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Abstract
A natural number n is called practical if every integer between 1 and n can be
expressed as a sum of distinct positive divisors of n. In this paper, given an integer
a, we explore the practicality of shifted primes p� a. Let

Pa(x) := |{p 6 x : p prime, p� a practical}|.

We establish upper and lower bounds for Pa(x). In particular, for any given odd
integer a, there are infinitely many primes p such that p� a is practical.

1. Introduction

A natural number n is called practical if every integer between 1 and n can be
expressed as a sum of distinct positive divisors of n. These numbers were first
introduced by Srinivasan [13] and have since been studied by several authors [2, 3,
5, 6, 7, 10, 12, 14, 16, 18]. There are many similarities between the distribution
of practical numbers and that of prime numbers. The analogues of Legendre’s
conjecture [5], Goldbach’s conjecture [7], the twin prime conjecture [7], and the
prime number theorem [18, 20], are all theorems in the context of practical numbers.
More conjectures involving practical numbers can be found in [15].

The sequence of practical numbers, which begins with

1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 28, 30, ...,

seems to have many terms in common with the shifted primes p� 1:

1, 2, 4, 6, 10, 12, 16, 18, 22, 28, 30, ...
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This raises the question as to whether there are infinitely many primes p for which
p� 1 is practical. The number of primes below x is ⇠ x/ log x, while the number of
practical numbers below x is ⇠ cx/ log x for some constant 1.311 < c < 1.693 (see
[18, 20]). Thus, it seems reasonable to expect that the number of primes p 6 x,
for which p� 1 is practical, is asymptotic to Cx/(log x)2 for some positive constant
C. Theorem 1 gives lower and upper bounds for the count of such primes. More
generally, given an integer a, we explore the practicality of shifted primes p�a. Let

Pa(x) := |{p 6 x : p prime, p� a practical}|.

Since all practical numbers greater than one are even, only the case of odd a is of
interest.

Theorem 1. Let a be an odd integer. Let � > 2 + 2e log 2 = 5.7683... and � =
1 � (1 + log log 2)/ log 2 = 0.086071... be the Erdős-Tenenbaum-Ford constant. We
have

x

(log x)�
⌧ Pa(x)⌧ x

(log x)1+�
.

We will prove a more general version of Theorem 1, which applies to other se-
quences besides the practical numbers. Given any arithmetic function ✓, define
the set B✓ ✓ N as follows. Let 1 2 B✓ and let n = p↵1

1 · · · p↵k
k 2 B✓, with primes

p1 < · · · < pk, if and only if

pi 6 ✓(p↵1
1 · · · p↵i�1

i�1 ), (1 6 i 6 k). (1)

Sierpinski [12] and Stewart [14] found that the set of practical numbers is precisely
the set B✓ with ✓(n) = �(n)+1, where �(n) denotes the sum of the positive divisors
of n.

We shall write B0 to denote the set B✓ with ✓(n) = max(2, n). Since max(2, n) 6
�(n) + 1, the set B0 is a subset of the set of practical numbers.

Theorem 2. Let � and � be as in Theorem 1. Assume ✓ satisfies max(2, n) 6
✓(n) 6 n exp

�
A(log log 3n)3/(2�)

�
for some constant A. Let S be any set with B0 ✓

S ✓ B✓ and write Sa(x) := |{p 6 x : p prime, p�a 2 S}|. For any fixed odd integer
a, we have

x

(log x)�
⌧ Sa(x)⌧ x

(log x)1+�
.

These bounds remain valid under the weaker condition

max(2, n) 6 ✓(n)⌧ n exp
�
(log n)o(1)

�
,

provided the exponent 1 + � is replaced by 1 + � � " with any " > 0.

Note that 3/(2�) = 17.427.... Since �(n) + 1 ⌧ n log log 2n, Theorem 1 follows
from Theorem 2.



INTEGERS: 18 (2018) 3

Besides the practical numbers, we mention two more examples of sets S to which
Theorem 2 applies. Given a fixed paramter t > 2, consider the set of positive
integers whose ratios of consecutive divisors do not exceed t (see [10, 16, 18, 20]).
These integers are called t-dense and are precisely the integers in the set B✓ with
✓(n) = tn (see [16, Lemma 2.2]).

Second, the '-practical numbers, i.e., integers n such that the polynomial Xn�1
has a divisor in Z[X] of every degree below n (see [9, 17]). Although this set is not
equal to B✓ for any ✓, it satisfies B0 ⇢ B✓1 ⇢ S ⇢ B✓2 , where ✓1(n) = n + 1 and
✓2(n) = n + 2.

The proof of the lower bound of Theorem 2 (see Proposition 1) rests on a
Bombieri-Vinogradov type theorem (Lemma 1), due to Bombieri, Friedlander and
Iwaniec, for primes in arithmetic progressions to large moduli [1]. To control for
repeated counting of the same integer, we use a result by Norton [8] for the fre-
quency of large values of the divisor function ⌧(n) (Lemma 2). The upper bound
in Theorem 2 (see Proposition 2) follows from an upper bound by Ford [4] for the
number of shifted primes with a divisor from an interval.

2. The Lower Bound

Proposition 1. Let a be an odd integer and � > 2+2e log 2 = 5.768... The number
of primes p 6 x, for which p� a 2 B0, is

� x

(log x)�
.

We write log2 x = log log x and log3 x = log log log x.

Lemma 1 (Bombieri, Friedlander, Iwaniec [1]). Let a 6= 0 be an integer and
A > 0, 2 6 Q 6 x3/4 be reals. Let Q be the set of all integers q, relatively prime to
a, from an interval Q0 < q 6 Q. Then

X

q2Q

����⇡(x; q, a)� ⇡(x)
'(q)

����

6

(

K

✓
✓ � 1

2

◆2

xL�1 + O
�
(xL�3(log2 x)2

�
)
X

q2Q

1
'(q)

+ O(xL�A),

where ✓ = log Q/ log x, L = log x, K is absolute, the first implied constant in O
depends only on A, and the second one on a and A.

Lemma 2 (Norton [8]). Let ⌧(n) denote the number of positive divisors of the
integer n. For x > x0, y > log2 x,

#
�
n 6 x : ⌧(n) > 2y

 
6

x

log x
exp

⇢
�y log y + y(log3 x + 1) + O

✓
y

log2 x

◆�
.
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The following observation follows immediately from the definition of the set B0.

Lemma 3. If n 2 B0 and 1 6 k 6 n, then nk 2 B0.

Lemma 4. Let a be an odd integer. There is a constant  = (a) > 1, such that
the number of integers n 2 B0 \ [x,x], which are relatively prime to a, is

�a
x

log x
.

Proof. Define

Da,h(x) = {m = p↵1
1 · · · p↵k

k 6 x2�h : P+(|a|) < pi 6 2hp↵1
1 · · · p↵i�1

i�1 , 1 6 i 6 k},

where p1 < p2 < · · · < pk are the prime factors of m. Here P+(n) denotes the largest
prime factor of n and P+(1) = 1. For each m 2 Da,h(x), we have m2h 2 B0 \ [1, x]
and gcd(a,m2h) = 1, since a is odd and P+(|a|) < p1. The result now follows from
an estimate due to Saias [11, Theorem 1], which shows that

|Da,h(x)| ⇣a,h
x

log x
,

provided h > h0 and x > x0.

Proof of Proposition 1. Let � > 2 + 2e log 2 and put c = (� � 2)/2 > e log 2. Let
 > 1 be the constant from Lemma 4. Define

Qa = {q 2 (
p

x,
p

x] : q 2 B0, gcd(q, a) = 1, ⌧(q) 6 (log x)c}.

By Lemma 2, the number of n 6 
p

x with ⌧(n) > (log x)c is o(
p

x/ log x). Together
with Lemma 4, this implies

|Qa|�a

p
x

log x
.

By Lemma 1, we have

X

q2Qa

����⇡(x; q, a)� ⇡(x)
'(q)

����⌧a
x(log2 x)3

(log x)3
,

since '(q)� q/ log2 q. It follows that the number of q 2 Qa for which
����⇡(x; q, a)� ⇡(x)

'(q)

���� >
⇡(x)
2'(q)

� x

q log x
⇣
p

x

log x
,

is
⌧a

p
x(log2 x)3

(log x)2
.
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Consequently,

|Q0
a|�a

p
x

log x
,

where
Q0

a =
⇢

q 2 Qa :
����⇡(x; q, a)� ⇡(x)

'(q)

���� 6
⇡(x)
2'(q)

�
.

For each q 2 Q0
a, the number of k such that qk + a 6 x is prime, is

⇡(x; q, a) >
⇡(x)
2'(q)

� x

q log x
⇣
p

x

log x
.

The number of k 6
p

x for which ⌧(k) > (log x)c is o(
p

x/ log x), by Lemma 2.
Hence there are �

p
x/ log x values of k for which qk + a 6 x is prime and ⌧(k) 6

(log x)c. Since k 6 q and q 2 B0, Lemma 3 shows that qk 2 B0. Thus the number
of pairs (q, k) such that q 2 Q0

a, ⌧(k) 6 (log x)c and qk + a 6 x is prime, is

�
✓ p

x

log x

◆✓ p
x

log x

◆
=

x

(log x)2
.

For each of these pairs (q, k), we have

⌧(qk) 6 ⌧(q)⌧(k) 6 (log x)2c,

which implies that there are at most (log x)2c pairs (q̃, k̃), such that qk = q̃k̃. It
follows that the number of distinct elements of B0 of the form qk, for which qk + a
is prime, is

� x

(log x)2+2c
=

x

(log x)�
.

3. The Upper Bound

Proposition 2. Let a 6= 0 be fixed and � = 1� (1 + log log 2)/ log 2 = 0.086071....
Let ✓ be an arithmetic function and ✓(n)/n 6 h(n) for some non-decreasing h with
2 6 h(x)⌧

p
x. The number of primes p 6 x such that p� a 2 B✓ is

⌧ x

log x

✓
2 log h(x)

log x

◆� ✓
log

✓
log x

log h(x)

◆◆�3/2

.

The upper bounds in Theorem 2 follow from taking h(n) = A exp
�
(log n)o(1)

�

and h(n) = exp
�
A(log log 3n)3/(2�)

�
.
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Proof. Let ✓̃(n) = nh(n) such that ✓(n) 6 ✓̃(n) for all n > 1. Write B1 to denote
B✓̃. Since h(n) is non-decreasing, Theorem 4 of [19] shows that B1 is precisely the
set of integers n whose divisors 1 = d1 < d2 < . . . < d⌧(n) = n satisfy

dj+1 6 ✓̃(dj) (1 6 j < ⌧(n)).

We have dj+1 6 ✓̃(dj) = djh(dj) 6 djh(x) for every n 2 [1, x]\B1, 1 6 j < ⌧(n). It
follows that every n 2 (

p
x, x] \ B1 has a divisor in the interval (

p
x,
p

xh(x)]. We
get

|{p 6 x : p prime, p� a 2 B✓}|
6 |{p 6 x : p prime, p� a 2 B1}|
= |{n 6 x� a : n + a prime, n 2 B1}|
6
p

x + |{n 6 x + |a| : n + a prime, n has a divisor in (
p

x,
p

xh(x)]}|

⌧ x

log x

✓
2 log h(x)

log x

◆� ✓
log

✓
log x

log h(x)

◆◆�3/2

,

where the last estimate follows from combining Theorem 1(v) and Theorem 6 of
Ford [4].
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