l + 24,
4k(256l + 224)

32 3 3 4 2 0 0 R 4l + 1, 4l + 2, 4k(16l + 14)
32 3 4 4 2 2 4 NR Theorem 10
39 3 3 5 0 2 2 NR *
44 3 3 6 2 2 2 NR *
46 3 4 5 2 2 -2 NR *
47 2 3 10 2 2 2 NR *
48 2 3 10 2 0 2 R 8l + 1, 8l + 6, 16l + 4, 4k(8l + 5)
48 3 3 6 0 2 2 R 8l + 1, 8l + 2, 32l + 4, 4k(8l + 5)
48 3 3 7 2 2 -2 R 4l + 1, 4l + 2, 4k(8l + 5)
50 3 4 5 2 2 2 NR *
56 3 4 6 0 2 4 R 4l + 1, 16l + 10, 4k(16l + 2)
60 3 3 7 0 2 0 NR Theorem 12 (c)
63 3 5 6 2 2 -4 NR *
71 3 5 6 2 2 4 NR *
79 3 5 6 2 2 0 NR *
92 3 6 7 2 2 6 NR *
95 3 5 7 2 0 2 NR *
104 3 4 10 0 2 4 NR Theorem 13 (c)
112 3 6 7 2 2 2 R 8l + 2, 8l + 5, 16l + 4, 4k(8l + 1)
112 3 7 7 2 2 6 R 4l + 2, 8l + 5, 4k(8l + 1)
124 3 6 8 2 0 4 NR Theorem 14 (c)
128 3 4 11 0 2 0 R 4l + 1, 8l + 2, 16l + 6, 16l + 8,

4k(16l + 14)
128 3 7 7 2 0 4 NR Theorem 11
128 3 7 7 2 2 -2 R 4l + 1, 16l + 2, 16l + 4, 16l + 6,

16l + 10, 32l + 24, 4k(16l + 14)
131 3 6 9 2 2 -4 NR *
147 3 6 9 2 2 0 NR *
156 3 6 10 2 2 4 NR Theorem 15 (c)
176 3 6 11 2 2 -2 NR *
176 3 7 10 0 2 6 NR Theorem 16 (c)
184 3 6 11 2 0 2 NR Theorem 17 (c)
188 3 7 10 2 2 -2 NR *
192 3 6 12 2 0 4 NR *
192 3 7 10 2 2 2 NR *
192 3 7 11 2 2 6 R 4l + 2, 8l + 1, 32l + 4

4k(8l + 5)
200 3 7 10 0 2 2 NR Theorem 18 (c)
224 3 6 14 2 2 4 R 4l + 1, 16l + 4, 16l + 10

64l + 40, 4k(16l + 2)
252 3 6 15 2 0 2 NR *
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From Table 2 we see that the only diagonal ternaries which are (4, 3)-universal
are the four forms

x2 + y2 + 2z2, x2 + 2y2 + 3z2, x2 + 2y2 + 4z2, x2 + 2y2 + 6z2.

This result was proved by the authors in [15]. The only diagonal ternaries which are
both (4, 1)-universal and (4, 3)-universal, that is are (2, 1)-universal, are x2+y2+2z2,
x2 +2y2 +3z2 and x2 +2y2 +4z2. This was proved in [18]. There are five ternaries
common to both Tables 1 and 2. These are the (2, 1)-universal even ternaries given
by Kaplansky [13].

A computer search for the odd reduced primitive positive-definite integral
ternary quadratic forms of discriminant  840 representing all the integers 1, 5, 9,
13, . . . , 1001 yielded 31 forms. Thus there are at most 31 equivalence classes of
primitive, positive-definite, integral ternary quadratic forms which are (4, 1)-
universal. From the table of Jagy, Kaplansky and Schiemann [9], we see that 14 of
these forms are regular. Checking the congruence conditions for the representability
of positive integers by these 14 forms showed that they all represent every positive
integer ⌘ 1 (mod 4) and so are (4, 1)-universal. For example, x2 + 3y2 + 7z2 +
xy + xz + 2yz of discriminant 144 represents every positive integer not of the types
4l + 2, 4k(64l + 56) for any k, l 2 N0. Since 4l + 1 is not of any of these types, the
form is (4, 1)-universal. All (4, 1)-universal odd reduced primitive positive-definite
integral ternary quadratic forms ax2 + by2 + cz2 + dxy + exz + fyz are contained
in Table 3. ”R” indicates that the form is regular and that it is (4, 1)-universal.
”NR” indicates that the form is not regular. Just one of the non-regular forms is
known to be (4, 1)-universal (in fact (2, 1)-universal) from the work of Kaplansky
[13]. An asterisk by a non-regular form indicates that there is as yet no proof of
the (4, 1)-universality of the form and that the form has been checked to represent
all n 2 N satisfying n ⌘ 1 (mod 4) and n  100, 000.

Table 3: (4,1)-universal odd ternary quadratic forms

disc a b c d e f R/NR comments
4 1 1 1 1 1 1 R 4k(16l + 14)
12 1 1 2 1 0 0 R 4k(16l + 10)
16 1 1 3 1 1 1 R 4l + 2, 4k(64l + 56)
20 1 1 3 0 1 1 R 4k(16l + 6)
28 1 1 5 1 1 1 R 4k(16l + 2)
36 1 2 3 0 1 2 R 4k(16l + 14)
44 1 2 3 0 1 0 R 4k(16l + 10)
48 1 3 3 1 1 3 R 4l + 2, 4k(64l + 40)
52 1 1 7 0 1 1 NR *
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60 1 3 3 1 1 1 R 4k(16l + 2)
64 1 3 3 1 0 1 R 4l + 2, 16l + 8, 4k(256l + 224)
68 1 1 9 0 1 1 NR *
76 1 2 5 0 1 0 NR *
80 1 3 4 1 0 2 R 4l + 2, 4k(64l + 24)
92 1 3 5 1 1 3 R 4k(16l + 2)
100 1 3 5 1 1 2 NR (2, 1)-universal [13]
112 1 3 5 0 1 1 R 4l + 2, 4k(64l + 8)
124 1 3 6 1 0 2 NR *
144 1 3 7 1 1 2 R 4l + 2, 4k(64l + 56)
148 1 3 7 1 1 1 NR *
172 1 5 5 1 0 3 NR *
180 1 3 9 1 1 3 NR *
188 1 3 9 1 1 2 NR *
208 1 4 7 0 1 2 NR *
212 1 3 10 1 0 2 NR *
236 1 3 11 1 1 1 NR *
240 1 3 11 1 0 1 NR *
252 1 5 7 0 1 3 NR *
272 1 4 9 0 1 2 NR *
284 1 3 13 1 0 1 NR *
348 1 5 9 0 1 1 NR *

A computer search for the odd reduced primitive positive-definite integral ternary
quadratic forms of discriminant  2520 representing all the integers 3, 7, 11, 15,
. . . , 1003 yielded 80 forms. The two forms 3x2 + 5y2 + 7z2 + 2xz + yz and 3x2 +
5y2 + 8z2 + xy + 3xz + 3yz fail to represent 1191 and 1227 respectively and were
eliminated. The remaining 78 forms are listed in Table 4. A check of the table of
Jagy, Kaplansky and Schiemann [9] showed that just 14 of these forms are regular
and a check of the congruence conditions for the representability of positive integers
by these 14 forms showed that they all represent every positive integer ⌘ 3 (mod 4)
and so are (4, 3)-universal. The remaining 64 forms are non-regular and only one
of them is known to be (4, 3)-universal (in fact (2, 1)-universal) from the work of
Kaplansky [13]. However, it has been verified that they represent all n 2 N satisfying
n ⌘ 3 (mod 4) and n  100, 000.

Table 4: (4,3)-universal odd ternary quadratic forms

disc a b c d e f R/NR comments
4 1 1 1 1 1 1 R 4k(16l + 14)
12 1 1 2 1 0 0 R 4k(16l + 10)
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16 1 1 3 1 1 1 R 4l + 2, 4k(64l + 56)
20 1 1 3 0 1 1 R 4k(16l + 6)
28 1 1 5 1 1 1 R 4k(16l + 2)
36 1 2 3 0 1 2 R 4k(16l + 14)
44 1 2 3 0 1 0 R 4k(16l + 10)
48 1 3 3 1 1 3 R 4k(4l + 2)
52 1 1 9 1 1 1 NR *
60 1 3 3 1 1 1 R 4k(16l + 2)
64 1 1 11 1 1 1 NR *
64 1 3 3 1 0 1 R 4k(4l + 2)
68 1 2 5 0 1 2 NR *
76 1 2 5 0 1 0 NR *
80 1 3 4 1 0 2 R 4l + 2, 4k(64l + 24)
84 2 3 3 2 2 3 NR *
92 1 3 5 1 1 3 R 4k(16l + 2)
100 1 3 5 1 1 2 NR (2, 1)-universal)[13]
108 1 3 5 1 0 1 NR *
112 1 3 5 0 1 1 R 4l + 2, 4k(64l + 8)
116 2 3 3 2 0 1 NR *
124 1 3 6 1 0 2 NR *
144 1 3 7 1 1 2 R 4l + 2, 4k(64l + 56)
144 3 3 3 3 2 1 NR *
148 1 3 7 1 1 1 NR *
156 3 3 3 3 1 1 NR *
164 2 3 5 2 2 3 NR *
176 3 3 3 2 1 -1 NR *
204 3 3 3 1 1 0 NR *
208 1 3 9 0 1 1 NR *
212 2 3 5 0 2 1 NR *
236 2 3 5 0 0 1 NR *
256 1 3 11 0 1 1 NR *
256 3 3 4 1 2 0 NR *
260 3 3 5 1 3 3 NR *
284 3 3 5 1 3 2 NR *
316 3 3 5 1 2 -1 NR *
320 3 4 5 2 3 4 NR *
324 3 3 5 1 2 1 NR *
332 2 3 7 0 0 1 NR *
368 3 4 5 2 3 2 NR *
380 3 5 5 3 2 5 NR *
396 3 3 6 1 2 0 NR *
400 3 4 5 2 1 -2 NR *
428 3 5 5 3 1 4 NR *
432 3 4 5 2 1 0 NR *
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436 3 3 7 1 3 1 NR *
452 3 5 5 3 2 3 NR *
464 3 3 7 1 2 1 NR *
464 3 5 5 3 1 3 NR *
484 3 3 7 1 1 0 NR *
500 3 5 5 3 1 1 NR *
556 3 5 6 1 2 -4 NR *
564 3 3 9 1 3 2 NR *
572 3 5 6 3 2 2 NR *
576 3 3 9 1 3 1 NR *
576 3 4 7 2 1 -2 NR *
588 3 5 6 1 2 4 NR *
592 3 4 7 2 1 2 NR *
596 3 3 9 1 2 -1 NR *
604 3 3 9 1 2 1 NR *
604 3 5 7 2 3 5 NR *
624 3 3 9 1 1 0 NR *
636 3 5 6 1 2 -2 NR *
652 3 5 6 1 2 2 NR *
656 3 5 7 1 2 5 NR *
656 3 5 7 3 2 3 NR *
668 3 5 7 3 1 3 NR *
676 3 3 10 1 2 0 NR *
708 3 5 7 2 1 -3 NR *
724 3 5 7 1 3 2 NR *
788 3 5 7 1 1 -2 NR *
796 3 6 7 2 3 4 NR *
1028 3 5 10 1 2 -4 NR *
1044 3 5 9 1 1 -1 NR *
1156 3 7 7 1 0 1 NR *
1332 3 7 9 1 3 3 NR *
1472 3 7 9 1 1 -1 NR *

There are eighteen ternaries common to both Tables 3 and 4. These are the
(2, 1)-universal odd ternaries given by Kaplansky [13]. The form x2 + 3y2 + 5z2 +
xy+xz+2yz of discriminant 100 is equivalent to Kaplansky’s form x2 +3y2 +5z2 +
xy + xz � yz = (x + z)2 + 3y2 + 5(�z)2 + (x + z)y + (x + z)(�z) + 2y(�z) and so
is (2, 1)-universal, and thus both (4, 1)-universal and (4, 3)-universal.
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5. Proofs of the (4, 1)-universality or (4, 3)-universality of Certain Non-
regular Ternary Quadratic Forms

In this section we prove the (4, 1)-universality of the four non-regular forms x2 +
4y2+5z2 (Theorem 5), x2+4y2+9z2+4yz (Theorem 6), x2+5y2+8z2+4yz (Theorem
7), x2 + 4y2 + 17z2 + 4yz (Theorem 8) and the (4, 3)-universality of the three non-
regular forms x2 +3y2 +11z2 +2yz (Theorem 9), 3x2 +4y2 +4z2 +2xy +2xz +4yz
(Theorem 10), 3x2 + 7y2 + 7z2 + 2xy + 4yz (Theorem 11).

Theorem 5. The form x2 + 4y2 + 5z2 is (4, 1)-universal.

Proof. The form x2 + y2 + 5z2 is regular and it represents all positive integers
n 6= 4k(8l+3) for any k, l 2 N0 [4, Table 5, p. 112]. A positive integer n ⌘ 1 (mod 4)
is not of this form so there exist integers a, b and c such that a2 + b2 + 5c2 = n. If
a ⌘ b ⌘ 1 (mod 2) then c2 ⌘ 5c2 ⌘ n� a2 � b2 ⌘ 1� 1� 1 ⌘ 3 (mod 4), which is
impossible. Hence a or b ⌘ 0 (mod 2). Interchanging a and b if necessary we may
suppose that b ⌘ 0 (mod 2). We then define integers x, y and z by x = a, y = b/2,
z = c so that

n = a2 + b2 + 5c2 = x2 + 4y2 + 5z2,

showing that the form x2 + 4y2 + 5z2 is (4, 1)-universal.

Theorem 6. The form x2 + 4y2 + 9z2 + 4yz is (4, 1)-universal.

Proof. The form x2 + y2 + 8z2 is regular and the positive integers it represents are
precisely those which are not of the forms 4l + 3, 16l + 6, 4k(16l + 14) (k, l 2 N0)
[4, Table 5, p. 112]. A positive integer n ⌘ 1 (mod 4) is not of these forms so there
exist integers a, b and c such that

a2 + b2 + 8c2 = n.

Clearly a and b are of opposite parity and so we can interchange a and b if necessary
so that

b ⌘ c (mod 2).

We then define integers x, y and z by

x = a, y =
b� c

2
, z = c

so that

n = a2 + b2 + 8c2 = x2 + (2y + z)2 + 8z2 = x2 + 4y2 + 9z2 + 4yz.

Thus x2 + 4y2 + 9z2 + 4yz is (4, 1)-universal.

Theorem 7. The form x2 + 5y2 + 8z2 + 4yz is (4, 1)-universal.
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Proof. The form x2 + 2y2 + 5z2 + 2yz is (4, 1)-universal (see Table 1). Let n 2 N
be such that n ⌘ 1 (mod 4). Then there exist integers a, b and c such that

n = a2 + 2b2 + 5c2 + 2bc.

If b ⌘ 0 (mod 2) we can define integers x, y and z by

x = a, y = c, z =
b

2
.

Then
n = x2 + 5y2 + 8z2 + 4yz.

If b ⌘ 1 (mod 2) then

1 ⌘ a2 + 2 + c2 + 2c (mod 4)

so that
a2 + (c + 1)2 ⌘ 0 (mod 4)

and thus
a ⌘ 0 (mod 2), c ⌘ 1 (mod 2),

so
b ⌘ c (mod 2).

We define integers x, y and z by

x = �a, y = c, z =
�b� c

2
,

so
a = �x, b = �y � 2z, c = y.

Hence

n = a2 + 2b2 + 5c2 + 2bc = (�x)2 + 2(�y � 2z)2 + 5y2 + 2(�y � 2z)y
= x2 + 5y2 + 8z2 + 4yz,

proving that x2 + 5y2 + 8z2 + 4yz is (4, 1)-universal.

Theorem 8. The form x2 + 4y2 + 17z2 + 4yz is (4, 1)-universal.

Proof. The form x2 + y2 + 16z2 is regular [4, Table 5, p. 112] and the positive
integers it represents are precisely those not of any of the forms

4l + 3, 8l + 6, 32l + 12, 4k(8l + 7) (k, l 2 N0).
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Thus x2+y2+16z2 is (4, 1)-universal. Hence, for any positive integer n ⌘ 1 (mod 4)
there exist integers a, b and c such that

a2 + b2 + 16c2 = n.

Clearly a and b are of opposite parity so we can interchange a and b if necessary so
that

b ⌘ c (mod 2).

We then define integers x, y and z by

x = a, y =
b� c

2
, z = c

so that

n = a2 + b2 + 16c2 = x2 + (2y + z)2 + 16z2 = x2 + 4y2 + 17z2 + 4yz,

and thus x2 + 4y2 + 17z2 + 4yz is (4, 1)-universal.

Theorem 9. The form x2 + 3y2 + 11z2 + 2yz is (4, 3)-universal.

Proof. The genus of discriminant 32 containing the class of the form x2+3y2+11z2+
2yz contains exactly one other class, namely the class of the form 3x2 +4y2 +4z2 +
2xy + 2xz + 4yz [2]. By Jones’ theorem [12, Theorem 5, p. 123], the set of positive
integers represented by either x2+3y2+11z2+2yz or 3x2+4y2+4z2+2xy+2xz+4yz
or both is precisely the set of positive integers not of the forms

4l + 2, 16l + 8, 4k(256l + 224) (k, l 2 N0). (5.1)

Let n 2 N be such that n ⌘ 3 (mod 4). As n is not of any of the forms in (5.1) it is
represented by either x2 +3y2 +11z2 +2yz or 3x2 +4y2 +4z2 +2xy+2xz+4yz. We
show that n is always represented by x2+3y2+11z2+2yz. Suppose n is represented
by 3x2 +4y2 +4z2 +2xy +2xz +4yz. Then there are integers u, v and w such that

n = 3u2 + 4v2 + 4w2 + 2uv + 2uw + 4vw.

Taking this equation modulo 2 we see that u ⌘ 1 (mod 2). Next taking it modulo
4 we deduce that v ⌘ w (mod 2). Thus we can define integers g, h and k with g
even by

g = v � w, h =
2u + v + w

2
, k =

�v � w

2
,

so
u = h + k, v =

g

2
� k, w =

�g

2
� k.

Hence n = g2 +3h2 +11k2 +2hk so that n is represented by x2 +3y2 +11z2 +2yz.
Hence x2 + 3y2 + 11z2 + 2yz is (4, 3)-universal.
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Theorem 10. The form 3x2 + 4y2 + 4z2 + 2xy + 2xz + 4yz is (4, 3)-universal.

Proof. The form x2 + 3y2 + 3z2 + 2yz is (2, 1)-universal (see Table 1). Hence for
any positive integer n ⌘ 3 (mod 4) there exist integers a, b and c such that

n = a2 + 3b2 + 3c2 + 2bc.

An examination of this equation modulo 4 yields

(a, b, c) ⌘ (0, 0, 1) or (0, 1, 0) (mod 2).

Permuting b and c if necessary we may suppose that a ⌘ b (mod 2). We define
integers x, y and z by

x = c, y =
�a + b

2
, z =

a + b

2
,

so that

n = a2 + 3b2 + 3c2 + 2bc = (z � y)2 + 3(y + z)2 + 3x2 + 2(y + z)x
= 3x2 + 4y2 + 4z2 + 2xy + 2xz + 4yz,

and thus the form 3x2 + 4y2 + 4z2 + 2xy + 2xz + 4yz is (4, 3)-universal.

Theorem 11. The form 3x2 + 7y2 + 7z2 + 2xy + 4yz is (4, 3)-universal.

Proof. Let n 2 N satisfy n ⌘ 3 (mod 4). As 2x2 + 3y2 + 7z2 + 2xy + 2xz + 2yz
(discriminant = 32) is (4, 3)-universal (see Table 2), there exist integers a, b and c
such that

n = 2a2 + 3b2 + 7c2 + 2ab + 2ac + 2bc.

Reducing this equation modulo 2 we see that

1 ⌘ b + c (mod 2)

so that
b 6⌘ c (mod 2).

Hence we have either

a ⌘ b (mod 2) or a ⌘ c (mod 2).

We define integers x, y and z by

(
x = �a+b

2 , y = a+b
2 , z = c if a ⌘ b (mod 2),

x = �a�2b�c
2 , y = a+c

2 , z = �c if a ⌘ c (mod 2),
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so that
(

a = y � x, b = x + y, c = z if a ⌘ b (mod 2),
a = 2y + z, b = �x� y, c = �z if a ⌘ c (mod 2),

and thus in both cases we have

n = 3x2 + 7y2 + 7z2 + 2xy + 4yz,

proving that 3x2 + 7y2 + 7z2 + 2xy + 4yz is (4, 3)-universal.

6. Conditional Results

In this section we establish the (4, 1)-universality of seven forms from the conjec-
tured such universality of seven other forms.

Theorem 12. Assume that

2x2 + 3y2 + 3z2 + 2xy (discriminant = 15)

is (4, 3)-universal. Then

3x2 + 3y2 + 7z2 + 2xz (discriminant = 60)

is (4, 3)-universal.

Proof. Let n 2 N satisfy n ⌘ 3 (mod 4). By assumption there exist integers a, b
and c such that

n = 2a2 + 3b2 + 3c2 + 2ab.

Suppose first that a is even. We define integers x, y and z by

x =
�a� 2b

2
, y = �c, z =

a

2
,

so that
a = 2z, b = �x� z, c = �y,

and thus

n = 2(2z)2 + 3(�x� z)2 + 3(�y)2 + 2(2z)(�x� z)
= 3x2 + 3y2 + 7z2 + 2xz.

Now suppose that a is odd. Then

3 ⌘ 2 + 3b2 + 3c2 + 2b (mod 4)
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so that
3((b + 1)2 + c2) ⌘ 3b2 + 3c2 + 2b + 3 ⌘ 0 (mod 4),

and thus
(b + 1)2 + c2 ⌘ 0 (mod 4)

so
b + 1 ⌘ c ⌘ 0 (mod 2).

Hence
b ⌘ 1 (mod 2)

and thus
a ⌘ b (mod 2).

We define integers x, y and z by

x =
a� b

2
, y = c, z =

�a� b

2

so that
a = x� z, b = �x� z, c = y,

and thus

n = 2(x� z)2 + 3(�x� z)2 + 3y2 + 2(x� z)(�x� z)
= 3x2 + 3y2 + 7z2 + 2xz.

This completes the proof that

3x2 + 3y2 + 7z2 + 2xz

is (4, 3)-universal under the stated assumption.

Theorem 13. Assume that

x2 + 3y2 + 9z2 + 2yz (discriminant = 26)

is (4, 3)-universal. Then

3x2 + 4y2 + 10z2 + 2xz + 4yz (discriminant = 104)

is (4, 3)-universal.

Proof. Let n 2 N satisfy n ⌘ 3 (mod 4). Then, by assumption, there exist integers
a, b and c such that

n = a2 + 3b2 + 9c2 + 2bc.

Hence
a2 + 3b2 + c2 + 2bc ⌘ 3 (mod 4).
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If b ⌘ 0 (mod 2) then
a2 + c2 ⌘ 3 (mod 4),

which is impossible. Hence b ⌘ 1 (mod 2). Thus a2 + c2 + 2c ⌘ 0 (mod 4) so that

a ⌘ c (mod 2).

Define integers x, y and z by

x = �b, y =
c� a

2
, z = �c.

Then a = �2y � z, b = �x, c = �z and

n = a2 + 3b2 + 9c2 + 2bc = (�2y � z)2 + 3(�x)2 + 9(�z)2 + 2(�x)(�z)
= 3x2 + 4y2 + 10z2 + 2xz + 4yz

so 3x2 +4y2 +10z2 +2xz +4yz is (4, 3)-universal under the stated assumption.

Theorem 14. Assume that

2x2 + 3y2 + 6z2 + 2xz + 2yz (discriminant = 31)

is (4, 3)-universal. Then

3x2 + 6y2 + 8z2 + 2xy + 4yz (discriminant = 124)

is (4, 3)-universal.

Proof. Let n 2 N satisfy n ⌘ 3 (mod 4). By assumption, there exist integers a, b
and c such that

n = 2a2 + 3b2 + 6c2 + 2ac + 2bc.

Clearly b ⌘ 1 (mod 2). Then

3 ⌘ 2a2 + 3 + 2c2 + 2ac + 2c (mod 4)

so 0 ⌘ a(a + c) (mod 2). Hence

a ⌘ 0 (mod 2) or a ⌘ c (mod 2).

We define integers x, y and z by
(

x = b, y = c, z = a/2 if a ⌘ 0 (mod 2),
x = �b, y = �c, z = a+c

2 if a ⌘ c ⌘ 1 (mod 2),

so that (
a = 2z, b = x, c = y if a ⌘ 0 (mod 2),
a = y + 2z, b = �x, c = �y if a ⌘ c ⌘ 1 (mod 2),
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and thus in both cases we have

n = 3x2 + 6y2 + 8z2 + 2xy + 4yz,

proving that 3x2 + 6y2 + 8z2 + 2xy + 4yz is (4, 3)-universal under the stated as-
sumption.

Theorem 15. Assume that

3x2 + 3y2 + 5z2 + 2xz + 2yz (discriminant = 39)

is (4, 3)-universal. Then

3x2 + 6y2 + 10z2 + 2xy + 2xz + 4yz (discriminant = 156)

is (4, 3)-universal.

Proof. Let n 2 N satisfy n ⌘ 3 (mod 4). By assumption there exist integers a, b
and c such that

n = 3a2 + 3b2 + 5c2 + 2ac + 2bc.

If c ⌘ 0 (mod 2) then 3 ⌘ 3a2 + 3b2 (mod 4) so that a2 + b2 ⌘ 1 (mod 4) and thus
(a, b) ⌘ (0, 1) or (1, 0) (mod 2). We may permute a and b so that b ⌘ 0 (mod 2).
Then b ⌘ c ⌘ 0 (mod 2).

If c ⌘ 1 (mod 2) then

3 ⌘ 3a2 + 3b2 + 1 + 2a + 2b ⌘ 3a2 + 3b2 + 1 + 2a2 + 2b2 (mod 4),

so a2 + b2 ⌘ 2 (mod 4) and thus a ⌘ b ⌘ 1 (mod 2). Hence b ⌘ c ⌘ 1 (mod 2).
In both cases we have b ⌘ c (mod 2) and we can define integers x, y and z by

x = �a, y =
b� c

2
, z =

�b� c

2
,

so that a = �x, b = y � z, c = �y � z, and hence

n = 3a2 + 3b2 + 5c2 + 2ac + 2bc
= 3x2 + 3(y � z)2 + 5(y + z)2 + 2x(y + z)� 2(y � z)(y + z)
= 3x2 + 6y2 + 10z2 + 2xy + 2xz + 4yz

proving that 3x2 +6y2 +10z2 +2xy +2xz +4yz is (4, 3)-universal under the stated
assumption.

Theorem 16. Assume that

3x2 + 3y2 + 6z2 + 2xy + 2xz + 2yz (discriminant = 44)

is (4, 3)-universal. Then the form

3x2 + 7y2 + 10z2 + 2xz + 6yz (discriminant = 176)

is (4, 3)-universal.
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Proof. Let n 2 N satisfy n ⌘ 3 (mod 4). As 3x2 + 3y2 + 6z2 + 2xy + 2xz + 2yz is
assumed to be (4, 3)-universal there are integers a, b and c such that

n = 3a2 + 3b2 + 6c2 + 2ab + 2ac + 2bc.

Taking this equation modulo 2, we see that a and b are of opposite parity. We can
interchange a and b if necessary so that b ⌘ c (mod 2). Then we can define integers
u, v and w by

u =
�2a� b� c

2
, v =

�b + c

2
, w =

b + c

2
.

Hence
a = �u� w, b = �v + w, c = v + w,

and so

n =3(�u� w)2 + 3(�v + w)2 + 6(v + w)2 + 2(�u� w)(�v + w)
+ 2(�u� w)(v + w) + 2(�v + w)(v + w)

=3u2 + 7v2 + 10w2 + 2uw + 6vw.

Hence 3x2+7y2+10z2+2xz+6yz is (4, 3)-universal under the stated assumption.

Theorem 17. Assume that

3x2 + 4y2 + 5z2 + 2xy + 2xz � 2yz (discriminant = 46)

is (4, 3)-universal. Then

3x2 + 6y2 + 11z2 + 2xy + 2yz (discriminant = 184)

is (4, 3)-universal.

Proof. Let n 2 N satisfy n ⌘ 3 (mod 4). By assumption there exist integers a, b
and c such that

n = 3a2 + 4b2 + 5c2 + 2ab + 2ac� 2bc.

Clearly 1 ⌘ a + c (mod 2). If (a, c) ⌘ (0, 1) (mod 2) then 3 ⌘ 1 + 2b (mod 4) so
b ⌘ 1 (mod 2). If (a, c) ⌘ (1, 0) (mod 2) then 3 ⌘ 3+2b (mod 4) so b ⌘ 0 (mod 2).
Thus b ⌘ c (mod 2). We define integers x, y and z by

x =
�2a� b� c

2
, y =

b + c

2
, z =

�b + c

2
,

so that
a = �x� y, b = y � z, c = y + z,

and thus

n =3(�x� y)2 + 4(y � z)2 + 5(y + z)2 + 2(�x� y)(y � z)
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+ 2(�x� y)(y + z)� 2(y � z)(y + z)
=3x2 + 6y2 + 11z2 + 2xy + 2yz

proving that 3x2 + 6y2 + 11z2 + 2xy + 2yz is (4, 3)-universal under the stated
assumption.

Theorem 18. Assume that

3x2 + 4y2 + 5z2 + 2xy + 2xz + 2yz (discriminant = 50)

is (4, 3)-universal. Then

3x2 + 7y2 + 10z2 + 2xz + 2yz (discriminant = 200)

is (4, 3)-universal.

Proof. Let n 2 N satisfy n ⌘ 3 (mod 4). Then by assumption there exist integers
a, b and c such that

n = 3a2 + 4b2 + 5c2 + 2ab + 2ac + 2bc.

Taking this equation modulo 2, we obtain 1 ⌘ a + c (mod 2) so that

(a, c) ⌘ (0, 1) or (1, 0) (mod 2).

If (a, c) ⌘ (0, 1) (mod 2) then 3 ⌘ 1+2b (mod 4) so b ⌘ 1 (mod 2). If (a, c) ⌘ (1, 0)
(mod 2) then 3 ⌘ 3 + 2b (mod 4) so b ⌘ 0 (mod 2). Hence in both cases we have
b ⌘ c (mod 2). Define integers x, y and z by

x =
�2a� b� c

2
, y =

�b + c

2
, z =

b + c

2

so that a = �x� z, b = �y + z, c = y + z, and thus

n =3(�x� z)2 + 4(�y + z)2 + 5(y + z)2 + 2(�x� z)(�y + z)
+ 2(�x� z)(y + z) + 2(�y + z)(y + z)

=3x2 + 7y2 + 10z2 + 2xz + 2yz,

proving that 3x2 + 7y2 + 10z2 + 2xz + 2yz is (4, 3)-universal under the stated
assumption.

7. Concluding Remarks

In Tables 1 - 4 we list all possible (4, 1)- and (4, 3)-universal reduced primitive
positive-definite integral ternary quadratic forms. As there is no known algo-
rithm for determining the integers represented by an arbitrary non-regular ternary
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quadratic form, it remains a di�cult problem to prove the (4, 1)-universality or
(4, 3)-universality of the forms marked with an asterisk in these tables.

Acknowledgement. The authors thank the referee for reminding them that the
ternary form of discriminant 100 in Tables 3 and 4 was proved to be (2, 1)-universal
by Kaplansky in [13].
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