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Abstract
In this paper, we completely solve the Diophantine equations Fn1 + Fn2 = 2a1 +
2a2 + 2a3 and Fm1 + Fm2 + Fm3 = 2t1 + 2t2 , where Fk denotes the k-th Fi-
bonacci number. In particular, we prove that max{n1, n2, a1, a2, a3}  18 and
max{m1,m2,m3, t1, t2}  16.

1. Introduction

There is a vast literature on solving Diophantine equations involving the sequence
{Fn}n�0 of Fibonacci numbers (defined by F0 = 0, F1 = 1 and Fn+2 = Fn+1+Fn for
n � 0), the sequence {F (k)

n }n�0 of k-generalized Fibonacci numbers, the sequence
{Pn}n�0 of Pell numbers and other recurrence sequences. For instance, recent
results include Bravo and Luca [7] where they studied the Diophantine equation

Fn + Fm = 2a.

In [8] Bravo, Gómez and Luca extended their work to k-generalized Fibonacci num-
ber F (k)

n , and studied the equation

F (k)
n + F (k)

m = 2a.

Bravo, Faye and Luca [6] studied the Diophantine equation

Pl + Pm + Pn = 2a.

The most general results in this respect are due to Stewart [17], who studied
representations of integers in two di↵erent bases. Note that the result due to Bravo
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and Luca [7] can be seen as an attempt to find all integers that have only a few
digits in base 2 and the Zeckendorf expansion simultaneously. Also, Luca [13] proves
a similar result. Finally, let us mention a recent result due to Meher and Rout [15]
on the finiteness of solutions to the Diophantine equation

a1Un1 + · · · + atUnt = b1p
z1
1 + · · · + bsp

zs
s

in non-negative integers n1, . . . , nt, z1, . . . , zs, where {Un}n�0 is a binary, non-
degenerate recurrence sequence with positive discriminant, b1, . . . , bs are fixed non-
negative integers, a1, . . . , at are fixed positive integers and p1, . . . , ps are given
primes. They explicitly solved the equation Fn1 + Fn2 = 2z1 + 3z2 in non-negative
integers n1, n2, z1, z2 with z2 � z1.

Recently, Diophantine equations which can be regarded as variants of Pillai’s
problem [16] have been studied. For instance, Chim, Pink and Ziegler [10] obtained
all the integers c such that the Diophantine equation

Fn � Tm = c

has at least two solutions. Here Tm denotes the m-th Tribonacci number. Ddamulira,
Luca, and Rakotomalala [12] considered the Diophantine equation

Fn � 2m = c

and found all integers c for which this Diophantine equation has at least two solu-
tions. Recently, Bravo, Luca and Yazán [9] considered the Diophantine equation

Tn � 2m = c

instead. The most general result is due to Chim, Pink and Ziegler [11] who consid-
ered the case, where Un and Vm are the n-th and m-th numbers in linear recurrence
sequences {Un}n�0 and {Vm}m�0 respectively, and found e↵ective upper bounds
for |c| such that the Diophantine equation

Un � Vm = c

has at least two solutions.
All the problems stated above are solved by a similar strategy: the iterated

application of linear forms in logarithms. We extend this strategy and study the
two Diophantine equations

Fn1 + Fn2 = 2a1 + 2a2 + 2a3

and
Fm1 + Fm2 + Fm3 = 2t1 + 2t2 .

In particular, we prove the following two theorems.
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Theorem 1. Let (n1, n2, a1, a2, a3) 2 N5 be a solution to the Diophantine equation

Fn1 + Fn2 = 2a1 + 2a2 + 2a3 (1)

such that n1 � n2 � 0 and a1 � a2 � a3 � 0, then n1  18 and a1  11. In
particular, equation (1) has exactly 78 solutions.

Theorem 2. Let (m1,m2,m3, t1, t2) 2 N5 be a solution to the Diophantine equation

Fm1 + Fm2 + Fm3 = 2t1 + 2t2 (2)

such that m1 � m2 � m3 � 0 and t1 � t2 � 0, then m1  16 and t1  10. In
particular, equation (2) has exactly 116 solutions.

Remark 1. The list of solutions to equations (1) and (2) is given in the Appendix.
So we keep the statement of Theorems 1 and 2 short and compact.

We shall prove both Theorems 1 and 2 by the typical strategy also performed
in [7, 9, 10, 11, 12]. First we extract by a simple computer search all solutions
(n1, n2, a1, a2, a3) with n1 < 360 to equation (1) and all solutions (m1,m2,m3, t1, t2)
with m1 < 360 to equation (2), respectively. The key argument to obtain upper
bounds for n1 = max{n1, n2, a1, a2, a3} and m1 = max{m1,m2,m3, t1, t2}, respec-
tively, is to apply lower bounds for linear forms in logarithms. This is done in the
seven steps described below, where ↵ = 1+

p
5

2 denotes the dominant root of the
Fibonacci sequence and c1, . . . , c7 denote e↵ectively computable constants. For the
proof of Theorem 1, the seven steps are as follows:

Step 1 We obtain an upper bound

min{(a1 � a2) log 2, (n1 � n2) log ↵}  c1 log n1.

Hence we have to distinguish between the following two cases:

Case 1 min{(a1 � a2) log 2, (n1 � n2) log ↵} = (a1 � a2) log 2  c1 log n1

Case 2 min{(a1 � a2) log 2, (n1 � n2) log ↵} = (n1 � n2) log ↵  c1 log n1.

Step 2 We consider Case 1 and show that (a1 � a2) log 2  c1 log n1 yields

min{(a1 � a3) log 2, (n1 � n2) log ↵}  c2(log n1)2.

Thus we have to further subdivide Case 1 into the following two cases:

Case 1A min{(a1 � a3) log 2, (n1 � n2) log ↵} = (a1 � a3) log 2  c2(log n1)2

Case 1B min{(a1 � a3) log 2, (n1 � n2) log ↵} = (n1 � n2) log ↵  c2(log n1)2.
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Step 3 We consider Case 1A and show that (a1 � a3) log 2  c2(log n1)2 implies
that

(n1 � n2) log ↵  c3(log n1)3.

Step 4 We consider Case 1B and show that (a1 � a2) log 2  c1 log n1 and (n1 �
n2) log ↵  c2(log n1)2 yield the upper bound

(a1 � a3) log 2  c4(log n1)3.

Step 5 We consider Case 2 and show that (n1 � n2) log ↵  c1 log n1 yields the
upper bound

(a1 � a2) log 2  c5(log n1)2.

Step 6 We continue to consider Case 2 and show that assuming the upper bounds
(a1 � a2) log 2  c5(log n1)2 and (n1 � n2) log ↵  c1 log n1 yield the upper
bound

(a1 � a3) log 2  c4(log n1)3.

This is basically Step 4 again, but with probably slightly di↵erent constants.
However, after Step 6 we have found upper bounds for (a1 � a2) log 2, (a1 �
a3) log 2 and (n1 � n2) log ↵.

Step 7 We show that the upper bounds found in the previous steps yield an in-
equality of the form n1  c7(log n1)4. Thus we obtain an absolute bound for
n1.

As soon as we have found an upper bound for n1, we go through all seven steps
again, but instead of applying lower bounds for linear forms in logarithms, we use
the Baker-Davenport reduction method. By doing so, in all steps we obtain small
absolute bounds. In case the Baker-Davenport reduction method fails we can make
use of a criterion of Legendre for continued fractions to reduce the huge upper
bounds to rather small upper bounds. Indeed we succeed to show that all solutions
satisfy n1 < 360, which already has been found by our previous computer search.

Of course, a slight modification of these seven steps also leads to a proof of
Theorem 2.

It should be noted that due to having more terms in each equation as compared
to the equations considered in [7, 9, 10, 11, 12], we apply several times more the
results of linear forms in logarithms and the reduction method, e.g., instead of using
only twice the results on linear forms in logarithms and the reduction method as in
[7], we apply them seven times.
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2. Preliminaries

In this section, the result of linear forms in logarithms by Baker and Wüstholz [4] is
stated. In addition, we state a lemma from [6], which is a generalization of a result
due to Baker and Davenport [3], the so-called Baker-Davenport reduction method.
Both results will be used to prove Theorems 1 and 2.

2.1. A Lower Bound for Linear Forms in Logarithms of Algebraic
Numbers

In 1993, Baker and Wüstholz [4] obtained an explicit bound for linear forms in
logarithms with a linear dependence on log B, where B � e denotes an upper
bound for the height of the linear form (to be defined later in this section). It is a
vast improvement compared with lower bounds with a dependence on higher powers
of log B in preceding publications by other mathematicians, in particular Baker’s
original results [1].

Denote by ↵1, . . . ,↵k algebraic numbers, not 0 or 1, and by log ↵1, . . . , log ↵k a
fixed determination of their logarithms. Let K = Q(↵1, . . . ,↵k) and let d = [K : Q]
be the degree of K over Q. For any ↵ 2 K, suppose that its minimal polynomial
over the integers is

g(x) = a0x
� + a1x

��1 + · · · + a� = a0

�Y

j=1

⇣
x� ↵(j)

⌘

where ↵(j), j = 1, . . . , �, are all the roots of g(x). The absolute logarithmic Weil
height of ↵ is defined as

h0(↵) =
1
�

0

@log |a0| +
�X

j=1

log
⇣
max

n
|↵(j)|, 1

o⌘
1

A .

Then the modified height h0(↵) is defined by

h0(↵) =
1
d

max{h(↵), | log ↵|, 1},

where h(↵) = dh0(↵) is the standard logarithmic Weil height of ↵.
Let us consider the linear form

L(z1, . . . , zk) = b1z1 + · · · + bkzk,

where b1, . . . , bk are rational integers, not all 0, and define

h0(L) =
1
d

max{h(L), 1},
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where h(L) = d log
⇣
max1jk

n
|bj |
b

o⌘
is the logarithmic Weil height of L, with b

as the greatest common divisor of b1, . . . , bk. If we write B = max{|b1|, . . . , |bk|, e},
then we get

h0(L)  log B.

With these notations we are able to state the following result due to Baker and
Wüstholz [4].

Theorem 3. If ⇤ = L(log ↵1, . . . , log ↵k) 6= 0, then

log |⇤| � �C(k, d)h0(↵1) · · ·h0(↵k)h0(L),

where
C(k, d) = 18(k + 1)! kk+1(32d)k+2 log(2kd).

With |�|  1
2 , where

� = e⇤ � 1 = ↵b1
1 · · ·↵bk

k � 1,

we have 1
2 |⇤|  |�|  2|⇤| so that

log
���↵b1

1 · · ·↵bk
k � 1

��� � log |⇤|� log 2.

We apply Theorem 3 mainly in the situation where K = Q(
p

5), k = 3 and d = 2.
In this case we obtain

C(3, 2) = 18 · 4! · 34 · 645 log 12 < 9.34 · 1013.

We will use this value throughout the paper without any further reference. Let us
recall some well known properties of the absolute logarithmic height:

h0(⌘ ± �)  h0(⌘) + h0(�) + log 2,
h0(⌘�±1)  h0(⌘) + h0(�),

h0(⌘`) = |`|h0(⌘),

where ⌘, � are some algebraic numbers and ` 2 Z.

2.2. A Generalized Result of Baker and Davenport

The following result will be used to reduce the huge upper bounds for n1 and m1

found in Propositions 1 and 2 respectively. Let us state Lemma 6 in [6] which is
regarded as a generalization of a result due to Baker and Davenport [3]. We denote
by kxk = min{|x� n| : n 2 Z} the distance from x 2 R to the nearest integer.
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Lemma 1. Let M be a positive integer, let p/q be a convergent of the continued
fraction of the irrational � such that q > 6M , and let A,B, µ be some real numbers
with A > 0 and B > 1. Let " := kµqk �Mk�qk. If " > 0, then there is no solution
to the inequality

0 < |u� � v + µ| < AB�w, (3)

in positive integers u, v and w with

u  M and w � log(Aq/")
log B

.

Remark 2. Let us explain how we will make use of Lemma 1 and explain how
we proceed, if we are given an inequality of the form (3) and an upper bound M
for solutions with u  M . We start with the smallest denominator q = qj of the
j-th convergent pj

qj
of � that exceeds 6M . If " = kµqk �Mk�qk > 0, we compute

the respective upper bound w < log(Aq/")
log B . If we get a negative ", we consider the

denominator qj+1 of the (j + 1)-th convergent pj+1/qj+1 instead. If a positive " is
obtained we compute the respective upper bound for w. If also the denominator
qj+1 of the (j +1)-th convergent yields a negative " we consider the denominator of
the next convergent until we obtain a positive ". Let us note that it is very unlikely
that after several iterations no instance occurs with a positive ", without any good
reason. Usually this reason is a rational linear dependence on 1, � and µ. If we find
such a linear relation involving 1, � and µ, inequality (3) turns into an inequality
of the form

0 < |u0� � v0| < AB�w

and it is reduced to a classical approximation problem and we may use the theory
of continued fractions. We will treat such cases separately.

3. Set Up

During the proof of both theorems we use the Binet formula for the Fibonacci
sequence in the following form:

Fk =
↵k � �k

↵� �
8k � 0, (4)

where ↵ = 1+
p

5
2 and � = 1�

p
5

2 are the roots of the characteristic polynomial
x2 � x� 1. Moreover, we have the inequality

↵k�2  Fk  ↵k�1 8k � 1. (5)

Without loss of generality, we may assume that n1 � n2 � 0 and a1 � a2 � a3 �
0. Similarly, we may assume that m1 � m2 � m3 � 0 and t1 � t2 � 0 when solving
equation (2).
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3.1. Scenario for Equation (1)

Recall that we would like to solve

Fn1 + Fn2 = 2a1 + 2a2 + 2a3

for n1, n2, a1, a2 and a3. Thus we get

↵n1�2  Fn1  Fn1 + Fn2 = 2a1 + 2a2 + 2a3  3 · 2a1 , (6)

and
2↵n1�1 � 2Fn1 � Fn1 + Fn2 = 2a1 + 2a2 + 2a3 > 2a1 . (7)

Hence
n1 � 2  a1 · log 2

log ↵
+

log 3
log ↵

and n1 � 1 � (a1 � 1) · log 2
log ↵

, (8)

where log 2
log ↵ = 1.4404 . . .. In particular, we have n1 > a1.

In a first step, we solve equation (1) for all n1 < 360. Inequality (8) implies
that in this case we have a1 < 251. By a brute force computer enumeration for
0  n2  n1 < 360 and 0  a3  a2  a1 < 251, we found all solutions listed in the
Appendix.

3.2. Scenario for Equation (2)

Recall that we would like to solve

Fm1 + Fm2 + Fm3 = 2t1 + 2t2

for m1,m2,m3, t1 and t2. Similarly as above we obtain

↵m1�2  Fm1  Fm1 + Fm2 + Fm3 = 2t1 + 2t2  2t1+1 (9)

and
3↵m1�1 � 3Fm1 � Fm1 + Fm2 + Fm3 = 2t1 + 2t2 > 2t1 . (10)

Thus
m1 � 2  t1 · log 2

log ↵
+

log 2
log ↵

and m1 � 1 > t1 · log 2
log ↵

� log 3
log ↵

. (11)

In particular, we have m1 > t1.
We solve equation (2) for 0  m3  m2  m1 < 360 and 0  t2  t1 < 251 by a

brute force computer enumeration and find all solutions listed in the Appendix.
By these computer searches we may assume now that n1 � 360 for solving

equation (1) (respectively m1 � 360 for solving equation (2)). Moreover, we want to
emphasize that the second inequality of (8) (respectively (11)) implies that n1 > a1

(respectively m1 > t1).
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4. A First Upper Bound - Application of Linear Forms in Logarithms

In this section, we shall establish the following two propositions concerning Dio-
phantine equations (1) and (2), respectively.

Proposition 1. Assume that (n1, n2, a1, a2, a3) is a solution to equation (1) with
n1 � n2 � 0 and a1 � a2 � a3 � 0. Then we have that n1 < 4.1 · 1062.

Proposition 2. Assume that (m1,m2,m3, t1, t2) is a solution to equation (2) with
m1 � m2 � m3 � 0 and t1 � t2 � 0. Then we have that m1 < 4.2 · 1062.

4.1. Proof of Proposition 1

Proof. We follow the steps explained in the introduction. We shall present Step 1
to Step 2 in more detail and sketch the argument for Step 3 to Step 7.

Step 1: Show that

min{(a1 � a2) log 2, (n1 � n2) log ↵} < 2.61 · 1013 log n1.

To achieve this, we shall prove the following Lemma.

Lemma 2. Assume that (n1, n2, a1, a2, a3) is a solution to equation (1) with n1 �
n2 � 0 and a1 � a2 � a3 � 0. Then we have

min{(a1 � a2) log 2, (n1 � n2) log ↵} < 2.61 · 1013 log n1.

Proof of Lemma 2. Equation (1) can be rewritten as

↵n1 � �n1

p
5

+
↵n2 � �n2

p
5

= 2a1 + 2a2 + 2a3 .

In the first step we consider n1 and a1 to be large, and by collecting “large” terms
to the left-hand side of the equation, we obtain

����
↵n1

p
5
� 2a1

���� =
����2

a2 + 2a3 +
�n1

p
5
� ↵n2 � �n2

p
5

���� < 2a2+1 +
↵n2

p
5

+ 0.45

< 2.9max{2a2 ,↵n2}.

Dividing through 2a1 we get
����
↵n1

p
5

2�a1 � 1
���� < max

⇢
2.9 · 2a2�a1 ,

2.9↵n2

2a1

�
< max

⇢
2.9 · 2a2�a1 ,

8.7↵n2

↵n1�2

�
.

Hence we obtain the inequality
����
↵n1

p
5

2�a1 � 1
���� < 22.78max

�
2a2�a1 ,↵n2�n1

 
. (12)
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We consider the linear form

⇤ = n1 log ↵� a1 log 2� log
p

5

and put
� = e⇤ � 1 = ↵n12�a1

p
5
�1
� 1.

We assume that |�|  0.5 and use the theorem of Baker and Wüstholz (Theorem
3) with the data

↵1 = ↵, ↵2 = 2, ↵3 =
p

5, b1 = n1, b2 = �a1, b3 = �1.

Since n1 > a1 we have B = n1. By simple computations, we obtain h0(↵1) = 1
2 ,

h0(↵2) = log 2 and h0(↵3) = log
p

5.
Before we can apply Theorem 3 we have to show that � 6= 0. Assume to the

contrary that � = 0, then ↵n1 =
p

5 · 2a1 . Let � 6= id be the unique non-trivial
Q-automorphism over Q(

p
5). Then we get

↵n1 =
p

5 · 2a1 = ��
⇣p

5 · 2a1
⌘

= �� (↵n1) = ��n1 .

However, the absolute value of ↵n1 is at least ↵360 > 2 whereas the absolute value of
��n1 is at most |�|360 < 1. By this obvious contradiction we conclude that � 6= 0.

Theorem 3 yields

log |�| � �C(3, 2)
✓

1
2

◆
(log 2)

⇣
log

p
5
⌘

log n1 � log 2,

and together with inequality (12) we have

min{(a1 � a2) log 2, (n1 � n2) log ↵} < 2.61 · 1013 log n1.

Note that in the case that |�| > 0.5, inequality (12) is possible only if either
a1 � a2  5 or n1 � n2  7, which are covered by the bound provided by Lemma
2.

Now we have to distinguish between

Case 1 min{(a1 � a2) log 2, (n1 � n2) log ↵} = (a1 � a2) log 2 and

Case 2 min{(a1 � a2) log 2, (n1 � n2) log ↵} = (n1 � n2) log ↵.

We will deal with these two cases in the following steps.

Step 2: We consider Case 1 and show that under the assumption that (a1 �
a2) log 2 < 2.61 · 1013 log n1 we obtain

min {(a1 � a3) log 2, (n1 � n2) log ↵} < 8.5 · 1026(log n1)2.
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Since we consider Case 1, we assume that

min{(a1 � a2) log 2, (n1 � n2) log ↵} = (a1 � a2) log 2 < 2.61 · 1013 log n1.

By collecting “large” terms, i.e., terms involving n1, a1 and a2, on the left hand
side, we rewrite equation (1) as

����
↵n1

p
5
� 2a1 � 2a2

���� =
����2

a3 +
�n1

p
5
� ↵n2

p
5

+
�n2

p
5

���� < 2a3 +
↵n2

p
5

+ 0.45

and obtain that
����
↵n1

p
5
� 2a2

�
2a1�a2 + 1

����� < 1.9max {2a3 ,↵n2} .

Dividing through by ↵n1p
5

we get by using inequality (7)

���↵�n12a2
p

5
�
2a1�a2 + 1

�
� 1
��� < max

(
1.9
p

5
↵n1

· 2a3 , 1.9
p

5↵n2�n1

)

 max

(
1.9
p

5
2a1�1↵

· 2a3 , 1.9
p

5↵n2�n1

)

,

and obtain the inequality
���↵�n12a2

p
5
�
2a1�a2 + 1

�
� 1
��� < 5.26max

�
2a3�a1 ,↵n2�n1

 
. (13)

We shall apply Theorem 3 to inequality (13). Therefore we consider the following
linear form in logarithms

⇤1 = �n1 log ↵ + a2 log 2 + log
⇣p

5
�
2a1�a2 + 1

�⌘

and put
�1 = e⇤1 � 1 = ↵�n12a2

p
5
�
2a1�a2 + 1

�
� 1.

Let us assume for the moment that |�1|  0.5. We aim to apply Theorem 3 by
taking

↵1 = ↵, ↵2 = 2, ↵3 =
p

5
�
2a1�a2 + 1

�
, b1 = �n1, b2 = a2, b3 = 1.

Note that since n1 > a1 > a2 we have B = n1. Next, we estimate the height of ↵3

by using the properties of heights and Lemma 2:

h0(↵3)  h0(
p

5) + (a1 � a2)h0(2) + log 2 < 2.62 · 1013 log n1,
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which gives h0(↵3) < 2.62 · 1013 log n1. As before we have h0(↵1) = 1
2 and h0(↵2) =

log 2. By a similar argument as in Step 1 we conclude that �1 6= 0. Now, we are
ready to apply Theorem 3 and get

log |�1| > �C(3, 2)
✓

1
2

◆
(log 2)

�
2.62 · 1013 log n1

�
log n1 � log 2

> �8.49 · 1026(log n1)2.

Combining this inequality with inequality (13), we obtain

min {(a1 � a3) log 2, (n1 � n2) log ↵} < 8.5 · 1026(log n1)2. (14)

Note that in the case that |�1| > 0.5, inequality (13) is possible only if either
a1 � a3  3 or n1 � n2  4. Both cases are covered by the bound provided by
inequality (14).

At this stage, we have to consider two further subcases:

Case 1A min{(a1 � a3) log 2, (n1 � n2) log ↵} = (a1 � a3) log 2 and

Case 1B min{(a1 � a3) log 2, (n1 � n2) log ↵} = (n1 � n2) log ↵.

We will deal with Case 1A in Step 3 and with Case 1B in Step 4.

Step 3: We consider Case 1A and show that under the assumption that (a1 �
a3) log 2 < 8.5 · 1026(log n1)2 and (a1 � a2) log 2 < 2.61 · 1013 log n1 we obtain that

(n1 � n2) log ↵ < 2.77 · 1040(log n1)3.

In this step we consider n1, a1, a2 and a3 to be large. We rewrite equation (1)
and make use of inequalities (6) and (7) to get

|�A| =
���↵�n12a1

p
5
�
1 + 2a2�a1 + 2a3�a1

�
� 1
��� < 2.02↵n2�n1 . (15)

Let us assume that |�A|  0.5. We aim to apply Theorem 3 to inequality (15)
with B = n1, ↵1 = ↵, ↵2 = 2, ↵3 =

p
5 (1 + 2a2�a1 + 2a3�a1). Besides, using our

standard arguments we obtain that h0(↵3) < 8.51 · 1026(log n1)2 and �A 6= 0. An
application of Theorem 3 yields

log |�A| >� 2.76 · 1040(log n1)3.

Combining this inequality with inequality (15) we obtain

(n1 � n2) log ↵ < 2.77 · 1040(log n1)3. (16)
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Note that the scenarios for which |�A| > 0.5 are covered by the bound provided by
inequality (16).

Step 4: We consider Case 1B and show that under the assumption that (n1 �
n2) log 2 < 8.5 · 1026(log n1)2 and (a1 � a2) log 2 < 2.61 · 1013 log n1 we obtain that

(a1 � a3) log 2 < 1.39 · 1040(log n1)3.

In this step we consider n1, n2, a1 and a2 to be large. We rewrite equation (1)
and make use of inequalities (6) and (7) to get

|�B| =
����↵

n22�a2

✓
↵n1�n2 + 1p
5 (2a1�a2 + 1)

◆
� 1
���� < 1.45 · 2a3�a1 . (17)

We assume that |�B|  0.5. We aim to apply Theorem 3 to inequality (17) with
B = n1, ↵1 = ↵, ↵2 = 2, ↵3 = ↵n1�n2+1p

5(2a1�a2+1)
, With this choice we have h0(↵3) <

4.26 · 1026(log n1)2 and �B 6= 0. We obtain

(a1 � a3) log 2 < 1.39 · 1040(log n1)3. (18)

The scenarios for which |�B| > 0.5 are covered by the bound provided by inequality
(18).

Step 5: We consider Case 2 and show that under the assumption that (n1 �
n2) log ↵ < 2.61 · 1013 log n1 we obtain

(a1 � a2) log 2 < 4.26 · 1026(log n1)2.

Since we consider Case 2 we assume that

min{(a1 � a2) log 2, (n1 � n2) log ↵} = (n1 � n2) log ↵ < 2.61 · 1013 log n1.

In this step we consider n1, n2 and a1 to be large. We rewrite equation (1) and
make use of inequalities (6) and (7) to get

|�2| =
����↵

n22�a1

✓
↵n1�n2 + 1p

5

◆
� 1
���� < 2.45 · 2a2�a1 . (19)

We assume that |�2|  0.5. We apply Theorem 3 to inequality (19) with B = n1,
↵1 = ↵, ↵2 = 2, ↵3 = ↵n1�n2+1p

5
. With this choice we obtain that h0(↵3) <

1.31 · 1013 log n1 and �2 6= 0. We obtain

(a1 � a2) log 2 < 4.26 · 1026(log n1)2. (20)
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The scenarios for which |�2| > 0.5 are covered by the bound provided by inequality
(20).

Step 6: We continue to consider Case 2 and show that under the assumption that
(n1�n2) log ↵ < 2.61 ·1013 log n1 and (a1�a2) log 2 < 4.26 ·1026(log n1)2 we obtain

(a1 � a3) log 2 < 1.39 · 1040(log n1)3.

We shall apply once more Theorem 3 to obtain an upper bound for (a1�a3) log 2.
The derivation is very similar to Case 1B. By the same derivation as in Step 4 we
obtain inequality (17), i.e.,

����↵
n22�a2

✓
↵n1�n2 + 1p
5 (2a1�a2 + 1)

◆
� 1
���� < 1.45 · 2a3�a1 .

We have the same setting as in Case 1B, except that the estimate for the modified
height of ↵3 becomes h0(↵3) < 4.27 · 1026(log n1)2 instead. By applying Theorem 3
similarly as before we obtain

(a1 � a3) log 2 < 1.39 · 1040(log n1)3 (21)

which coincides with inequality (18). Table 1 summarizes our results obtained so far.

Upper bound of Case 1A Case 1B Case 2

(a1 � a2) log 2 2.61 · 1013 log n1 2.61 · 1013 log n1 4.26 · 1026(log n1)
2

(a1 � a3) log 2 8.51 · 1026(log n1)
2 1.39 · 1040(log n1)

3 1.39 · 1040(log n1)
3

(n1 � n2) log ↵ 2.77 · 1040(log n1)
3 8.5 · 1026(log n1)

2 2.61 · 1013 log n1

Table 1: Summary of results

Step 7: We assume the bounds given in Table 1 and show that n1 log ↵ < 4.54 ·
1053(log n1)4, hence n1 < 4.1 · 1062.

We have to apply Theorem 3 once more. This time we rewrite equation (1) and
make use of inequalities (6) and (7) to get

|�3| =

�����↵
�n12a1

 p
5(1 + 2a2�a1 + 2a3�a1)

1 + ↵n2�n1

!

� 1

����� < 1.01↵�n1 . (22)

We assume that |�3|  0.5 and apply Theorem 3 to inequality (22) with B = n1,
↵1 = ↵, ↵2 = 2, ↵3 =

p
5(1+2a2�a1+2a3�a1 )

1+↵n2�n1 . By the results in Table 1 and similar
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computations done before, we obtain h0(↵3) < 1.4 · 1040(log n1)3 and �3 6= 0. We
obtain

n1 log ↵ < 4.55 · 1053(log n1)4

which yields
n1 < 4.1 · 1062.

The scenario for which |�3| > 0.5 is covered by the above bound. Thus Proposition
1 is established.

4.2. Proof of Proposition 2

Proof. Since the deduction of an upper bound for solutions to (2) is similar to the
proof of Proposition 1 we only sketch the argument. In the case of equation (2), we
have

↵m1 � �m1

p
5

+
↵m2 � �m2

p
5

+
↵m3 � �m3

p
5

= 2t1 + 2t2 .

Step 1: Show that

min{(t1 � t2) log 2, (m1 �m2) log ↵} < 2.61 · 1013 log m1.

To achieve this, we shall prove instead of Lemma 2 the following Lemma.

Lemma 3. Assume that (m1,m2,m3, t1, t2) is a solution to equation (2) with m1 �
m2 � m3 � 0 and t1 � t2 � 0. Then we have

min{(t1 � t2) log 2, (m1 �m2) log ↵} < 2.61 · 1013 log m1.

Proof of Lemma 3. First, we rearrange equation (2) and make use of inequalities
(9) and (10) to get

����
↵m12�t1
p

5
� 1
���� < 14.67max

�
2t2�t1 ,↵m2�m1

 
. (23)

We consider � = m1 log ↵� t1 log 2� log
p

5 and put

 = e� � 1 = ↵m12�t1
p

5
�1
� 1.

We consider | |  0.5 and apply the theorem of Baker and Wüstholz (Theorem 3)
with the data

↵1 = ↵, ↵2 = 2, ↵3 =
p

5, b1 = m1, b2 = �t1, b3 = �1,

i.e., B = m1. By a simple computation, we obtain h0(↵1) = 1
2 , h0(↵2) = log 2 and

h0(↵3) = log
p

5. Similarly, as in the proof of Proposition 1, we may assume that
 6= 0. Then Theorem 3 yields

log | | � �C(3, 2)
✓

1
2

◆
(log 2)

⇣
log

p
5
⌘

log m1 � log 2,
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and together with inequality (23) we have

min{(t1 � t2) log 2, (m1 �m2) log ↵} < 2.61 · 1013 log m1.

The scenarios for which | | > 0.5 can be easily dealt with.

Now we have to distinguish between two cases:

Case 1 min{(t1 � t2) log 2, (m1 �m2) log ↵} = (m1 �m2) log ↵ and

Case 2 min {(t1 � t2) log 2, (m1 �m3) log ↵} = (t1 � t2) log 2.

We will deal with these cases in the following steps.

Step 2: We consider Case 1 and show that under the assumption that (m1 �
m2) log ↵ < 2.61 · 1013 log m1 we obtain

min {(t1 � t2) log 2, (m1 �m3) log ↵} < 4.26 · 1026(log m1)2.

We rearrange equation (2) and make use of inequalities (9) and (10) to get

| 1| =
����
↵m22�t1 (↵m1�m2 + 1)p

5
� 1
���� < 12.31max

n
2�(t1�t2),↵�(m1�m3)

o
. (24)

We apply Theorem 3 to inequality (24) by taking b1 = m2, b2 = �t1 and b3 = 1, i.e.,
B = m1 since m1 > m2, t1. Further, we choose ↵1 = ↵, ↵2 = 2 and ↵3 = ↵m1�m2+1p

5
.

Note that by our standard arguments we obtain that h0(↵3) < 1.31 ·1013 log m1 and
 1 6= 0. Finally, we get

min {(t1 � t2) log 2, (m1 �m3) log ↵} < 4.26 · 1026(log m1)2.

At this stage, we have to consider the following two sub-cases for Case 1:

Case 1A min {(t1 � t2) log 2, (m1 �m3) log ↵} = (m1 �m3) log ↵ and

Case 1B min {(t1 � t2) log 2, (m1 �m3) log ↵} = (t1 � t2) log 2.

We will deal with these sub-cases in the steps below.

Step 3: We consider Case 1A and show that under the assumption that (m1 �
m2) log ↵ < 2.61 · 1013 log m1 and (m1 �m3) log ↵ < 4.26 · 1026(log m1)2 we obtain
that

(t1 � t2) log 2 < 6.94 · 1039(log m1)3.



INTEGERS: 18 (2018) 17

We rearrange equation (2) and make use of inequalities (9) and (10) to get

| A| =
����
↵m12�t1 (1 + ↵m2�m1 + ↵m3�m1)p

5
� 1
���� < 1.9 · 2t2�t1 . (25)

We apply Theorem 3 to inequality (24) with B = m1, ↵1 = ↵, ↵2 = 2, ↵3 =
(1+↵m2�m1+↵m3�m1)p

5
. Note that we have h0(↵3) < 2.14 · 1026(log m1)2 and  A 6= 0.

Therefore, we get
(t1 � t2) log 2 < 6.94 · 1039(log m1)3.

Step 4: We consider Case 1B and show that under the assumption that (m1 �
m2) log ↵ < 2.61 ·1013 log m1 and (t1� t2) log 2 < 4.26 ·1026(log m1)2 we obtain that

(m1 �m3) log ↵ < 1.4 · 1040(log m1)3.

We rearrange equation (2) and make use of inequalities (9) and (10) to get

| B| =
����↵
�m22t2

p
5
✓

2t1�t2 + 1
↵m1�m2 + 1

◆
� 1
���� < 3.02↵m3�m1 . (26)

We apply Theorem 3 to inequality (26) by taking B = m1, ↵1 = ↵, ↵2 = 2 and

↵3 =
p

5(2t1�t2+1)
↵m1�m2+1 . With this choice we have h0(↵3) < 4.27 · 1026(log n1)2 and

 B 6= 0. We obtain

(m1 �m3) log ↵ < 1.4 · 1040(log m1)3.

Step 5: We consider Case 2 and show that under the assumption that (t1 �
t2) log 2 < 2.61 · 1013 log m1 we obtain

(m1 �m2) log ↵ < 8.5 · 1026(log m1)2.

We rearrange equation (2) and make use of inequalities (9) and (10) to get

| 2| =
���↵�m22t2

p
5
�
2t1�t2 + 1

�
� 1
��� < 4.03↵�(m1�m2). (27)

We apply Theorem 3 to inequality (27) by taking B = m1, ↵1 = ↵, ↵2 = 2,
↵3 =

p
5 (2t1�t2 + 1). In this case we have that h0(↵3) < 2.62 · 1013 log m1 and also

 2 6= 0. Therefore we get

(m1 �m2) log ↵ < 8.5 · 1026(log m1)2.

Step 6: We continue to consider Case 2 and show that under the assumption that
(t1�t2) log 2 < 2.61 ·1013 log m1 and (m1�m2) log ↵ < 8.5 ·1026(log m1)2 we obtain
that

(m1 �m3) log ↵ < 1.38 · 1040(log m1)3.
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Again we apply Theorem 3 to obtain an upper bound for (m1 �m3) log ↵. The
derivation is very similar to Case 1B. In particular, we have

����↵
�m22t2

p
5
✓

2t1�t2 + 1
↵m1�m2 + 1

◆
� 1
���� < 3.02↵m3�m1

and the same setting as in Case 1B, except that h0(↵3) < 4.26 · 1026(log m1)2.
Therefore Theorem 3 gives us

(m1 �m3) log ↵ < 1.38 · 1040(log m1)3.

Table 2 summarizes our results obtained so far.

Upper bound of Case 1A Case 1B Case 2

(m1 �m2) log ↵ 2.61 · 1013 log m1 2.61 · 1013 log m1 8.5 · 1026(log m1)
2

(m1 �m3) log ↵ 4.26 · 1026(log m1)
2 1.4 · 1040(log m1)

3 1.38 · 1040(log m1)
3

(t1 � t2) log 2 6.94 · 1039(log m1)
3 4.26 · 1026(log m1)

2 2.61 · 1013 log m1

Table 2: Summary of results

Step 7: We assume the bounds given in Table 2 and show that m1 < 4.2 · 1062.

Once again we have to apply Theorem 3. We rearrange equation (2) and make
use of inequalities (9) and (10) to get

| 3| =

�����↵
�m12t1

 p
5(1 + 2t2�t1)

1 + ↵m2�m1 + ↵m3�m1

!

� 1

����� < 2.02↵�m1 . (28)

In our last step we apply Theorem 3 to inequality (28) by taking B = m1, ↵1 = ↵,
↵2 = 2, ↵3 =

p
5(1+2t2�t1 )

1+↵m2�m1+↵m3�m1 . By our usual arguments we show that h0(↵3) <
1.41 · 1040(log m1)3 and  3 6= 0. Thus we get

m1 < 4.2 · 1062,

hence Proposition 2 is established.

Remark 3. The theorem of Baker and Wüstholz (cf. Theorem 3) [4] has a signifi-
cant role in the development of linear forms in logarithms. The final structure for
the lower bound for linear forms in logarithms without an explicit determination
of the constant involved has been established by Wüstholz [18] and the precise de-
termination of that constant is the central aspect of [4] (see also [5]). The reader
may note that slightly sharper bounds for n1 and m1 could be obtained by using
Matveev’s result [14] instead. However, the improvement is insignificant in view of
our next step, i.e., the use of the method of Baker and Davenport (Lemma 1), in
which our upper bounds for n1 and m1 are further reduced to a great extent.
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5. Reduction of the Bound

In our final step we reduce the huge upper bound for n1 obtained in Proposition 1
(respectively m1 in Proposition 2) by applying several times Lemma 1.

5.1. Proof of Theorem 1

Proof. First, we consider inequality (12) and recall that

⇤ = n1 log ↵� a1 log 2� log
p

5.

For technical reasons we assume that min{n1 � n2, a1 � a2, a1 � a3} � 20. In the
case that this condition fails we do the following:

• if a1 � a2 < 20 but a1 � a3, n1 � n2 � 20, we consider inequality (13), i.e., we
go to Step 2;

• if a1 � a2, a1 � a3 < 20 but n1 � n2 � 20, we consider inequality (15), i.e., we
go to Step 3;

• if a1 � a2, n1 � n2 < 20 but a1 � a3 � 20, we consider inequality (17), i.e., we
go to Step 4;

• if n1 � n2 < 20 but a1 � a2, a1 � a3 � 20, we consider inequality (19), i.e., we
go to Step 5; then we consider inequality (17), i.e., we go to Step 6;

• if all a1 � a2, a1 � a3, n1 � n2 < 20, we consider inequality (22), i.e., we go to
Step 7.

Step 1: We show that a1 � a2  218 or n1 � n2  315.

Let us start by considering inequality (12). Since we assume that min{n1 �
n2, a1�a2} � 20 we get |�| = |e⇤�1| < 1

4 , hence |⇤| < 1
2 . And, since |x| < 2|ex�1|

holds for all x 2 (�1
2 , 1

2 ), we get |⇤| < 45.56max{2a2�a1 ,↵n2�n1}. Then we have
the inequality

0 <

�����n1 · log ↵

log 2
� a1 +

log(1/
p

5)
log 2

����� <max
⇢

45.56
log 2

· 2�(a1�a2),
45.56
log 2

↵�(n1�n2)

�

<max
n
66 · 2�(a1�a2), 66↵�(n1�n2)

o
,

and we apply the algorithm described in Remark 2 with

� =
log ↵

log 2
, µ =

log(1/
p

5)
log 2

, (A,B) = (66, 2) or (66,↵).
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Let us be a bit more precise. We note that � is irrational since 2 and ↵ are mul-
tiplicatively independent, hence Lemma 1 is applicable. Let � = [s0, s1, s2, . . . ] =
[0, 1, 2, 3, 1, 2, 3, 2, 4, 2, 1, 2, 11, . . . ] be the continued fraction expansion of �. More-
over, we choose M = 4.1 · 1062 and consider the 125-th convergent
p125

q125
=

2028312018571414606476009600985599840687019168230545776285240837
2921621381175511963618293669947470310883223581600886270426241482

,

with q = q125 > 6M . This yields " > 0.24 and therefore either

a1 � a2 
log(66q/0.24)

log 2
< 219 or n1 � n2 

log(66q/0.24)
log ↵

< 316.

Thus, we have either a1 � a2  218 or n1 � n2  315.
From this result we distinguish between

Case 1 a1 � a2  218 and

Case 2 n1 � n2  315.

Step 2: We consider Case 1 and show that under the assumption that a1�a2  218
we have that a1 � a3  225 or n1 � n2  324.

In this step we consider inequality (13) and assume that a1 � a3, n1 � n2 � 20.
Recall that

⇤1 = �n1 log ↵ + a2 log 2 + log
⇣p

5
�
2a1�a2 + 1

�⌘

and inequality (13) yields that |⇤1| < 10.52max
�
2�(a1�a3),↵�(n1�n2)

 
. Then we

get

0 <

�����n1 · log ↵

log 2
� a2 +

log
�
1/
�p

5 (2a1�a2 + 1)
��

log 2

����� < 16max
n
2�(a1�a3),↵�(n1�n2)

o
.

We apply the algorithm explained in Remark 2 again with the same � and M as in
Step 1, but now we choose (A,B) = (16, 2) or (16,↵) and

µ = µk =
log
�
1/
�p

5
�
2k + 1

���

log 2

for each possible value of a1�a2 = k = 0, 1, . . . , 218. With these parameters we run
our algorithm and obtain for each instance a new and rather small upper bound
either for a1 � a3 or n1 � n2. In particular

q128 = 49310467685085622966403899548743583219671853934492723134649593651

is the largest denominator that appeared in applying our algorithm. Overall, we
obtain

a1 � a3  225 or n1 � n2  324.

Within Case 1 we have to distinguish between two further sub-cases:
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Case 1A a1 � a3  225 and

Case 1B n1 � n2  324.

Step 3: We consider Case 1A and show that under the assumption that a1� a2 
218 and a1 � a3  225 we have that n1 � n2  334.

In this step we assume that n1 � n2 � 20. We consider inequality (15) and get

0 <

�����n1 · log ↵

log 2
� a1 +

log
�
1/
p

5 (1 + 2a2�a1 + 2a3�a1)
�

log 2

����� < 6↵�(n1�n2).

We proceed as in Remark 2 with the same � and M as in Step 1, but we use
(A,B) = (6,↵) instead. Moreover we consider

µ = µk,l =
log
�
1/
p

5
�
1 + 2�k + 2�l

��

log 2

for each possible value of a1� a2 = k = 0, 1, . . . , 218 and a1� a3 = l = 0, 1, . . . , 225
(with respect to the obvious condition that a1�a2  a1�a3). Overall our algorithm
yields

n1 � n2  334.

Step 4: We consider Case 1B and show that under the assumption that a1 � a2 
218 and n1 � n2  324 we have that a1 � a3  233.

We consider inequality (17) and assume that a1 � a3 � 20. In view of Step 6 we
perform the following reduction by considering a1�a2  224 instead of a1�a2  218.
Note that the same inequality (17) will be used once more with a slightly higher
upper bound a1 � a2  224 in Step 6. We consider

⇤B = n2 log ↵� a2 log 2 + log
✓

↵n1�n2 + 1p
5 (2a1�a2 + 1)

◆

and inequality (17) yields that |⇤B| < 2.9 · 2�(a1�a3). Then we get

0 <

�����n2 · log ↵

log 2
� a2 +

log
�
(↵n1�n2 + 1)/

�p
5 (2a1�a2 + 1)

��

log 2

����� < 5 · 2�(a1�a3).

We apply our algorithm with the same � and M as in the previous steps, but we
use (A,B) = (5, 2) and

µ = µk,r =
log
�
(↵r + 1)/

�p
5
�
2k + 1

���

log 2
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for each possible value of a1�a2 = k = 0, 1, . . . , 224 and n1�n2 = r = 0, 1, . . . , 324.
We run our algorithm starting with q = q125 and compute the upper bound for
a1�a3 by the formula a1�a3 < log(5q/")

log 2 for respective choices of q and ", provided
the algorithm terminates. For those pairs (k, r) for which the algorithm terminates
we obtain

a1 � a3  233.

However, in case that (k, r) 2 {(0, 2), (0, 6), (2, 10), (4, 18)} problems arise and
our algorithm does not terminate. This is because in these cases there exist mul-
tiplicative dependences between µk,r, 2 and ↵. In particular, one can easily check
that

↵2 + 1
2
p

5
=

↵

2
,

↵6 + 1
2
p

5
= ↵3,

↵10 + 1
5
p

5
= ↵5,

↵18 + 1
17
p

5
= 2↵9.

Using these dependencies we obtain

⇤B = (n2 + 1) log ↵� (a2 + 1) log 2, ⇤B = (n2 + 3) log ↵� a2 log 2,
⇤B = (n2 + 5) log ↵� a2 log 2 and ⇤B = (n2 + 9) log ↵� (a2 � 1) log 2

for (k, r) = (0, 2), (0, 6), (2, 10), (4, 18) respectively. Thus we get
����� �

a2 + 1
n2 + 1

���� <
5

2a1�a3(n2 + 1)
,

����� �
a2

n2 + 3

���� <
5

2a1�a3(n2 + 3)
,

����� �
a2

n2 + 5

���� <
5

2a1�a3(n2 + 5)
and

����� �
a2 � 1
n2 + 9

���� <
5

2a1�a3(n2 + 9)
respectively. If a1�a3  211 the previous bound is still true. Now assume a1�a3 >
211. Then 2a1�a3 > 4.2 · 1063 > 10(n2 + 9), hence

5
2a1�a3(n2 + 1)

<
1

2(n2 + 1)2
,

5
2a1�a3(n2 + 3)

<
1

2(n2 + 3)2
,

5
2a1�a3(n2 + 5)

<
1

2(n2 + 5)2
and

5
2a1�a3(n2 + 9)

<
1

2(n2 + 9)2

respectively. By a criterion of Legendre, each of a2+1
n2+1 , a2

n2+3 , a2
n2+5 and a2�1

n2+9 is
a convergent to � and we may assume that a2+1

n2+1 , a2
n2+3 , a2

n2+5 and a2�1
n2+9 is of the

form pj

qj
for some j = 0, 1, 2, . . . , 124. Indeed, we may assume that j  124 since

q125 > 4.2 · 1062 > n2 + 9 but q124 < 4.2 · 1062. However it is well known (see e.g.,
[2, page 47]) that

1
(sj+1 + 2)q2

j

<

����� �
pj

qj

���� .

and since max{sj+1 : j = 0, 1, 2, . . . , 124} = 134, we have

1
136q2

j

<
5

2a1�a3qj
,
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and qj divides one of {n2 + 1, n2 + 3, n2 + 5, n2 + 9}. Thus the inequality

2a1�a3 < 5 · 136(n2 + 9) < 5 · 136 · 4.2 · 1062

yields a1�a3 < 218. Hence even in the case that (k, r) 2 {(0, 2), (0, 6), (2, 10), (4, 18)},
we obtain the upper bound a1 � a3  233.

Step 5: We consider Case 2 and show that under the assumption that n1�n2  315
we have that a1 � a2  224.

In this step we assume that a1 � a2, a1 � a3 � 20. We consider inequality (19)
and get

0 <

�����n2 · log ↵

log 2
� a1 +

log((↵n1�n2 + 1)/
p

5)
log 2

����� < 8 · 2�(a1�a2).

We apply our algorithm with the same � and M , but we use (A,B) = (8, 2) and

µ = µr =
log((↵r + 1)/

p
5)

log 2
,

for each possible value of n1�n2 = r = 0, 1, . . . , 315. Similar as in Step 4 we obtain
a1 � a2  224, except in the problematic case that r 2 {2, 6}. However these two
problematic cases can be treated in a similar way as the problematic cases in Step
4. Overall we obtain

a1 � a2  224.

Step 6: We continue to consider Case 2 and show that under the assumption that
n1 � n2  315 and a1 � a2  224 we have that a1 � a3  233.

Now we have n1 � n2  315 and a1 � a2  224 and we shall assume that
a1 � a3 � 20 and attempt to reduce the huge upper bound for a1 � a3 with the use
of inequality (17). This setting has already been considered in Case 1B, where we
obtained

a1 � a3  233.

Table 3 summarizes our results obtained so far.

Upper bound of () Case 1A Case 1B Case 2 Overall
a1 � a2 218 218 224 224
a1 � a3 225 233 233 233
n1 � n2 334 324 315 334

Table 3: Summary of results
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Step 7: Under the assumption that n1�n2  334, a1�a2  224 and a1�a3  233
we show that n1  343.

For the last step we consider inequality (22) and get

0 <

�����n1 · log ↵

log 2
� a1 +

log
�
(1 + ↵n2�n1) /

�p
5 (1 + 2a2�a1 + 2a3�a1)

��

log 2

����� < 3↵�n1 .

We proceed as described in Remark 2 with the same � and M as in the previous
steps, but we use (A,B) = (3,↵) and

µ = µk,l,r =
log
�
(1 + ↵�r) /

�p
5
�
1 + 2�k + 2�l

���

log 2
,

for each possible value of a1 � a2 = k = 0, 1, . . . , 224 , a1 � a3 = l = 0, 1, . . . , 233
(with respect to the obvious condition that a1 � a2  a1 � a3) and n1 � n2 = r =
0, 1, . . . , 334. For all triples (k, l, r) except

(k, l, r) 2 {(0, 1, 10), (0, 3, 18), (1, 1, 2), (1, 1, 6), (1, 3, 14), (3, 3, 10), (5, 5, 18)}

the algorithm terminates and yields

n1  343. (29)

The problematic cases can be treated in a similar way as in Step 4 and yield similarly
small upper bounds for n1. In particular we obtain that n1  343 in all cases.
However this upper bound contradicts our assumption that n1 � 360. Therefore no
further solutions to (1) exist and Theorem 1 is proved.

5.2. Proof of Theorem 2

Proof. We reduce the upper bound for m1 obtained in Proposition 2 by applying
our algorithm described in Remark 2 several times. We do this in a similar manner
as in the proof of Theorem 1.

Step 1: We show that t1 � t2  218 or m1 �m2  314.

First, we consider inequality (23) and deduce that

0 <

�����m1 · log ↵

log 2
� t1 +

log(1/
p

5)
log 2

����� <max
n
43 · 2�(t1�t2), 43↵�(m1�m2)

o
.

We apply Lemma 1 with the same � = log ↵
log 2 as in the case of Theorem 1, but we

use M = 4.2 · 1062, (A,B) = (43, 2) or (43,↵) and µ = log(1/
p

5)
log 2 . We consider the
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125-th convergent p125
q125

of � and obtain " > 0.24 and therefore either

t1 � t2 
log(43q/0.24)

log 2
 218, or m1 �m2 

log(43q/0.24)
log ↵

 314.

Now, we distinguish between

Case 1 m1 �m2  314 and

Case 2 t1 � t2  218.

Step 2: We consider Case 1 and show that under the assumption that m1 �m2 
314 we have t1 � t2  226 or m1 �m3  326.

We consider inequality (24) and get

0 <

�����m2 · log ↵

log 2
� t1 +

log
�
(↵m1�m2 + 1) /

p
5
�

log 2

����� < 36max
n
2�(t1�t2),↵�(m1�m3)

o
.

We apply our algorithm (cf. Remark 2) for each possible value of m1�m2 = k  314
and the algorithm yields t1 � t2  226 or m1 �m3  326 for all k = 1, 2, . . . , 314
except k 2 {2, 6}. These two problematic cases can be treated by using continued
fractions and Legendre’s criterion. Thus we obtain in all cases that t1 � t2  226
or m1 �m3  326.

Within Case 1, we distinguish between the following two sub-cases:

Case 1A m1 �m3  326 and

Case 1B t1 � t2  226.

Step 3: We consider Case 1A and show that under the assumption that m1�m2 
314 and m1 �m3  326 we have t1 � t2  231.

We consider inequality (25) and get

0 <

�����m1 · log ↵

log 2
� t1 +

log
�
(1 + ↵m2�m1 + ↵m3�m1) /

p
5
�

log 2

����� < 6 · 2�(t1�t2).

For each possible value of m1�m2 = k  314 and m1�m3 = l  326 (with respect
to the obvious condition m1 �m2  m1 �m3) except for

(k, l) 2 {(0, 3), (1, 1), (1, 5), (3, 4), (7, 8)},

our algorithm yields t1�t2  231. Note that the same upper bound can be concluded
for the exceptional cases by using continued fractions and Legendre’s criterion.
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Step 4: We consider Case 1B and show that under the assumption that m1�m2 
314 and t1 � t2  226 we have m1 �m3  336.

In view of Step 6 we consider m1 � m2  323 instead of m1 � m2  314 as
required in this step. We consider inequality (26) and get

0 <

�����m2 · log ↵

log 2
� t2 +

log
�
(↵m1�m2 + 1)/

�p
5 (2t1�t2 + 1)

��

log 2

����� < 9↵�(m1�m3).

By applying our algorithm for each possible value of m1�m2 = k  323 and t1�t2 =
r  226 we get m1 �m3  336, except for (k, r) 2 {(2, 0), (6, 0), (10, 2), (18, 4)}).
However, by using continued fractions and Legendre’s criterion we obtain the same
upper bound also for these exceptional cases.

Step 5: We consider Case 2 and show that under the assumption that t1�t2  218
we have m1 �m2  323.

We consider inequality (27) and get

0 <

�����m2 · log ↵

log 2
� t2 +

log
�
1/
�p

5 (2t1�t2 + 1)
��

log 2

����� < 12↵�(m1�m2).

For each possible value of t1 � t2 = r  218 our algorithm yields m1 �m2  323.

Step 6: We continue to consider Case 2 and show that under the assumption that
t1 � t2  218 and m1 �m2  323 we have m1 �m3  336.

This situation is covered by Step 4 and we obtain that m1 �m3  336. Table 4
summarizes our results obtained so far.

Upper bound of () Case 1A Case 1B Case 2 Overall
m1 �m2 314 314 323 323
m1 �m3 326 336 336 336
t1 � t2 231 226 218 231

Table 4: Summary of results

Step 7: Under the assumption that t1�t2  231, m1�m2  323 and m1�m3  336
we show that m1  353.

For the last step in our reduction process we consider inequality (28) and get

0 <

�����m1 · log ↵

log 2
� t1 +

log
�
(1 + ↵m2�m1 + ↵m3�m1) /

�p
5 (1 + 2t2�t1)

��

log 2

����� < 6↵�m1 .
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We apply our algorithm for each possible value of m1�m2 = k  324 , m1�m3 = l 
337 (with respect to the obvious condition m1�m2  m1�m3) and t1�t2 = r  232
and get m1  353 except in the case that

(k, l, r) 2 {(0, 3, 0), (1, 1, 0), (1, 5, 0), (3, 4, 0), (7, 8, 0),
(1, 9, 2), (11, 12, 2), (1, 17, 4), (19, 20, 4)}.

These exceptional cases can be treated by using continued fractions and Legendre’s
criterion. Thus we obtain the upper bound m1  353 in all cases. But this upper
bound contradicts our assumption that m1 � 360. Therefore, no further solutions
to (2) exist and Theorem 2 is proved.
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Appendix - Lists of Solutions for Theorem 1 and Theorem 2

The solutions for Diophantine equation (1) in Theorem 1 are displayed below. Since
F1 = F2, the solutions involving F1 are not displayed for the sake of simplicity.

F3 + F2 = 20 + 20 + 20 = 3, F3 + F3 = 21 + 20 + 20 = 4,

F4 + F0 = 20 + 20 + 20 = 3, F4 + F2 = 21 + 20 + 20 = 4,

F4 + F3 = 21 + 21 + 20 = 5, F4 + F4 = 21 + 21 + 21 = 6,

F4 + F4 = 22 + 20 + 20 = 6, F5 + F0 = 21 + 21 + 20 = 5,

F5 + F2 = 21 + 21 + 21 = 6, F5 + F2 = 22 + 20 + 20 = 6,

F5 + F3 = 22 + 21 + 20 = 7, F5 + F4 = 22 + 21 + 21 = 8,

F5 + F5 = 22 + 22 + 21 = 10, F5 + F5 = 23 + 20 + 20 = 10,

F6 + F0 = 22 + 21 + 21 = 8, F6 + F2 = 22 + 22 + 20 = 9,

F6 + F3 = 22 + 22 + 21 = 10, F6 + F3 = 23 + 20 + 20 = 10,

F6 + F4 = 23 + 21 + 20 = 11, F6 + F5 = 23 + 22 + 20 = 13,

F6 + F6 = 23 + 22 + 22 = 16, F7 + F0 = 23 + 22 + 20 = 13,

F7 + F2 = 23 + 22 + 21 = 14, F7 + F4 = 23 + 22 + 22 = 16,

F7 + F5 = 23 + 23 + 21 = 18, F7 + F5 = 24 + 20 + 20 = 18,

F7 + F6 = 24 + 22 + 20 = 21, F7 + F7 = 24 + 23 + 21 = 26,

F8 + F0 = 24 + 22 + 20 = 21, F8 + F2 = 24 + 22 + 21 = 22,

F8 + F4 = 23 + 23 + 23 = 24, F8 + F4 = 24 + 22 + 22 = 24,

F8 + F5 = 24 + 23 + 21 = 26, F8 + F7 = 24 + 24 + 21 = 34,

F8 + F7 = 25 + 20 + 20 = 34, F8 + F8 = 25 + 23 + 21 = 42,

F9 + F0 = 24 + 24 + 21 = 34, F9 + F0 = 25 + 20 + 20 = 34,



INTEGERS: 18 (2018) 29

F9 + F2 = 25 + 21 + 20 = 35, F9 + F3 = 24 + 24 + 22 = 36,

F9 + F3 = 25 + 21 + 21 = 36, F9 + F4 = 25 + 22 + 20 = 37,

F9 + F6 = 25 + 23 + 21 = 42, F9 + F9 = 25 + 25 + 22 = 68,

F9 + F9 = 26 + 21 + 21 = 68, F10 + F2 = 25 + 24 + 23 = 56,

F10 + F7 = 25 + 25 + 22 = 68, F10 + F7 = 26 + 21 + 21 = 68,

F10 + F8 = 26 + 23 + 22 = 76, F11 + F6 = 26 + 25 + 20 = 97,

F11 + F10 = 26 + 26 + 24 = 144, F11 + F10 = 27 + 23 + 23 = 144,

F12 + F0 = 26 + 26 + 24 = 144, F12 + F0 = 27 + 23 + 23 = 144,

F12 + F2 = 27 + 24 + 20 = 145, F12 + F3 = 27 + 24 + 21 = 146,

F12 + F6 = 27 + 24 + 23 = 152, F12 + F12 = 27 + 27 + 25 = 288,

F12 + F12 = 28 + 24 + 24 = 288, F13 + F10 = 27 + 27 + 25 = 288,

F13 + F10 = 28 + 24 + 24 = 288, F13 + F11 = 28 + 26 + 21 = 322,

F14 + F6 = 28 + 27 + 20 = 385, F14 + F12 = 29 + 23 + 20 = 521,

F15 + F9 = 29 + 27 + 22 = 644, F16 + F10 = 210 + 24 + 21 = 1042,

F17 + F4 = 210 + 29 + 26 = 1600, F18 + F6 = 211 + 29 + 25 = 2592.

The solutions for Diophantine equation (2) in Theorem 2 are displayed below.
Since F1 = F2, the solutions involving F1 are not displayed for the sake of simplicity.

F2 + F2 + F0 = 20 + 20 = 2, F2 + F2 + F2 = 21 + 20 = 3,

F3 + F0 + F0 = 20 + 20 = 2, F3 + F2 + F0 = 21 + 20 = 3,

F3 + F2 + F2 = 21 + 21 = 4, F3 + F3 + F0 = 21 + 21 = 4,

F3 + F3 + F2 = 22 + 20 = 5, F3 + F3 + F3 = 22 + 21 = 6,

F4 + F0 + F0 = 21 + 20 = 3, F4 + F2 + F0 = 21 + 21 = 4,

F4 + F2 + F2 = 22 + 20 = 5, F4 + F3 + F0 = 22 + 20 = 5,

F4 + F3 + F2 = 22 + 21 = 6, F4 + F4 + F0 = 22 + 21 = 6,

F4 + F4 + F3 = 22 + 22 = 8, F4 + F4 + F4 = 23 + 20 = 9,

F5 + F0 + F0 = 22 + 20 = 5, F5 + F2 + F0 = 22 + 21 = 6,

F5 + F3 + F2 = 22 + 22 = 8, F5 + F3 + F3 = 23 + 20 = 9,

F5 + F4 + F0 = 22 + 22 = 8, F5 + F4 + F2 = 23 + 20 = 9,

F5 + F4 + F3 = 23 + 21 = 10, F5 + F5 + F0 = 23 + 21 = 10,

F5 + F5 + F3 = 23 + 22 = 12, F6 + F0 + F0 = 22 + 22 = 8,

F6 + F2 + F0 = 23 + 20 = 9, F6 + F2 + F2 = 23 + 21 = 10,

F6 + F3 + F0 = 23 + 21 = 10, F6 + F3 + F3 = 23 + 22 = 12,

F6 + F4 + F2 = 23 + 22 = 12, F6 + F5 + F4 = 23 + 23 = 16,
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F6 + F5 + F5 = 24 + 21 = 18, F6 + F6 + F0 = 23 + 23 = 16,

F6 + F6 + F2 = 24 + 20 = 17, F6 + F6 + F3 = 24 + 21 = 18,

F6 + F6 + F6 = 24 + 23 = 24, F7 + F3 + F2 = 23 + 23 = 16,

F7 + F3 + F3 = 24 + 20 = 17, F7 + F4 + F0 = 23 + 23 = 16,

F7 + F4 + F2 = 24 + 20 = 17, F7 + F4 + F3 = 24 + 21 = 18,

F7 + F5 + F0 = 24 + 21 = 18, F7 + F5 + F3 = 24 + 22 = 20,

F7 + F6 + F4 = 24 + 23 = 24, F7 + F7 + F6 = 25 + 21 = 34,

F8 + F3 + F2 = 24 + 23 = 24, F8 + F4 + F0 = 24 + 23 = 24,

F8 + F6 + F4 = 24 + 24 = 32, F8 + F6 + F5 = 25 + 21 = 34,

F8 + F7 + F0 = 25 + 21 = 34, F8 + F7 + F3 = 25 + 22 = 36,

F9 + F0 + F0 = 25 + 21 = 34, F9 + F2 + F2 = 25 + 22 = 36,

F9 + F3 + F0 = 25 + 22 = 36, F9 + F4 + F4 = 25 + 23 = 40,

F9 + F5 + F2 = 25 + 23 = 40, F9 + F7 + F2 = 25 + 24 = 48,

F9 + F8 + F7 = 26 + 22 = 68, F9 + F9 + F0 = 26 + 22 = 68,

F10 + F5 + F5 = 26 + 20 = 65, F10 + F6 + F2 = 25 + 25 = 64,

F10 + F6 + F3 = 26 + 20 = 65, F10 + F6 + F4 = 26 + 21 = 66,

F10 + F6 + F5 = 26 + 22 = 68, F10 + F7 + F0 = 26 + 22 = 68,

F10 + F10 + F9 = 27 + 24 = 144, F11 + F5 + F3 = 26 + 25 = 96,

F11 + F9 + F5 = 26 + 26 = 128, F11 + F9 + F7 = 27 + 23 = 136,

F11 + F9 + F8 = 27 + 24 = 144, F11 + F10 + F0 = 27 + 24 = 144,

F12 + F0 + F0 = 27 + 24 = 144, F12 + F6 + F6 = 27 + 25 = 160,

F12 + F7 + F4 = 27 + 25 = 160, F12 + F11 + F10 = 28 + 25 = 288,

F12 + F12 + F0 = 28 + 25 = 288, F13 + F8 + F3 = 27 + 27 = 256,

F13 + F8 + F4 = 28 + 20 = 257, F13 + F9 + F5 = 28 + 24 = 272,

F13 + F9 + F8 = 28 + 25 = 288, F13 + F10 + F0 = 28 + 25 = 288,

F14 + F5 + F3 = 28 + 27 = 384, F14 + F12 + F10 = 29 + 26 = 576,

F16 + F9 + F4 = 29 + 29 = 1024, F16 + F9 + F5 = 210 + 21 = 1026,

F16 + F12 + F8 = 210 + 27 = 1152.


