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Abstract
The vanishing properties of Fourier coe�cients of integral powers of the Dedekind
eta function correspond to the existence of integral roots of integer-valued poly-
nomials Pn(x) introduced by M. Newman. In this paper we study the derivatives
of these polynomials. We obtain non-vanishing results at integral points. As an
application we prove that integral roots are simple if the index n of the polynomial
is equal to a prime power pm or to pm + 1. We obtain a formula for the derivative
of Pn(x) involving the polynomials of lower degree.

1. Introduction

In 1955, Newman [7] studied a family of polynomials Pn(x) with remarkable prop-
erties. These polynomials are recursively defined by P0(x) := 1 and

Pn(x) :=
x

n

nX

k=1

�(k)Pn�k(x). (1)

Here �(m) :=
P

d|m d is the divisor sum. The polynomials Pn have degree n and
are integer-valued functions.

Let ⌘(⌧) be the Dedekind eta function ([1], [4]):

⌘(⌧) := q
1
24

1Y

n=1

(1� qn) , (2)



INTEGERS: 18 (2018) 2

where ⌧ 2 H := {⌧ 2 C | Im(⌧) > 0}. One puts q := e2⇡i ⌧ . Then

1X

n=0

Pn(z) qn =
1Y

n=1

(1� qn)�z . (3)

Let r be an integer. Then Pn(�r) is essentially equal to the n-th Fourier coe�cient
of ⌘r (see also [12], introduction). The number of partitions [10] of n is given by

P1(1) = 1, P2(1) = 2, P3(1) = 3, P4(1) = 5, . . . , P200(1) = 3972999029388, . . .

Euler already studied the values of the Fourier coe�cients for r = �1, which are
related to pentagonal numbers [8]. The first few are given by

P1(�1) = �1, P2(�1) = �1, P3(�1) = 0, P4(�1) = 0, P5(�1) = 1.

In contrast to partition numbers, where r is negative, the Fourier coe�cients for r
positive have sign changes and can vanish. The study of these properties, especially
the vanishing property is of special interest (see for example [13], [2] (page 94), [3]).

Let ⌧(n) be the Ramanujan tau-function [6, 11], the coe�cients of the discrimi-
nant function � (see Section 2 for more details). Then the values of Pn(x) at �24
are given by

P0(�24) = ⌧(1) = 1,
P1(�24) = ⌧(2) = �24,
P2(�24) = ⌧(3) = 252.

The roots of Pn(x) dictate the vanishing of the Fourier coe�cients of the corre-
sponding powers of the Dedekind eta function. For example

P19(x) =
x

19!
(x + 1)(x + 3)(x + 4)(x + 6)(x + 8)(x + 14)Q(x), (4)

where Q(x) is an irreducible polynomial over Q. Hence only the 19-th Fourier
coe�cient of the zeroth, first, third, sixth, eighth, and fourteenth integral power
of ⌘(⌧) vanishes. This implies that ⌧(20) 6= 0. Actually the Lehmer conjecture [6]
predicts that ⌧(n) never vanishes. It is known that the sum ⌃n and product ⇧n of
the roots of n!

x Pn(x) are given by

⌃n =
3n(n� 1)

2
, ⇧n = (n� 1)! �(n). (5)

Note that several roots as �1,�2,�3,�4,�6,�8,�10,�14,�26 occur frequently
(see [3]) and precise criteria for the related Fourier coe�cients exist [13]. Neverthe-
less up to the moment only �5,�7 and �15 have been identified as further integral
roots. To make use of the explicit formula for ⌃n,⇧n to study the distribution of
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the roots, especially the integral roots, it is essential to know if all non-trivial roots
have negative real part and their multiplicity. Note that the converse is not true.
For example

(X + 3) (X � 1� 3i) (X � 1 + 3i) = X3 + X2 + 4X + 30.

Numerical calculations show that the polynomials n!
x Pn(x) for n  1000 are Hur-

witz polynomials, which supports the assumption that all roots have negative real
part.

In this paper we study the multiplicities of possible integral roots of Pn(x). Our
main ingredient is a new formula for the derivatives of Pn(x). Here we obtain results
for specific indices n and general x. Additionally we study the cases

x = �1,�2, . . . ,�10 and x = �24.

For example we have P 0
n(�1) 62 Z for 2  n  107.

2. Results

The Dedekind eta function ⌘(⌧) is a modular form of weight 1/2 for SL2(Z). Due
to Euler, the Fourier coe�cients are easy to calculate. The same is true for ⌘(⌧)3

due to Jacobi (see also [9], [5]) and

1Y

n=1

(1� qn) =
1X

n=�1
(�1)n q

3n2+n
2 , (6)

1Y

n=1

(1� qn)3 =
1X

n=0

(�1)n (2n + 1) q
n2+n

2 . (7)

Here (3n2 � n)/2 are the pentagonal numbers. Note that ⌘(⌧) and ⌘(⌧)3 are the
only superlacunary odd integral ⌘ powers.

For general powers the situation is much more complicated. Let �(⌧) be the
discriminant function with Fourier coe�cients ⌧(n):

�(⌧) := ⌘(⌧)24 =
1X

n=1

⌧(n) qn. (8)

This is the unique newform of weight 12 for SL2(Z). The ⌧(n) have many remark-
able properties. They are multiplicative with an additional law for ⌧(pm) (p prime
and m 2 N) since � is a Hecke eigenform. Further � satisfies the Ramanujan
conjecture proven by Deligne, which implies a precise estimation on the growth of
the numbers ⌧(n). It is also known that the Fourier coe�cients of � have infinitely



INTEGERS: 18 (2018) 4

many sign changes. But it is still an open problem (Lehmer conjecture) if any coef-
ficient vanishes. Lehmer proved that the smallest n, for which ⌧(n) is zero, has to
be a prime [6].

Let n 2 N. We note that

n!
x

Pn(x) =
n�1X

k=0

an,k xk 2 Z[x]

is a normalized polynomial of degree n � 1 and that all its coe�cients an,k are
positive. It is easy to show that an,0 = (n � 1)! �(n) and an,n�2 = 3n(n�1)

2 . See
also [7]. These simple formulas are misleading, since there is no explicit closed
formula known for an,k in general.

Our first result on the derivatives of Pn(x) is the following one.

Theorem 1. Let n = pm, where p is a prime and m 2 N. Then

P 0
n(x0) 2 Q \Z (9)

for any integer x0.

In the proof we use the property that for these specific n we have that �(n) and
n are coprime. We hope to extend our theorem to all n with this property. On the
other hand, our theorem is true for all integers x0, which has not been expected.
Let n be a prime power that is an element of the set

{2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, . . .} , (10)

then P 0
n(x0) is not an integer. This implies:

Corollary 1. Suppose n = pm, where p is a prime and m 2 N. Then all integral
roots of Pn(x) are simple.

In the course of the proof we obtain the following useful formula, expressing the
derivatives of Pn(x) in terms of linear combinations of Pm(x) for m  n� 1:

P 0
n(x) =

nX

k=1

�(k)
k

Pn�k(x) (n 2 N). (11)

Inverting this formula leads to:

Corollary 2. There is a sequence of bk, k � �1, so that we can express Pn(x) as
a linear combination of derivatives P 0

m(x), where

Pn(x) =
n�1X

k=�1

bkP 0
n�k(x).
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The coe�cients are obtained recursively from b�1 = 1. For k � 0:

bk = �
k�1X

m=�1

bm
�(k + 1�m)

k + 1�m
. (12)

If we further let n = pm +1, then we do not get the full result of Theorem 1, but
still an integral result for the derivative of the related polynomial

Fn(x) :=
n

x
Pn(x)

at integral points x0. This leads to the simplicity of integral roots at n = pm + 1
independent of x0.

Theorem 2. Let n = pm + 1, where p is a prime and m 2 N. Then

F 0
n(x0) 2 Q \Z (13)

for any integer x0.

This shows immediately:

Corollary 3. Suppose n = pm+1, where p is a prime and m 2 N. Then all integral
roots of Pn(x) are simple.

This adds the following n to the above list (10):

6, 10, 12, 14, 18, 20, 24, 26, 28, 30, 33, . . . , (14)

Hence the first index not covered by these two corollaries is n = 15.

3. Proofs of Theorem 1 and Theorem 2

Before we prove the two theorems, we list the derivatives of Pn(x) for n  10. For
a list of the polynomials for n  20 we refer the reader to [3].

n P 0
n (x)

0 0
1 1
2 (2x + 3) /2
3

�
3x2 + 18x + 8

�
/3!

4
�
4x3 + 54x2 + 118x + 42

�
/4!

5
�
5x4 + 120x3 + 645x2 + 900x + 144

�
/5!

6
�
6x5 + 225x4 + 2260x3 + 7425x2 + 6788x + 1440

�
/6!

7
�
7x6 + 378x5 + 6125x4 + 37380x3 + 84882x2 + 61824x + 5760

�
/7!

8 (8x7 + 588x6 + 14028x5 + 138600x4 + 591556x3 + 1020348x2 + 586584x
+ 75600)/8!

9 (9x8 + 864x7 + 28518x6 + 417312x5 + 2896845x4 + 9365328x3

+ 13006788x2 + 6064416x + 524160)/9!
10 (10x9 + 1215x8 + 53040x7 + 1080450x6 + 11145078x5 + 58723875x4

+ 152199680x3 + 173321100x2 + 72581472x + 6531840)/10!
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It is well-known and not di�cult to show that the derivative of a Hurwitz polynomial
is again a Hurwitz polynomial. Hence we expect that all roots of P 0

n(x) have negative
real part. Similar to the Pn(x), the P 0

n(x) can also have non-real roots. For example
for n = 21.

Proof of Theorem 1. We deduce from [7] that
1X

n=0

Pn(z) qn =
1Y

n=1

(1� qn)�z (z 2 C). (15)

See also Section 2, where some further remarks are given. The proof is based on
examining the logarithmic derivative of (15), certain grouping of terms and using
the uniqueness of the coe�cients of the involved power series in q. We have analytic
functions on the upper half space, since |q| < 1. It is well known that

1Y

n=1

(1� qn) = exp

 

�
1X

n=1

�(n)
qn

n

!

.

Note the logarithmic derivative of the Dedekind eta function is essentially the
holomorphic Eisenstein series of weight 2. Putting both sides of our equation to the
power of �z leads to

1Y

n=1

(1� qn)�z = exp

 

z
1X

n=1

�(n)
qn

n

!

.

Hence we obtain the useful identity
1X

n=0

Pn(z) qn = exp

 

z
1X

n=1

�(n)
qn

n

!

. (16)

Now we di↵erentiate both sides of (16) with respect to z. The right side of the
formula reproduces the power series multiplied with

1X

n=1

�(n)
qn

n
.

After comparing the Fourier coe�cients with respect qn of both sides we obtain
the following identity:

P 0
n(x) =

nX

k=1

�(k)
k

Pn�k(x) (n 2 N). (17)

It expresses the derivative of the polynomial Pn(x) in terms of Pn�k(x) and �(k)/k
instead of �(k) in the recursion formula of Pn(x). To examine the possible denom-
inator of the right side, we write down the sum explicitly:

P 0
n(x) = Pn�1(x) +

�(2)
2

Pn�2(x) + . . . +
�(n� 1)

n� 1
x +

�(n)
n

. (18)
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Recall that the polynomial Pn(x) 2 Q[x] is an integer-valued function, hence pos-
sible denominators can only be obtained by the quotients �(k)/k. Let n = pm.
Then the greatest common divisor of �(n) and n is equal to 1 (gcd(�(n), n) = 1).
Further we note that n = pm is exactly the highest power of p appearing in the
denominator of P 0

n(x0), where x0 2 Z. Hence P 0
n(x0) is a rational number, but not

an integer.

The same argument is expected to work if we assume that �(n) and n are coprime.
But if n splits into di↵erent coprime numbers, the denominator could be eliminated
by other terms in the sum (18). We put this as an open problem.

Proof of Theorem 2. For all natural numbers n we have:

Fn(x) =
nX

k=1

�(k) Pn�k(x). (19)

Taking the derivative with respect to x leads to

F 0
n(x) =

n�1X

k=1

�(k) P 0
n�k(x)

= P 0
n�1(x) + �(2)P 0

n�2(x) + . . . + �(n� 1)P 0
1(x).

Note that P 0
0(x) = 0 and P 0

1(x) = 1. Using the formula (17) leads to

F 0
n(x) =

n�1X

k=1

n�kX

l=1

�(k)
�(l)

l
Pn�k�l(x). (20)

Then the claim follows from taking special values for k and l. We observe that for
k = 1 and l = n�1, the summand �(n�1)/ (n�1) has the denominator pm, which
dominates the denominator of F 0

n(x0) for x0 2 Z. Here it is essential that Pn(x) is
an integer-valued function.

4. On the Derivatives of Pn(x) at x = �1

We have proven that Pn(x) does not have multiple zeros for n or n � 1 equal to
prime powers at integral points. It would definitely be interesting to understand
what happens for general n. Fixing the argument x 2 Z and varying the n gives
some new insight.

In this section we study Pn(x0) at x0 = �1. Our Theorems already show that
P 0

n(�1) 6= 0 for n  14, if n is a prime power. Hence �1 is a single root for n  14.
A calculation shows that

P 0
15(�1) =

12563
10920

=
17 · 739

23 · 3 · 5 · 7 · 13
.
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Our interest is the multiplicity of (�1) as a root of Pn(x). The n’s label in (6)
the Fourier coe�cients of

1Y

m=1

(1� qm) = 1 +
1X

m=1

(�1)mq(3m+1)m/2 =
1X

n=0

Pn(�1) qn

= 1� q � q2 + q5 + q7 � q12 � q15 + q22 + . . . .

Let Pn(�1) = 1 then Pn(x) is forced to have a root in (�1, 0). Further investigations
in the values of the derivatives of Pn(x) at �1 lead to:

Theorem 3. If n  N = 107, then P 0
n(�1) 6= 0. Refined calculations show that

P 0
n(�1) 62 Z for 2  n  N .

If x0 2 {�2,�3, . . . ,�10}, then P 0
n(x0) 62 Z for 2  n  104. We also checked

the special case x0 = �24. We have that P 0
n(�24) is not an integer for 2  n  105.

For further studies and for the convenience of the reader we record the explicit
factorization of the values P 0

n(�1) for n  20. They reveal sign changes. Further
note that 2 and 3 do not always appear in the denominator.

n 1 2 3 4 5

P 0
n (�1) 1 1

2 � 7
2·3 � 13

22·3 � 113
22·3·5

P 0
n+5 (�1) 1

22·5 � 3·13
2·5·7

179
23·3·7

5·132

23·32·7
73

23·32

P 0
n+10 (�1) 29·109

22·32·5·11
2·1031
3·5·7·11

1811
23·3·11·13 � 997

2·32·7·13
17·739

23·3·5·7·13

P 0
n+15 (�1) �83·1063

24·32·5·7·11
�853

24·3·17
�232811

24·3·11·13·17
�23·1201

22·3·7·17·19
�5·7·257
23·3·13·19
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[5] G. Köhler, Eta Products and Theta Series Identities, Springer Monographs in Mathematics,
Springer, Berlin–Heidelberg–New York, 2011.

[6] D. Lehmer, The vanishing of Ramanujan’s ⌧(n), Duke Math. J. 14 (1947), 429–433.

[7] M. Newman, An identity for the coe�cients of certain modular forms, J. London Math. Soc.
30 (1955), 488–493.

[8] E. Neher, Jacobis Tripleprodukt-Identität und ⌘-Identitäten in der Theorie der a�nen Lie-
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