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Abstract
Starting with a graph, two players take turns in either deleting an edge or deleting a
vertex and all incident edges. The player removing the last vertex wins. We review
the known results for this game and extend the computation of nim-values to new
families of graphs. A conjecture of Khandhawit and Ye on the nim-values of graphs
with one odd cycle is proved. We also see that, for wheels and their subgraphs, this
game exhibits a surprising amount of unexplained regularity.

1. Introduction

Let G = (V (G), E(G)) be a finite graph with vertices V (G) and edges E(G). We
allow loops and multiple edges. This is the starting position for the game of graph
take-away (or graph chomp) and its rules are as follows. Two players take turns
in either deleting an edge or deleting a vertex and all incident edges. The player
removing the last vertex wins. This impartial game has been studied in [7, 9,
10, 12, 19] and most recently [15]. It is a special case of the general games on
partially ordered sets introduced by Gale and Neyman in [13]; see for example the
introductions of [6, 11] for more of their history. The questions in [13] were recently
answered negatively in [5].

For each graph G we would like to know whether the player going first or the
player going second has a winning strategy. According to the Sprague-Grundy
theory [8, Chap. 11], each of these graph games has a nim-value g(G), and the
second player has a winning strategy exactly when g(G) = 0. The nim-value of a
disjoint union H1 ∪H2 of two graphs may be easily calculated from the individual
nim-values of H1 and H2 using nim-addition as reviewed in Section 2.

Figure 1 shows the example of a simple game where the starting graph G is a
triangle. The first player has six possible moves, giving the two non-isomorphic
options listed. The second player’s possible replies are listed on the right. The last
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Figure 1: A game of graph take-away on a triangle

option in each list, two isolated vertices, is a winning move for player two since they
are assured of taking the last vertex in this case. Hence, the player going second
has a winning strategy and the nim-value of the triangle G is 0.

The basic notation and definitions of graph theory we use in this paper are
contained in [4], for example. If G is bipartite (two-colorable) then Fraenkel and
Scheinerman showed in [12] that the winning strategy is to restore the number of
vertices and the number of edges to even parity. Using their notation, for any
integer k let k(m) := k mod m with k(m) ∈ {0, 1, . . . ,m − 1}. Writing |V (G)| and
|E(G)| for the number of vertices and edges of G, we define a parity function

φ(G) := |V (G)|(2) + 2
(
|E(G)|(2)

)

so that φ(G) is 0, 1, 2 or 3.

Proposition 1.1. [12, Cor. 2.2] If G is bipartite then g(G) = φ(G).

This result was also proved in [15, Thm. 3], with the special case of forests proved
in [10, Thm. 2]. A more complicated version of Proposition 1.1 also appeared in
[19, Chap. 5]. It follows easily that a tree T has nim-value |E(T )|(2) + 1 and a
cycle graph Cn of length n ! 2 has nim-value 0. A one-cycle (i.e. a vertex with a
loop attached) has nim-value 2. Because of this difference, we must treat loops and
longer cycles differently. Consequently, cycles in this paper refer to cycles of length
at least 2.

G′

H1

H2

G′
s

v1

v2

G

s

Figure 2: Cancellation when H1
∼= H2



INTEGERS: 18 (2018) 3

A situation where the nim-value of a graph may be obtained from a simpler
graph is described as follows. Let H1 and H2 be isomorphic graphs containing
corresponding vertices v1 and v2 respectively. Let G′ be another graph containing a
vertex s. Build G from the disjoint graphs G′, H1 and H2 by adding the edges sv1
and sv2 as shown in Figure 2. In this situation we say that G has cancellation at s
and may be replaced by G′ since, as we see in Section 2, g(G) = g(G′). A graph is
reduced if no cancellation is possible.

Graphs that are not bipartite must contain a loop or an odd cycle. It is reasonable
to expect that some non-bipartite graphs G will also have g(G) = φ(G) if a strategy
of eliminating odd cycles can be used. To determine the nim-values of graphs with
exactly one odd cycle we need to introduce the next definition.

A t

Figure 3: A telescoping vertex t

Definition 1.2. Suppose a tree T is attached to an odd cycle at vertex A. A vertex
of T is telescoping if, when it is deleted and the resulting graph reduced, all that
remains of T that is still connected to the cycle is A.

Note that when we say that a graph G1 is attached at v to the graph G2, we mean
that G1 ∩G2 is the vertex v. In the example in Figure 3, the tree attached to the
3-cycle at A has one telescoping vertex as indicated. The properties of telescoping
vertices do not seem to have appeared before in the literature, that the author is
aware of, and we will see that their study becomes quite intricate. The main part
of this paper, in Sections 3, 4 and 5, establishes the next result.

Theorem 1.3. Let G be a reduced graph consisting of an odd cycle attached to a
tree at one vertex. Then

g(G) =

⎧
⎨

⎩

0 if G is just a cycle;
4 or more if there is a telescoping vertex of odd degree;
φ(G) otherwise.

Theorem 1.3 allows us to characterize when a graph G with exactly one odd cycle
has g(G) = φ(G). It also leads to the following result which was conjectured by
Khandhawit and Ye in [15, Conjecture 2].
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Theorem 1.4. Let G be a reduced and possibly disconnected graph containing one
odd cycle and no other cycles or loops. Suppose that two or more vertices of the
cycle have degree greater than 2. Then g(G) = φ(G).

Finding the winner on a graph with one odd cycle is a simple consequence of
Theorems 1.3 and 1.4 and described in the next corollary. The authors of [19], [15]
and [14] highlighted this problem.

Corollary 1.5. Let G be a reduced and possibly disconnected graph containing one
odd cycle C and no other cycles or loops. Then g(G) = 0 if and only if one of these
three conditions holds:

(i) all vertices of C have degree 2 and φ(G) = 3;

(ii) exactly one vertex of C has degree > 2, φ(G) = 0 and G has no telescoping
vertices of odd degree;

(iii) two or more vertices of C have degree > 2 and φ(G) = 0.

Most of the results in this paper build on those of Khandhawit and Ye in [15],
such as for graphs with one odd cycle as already mentioned. In Sections 6 and 7 we
find the nim-values of further families of graphs, some containing many odd cycles.
The following two propositions show the importance of parity considerations and
generalize results in [15, Appendix B].

z4

z3

z2

z1

r = 3 odd cycles k = 4 paths between P and Q Wn for n = 7

P Q

Figure 4: Some graph families

Proposition 1.6. If r odd cycles are attached at one vertex, as shown for example
on the left of Figure 4, then the nim-value of this graph is 0 if r is odd and 1 if r is
even.

Proposition 1.7. Let G be a graph consisting of k paths of positive lengths z1, . . . , zk
linking vertices P and Q, as in the example in the middle of Figure 4. Set Z :=∑k

i=1 zk. Then

g(G) =

⎧
⎨

⎩

0 if k is even;
1 if k is odd and Z is even;
2 if k is odd and Z is odd.
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For n ! 3 the wheel graph Wn is constructed by joining a central hub vertex to
each vertex of the cycle graph Cn. These joining edges are called spokes. See Figure
4 for W7 . In [15] they make an elegant conjecture about the nim-values of wheel
graphs.

Conjecture 1.8. [15, Conjecture 3] We have g(Wn) = 1 for all n ! 3.

They show with a symmetry argument that this conjecture is true for all n even
and by a computation that it is true for n = 3, 5, 7. By combining symmetry
arguments with a computer search we extend this range and prove in Theorem 8.1
that Conjecture 1.8 is true for 3 " n " 25. We make further conjectures about the
nim-values of subgraphs of Wn in Section 8.

We close this introduction by noting that there are other ways to play impartial
games (i.e. with rules the same for both players) on undirected graphs. Games
that appeared before graph take-away are node kayles and arc kayles which were
introduced in the study of computational complexity in [20]. The moves in node
kayles consist of removing any vertex along with all its neighboring vertices. The
moves in arc kayles involve choosing an edge and removing its endpoint vertices
(and all incident edges). Three recent games on graphs that are also similar to
graph take-away, though they perhaps have less structure, are the following. In the
odd/odd vertex deletion game players may only remove vertices of odd degree; see
[18, 16]. With graph nim, as in for example [17], a player on their turn removes
any positive number of edges incident to a single vertex. Grim is introduced in [1]
and a player removes a vertex, all incident edges and any vertices that have become
isolated. For all these games, as usual, the first player unable to play loses. Arc
kayles and grim are examples of the octal games on graphs studied in [2].

2. Basic Methods

We recall more of the theory of impartial games from, for example, [8, Chap. 11],
[3, Chap. 3]. The nim-value of a graph game may be calculated inductively as
follows. The empty graph has value 0 and if a graph G has the subgraph options
(moves) G1, G2, . . . , Gm for the first player then

g(G) = mex
(
{g(G1), g(G2), . . . , g(Gm)}

)
(2.1)

where mex denotes the minimal non-negative integer excluded from the set.

If G is disconnected and equal to a disjoint union of n subgraphs H1, . . . , Hn

then
g(G) = g(H1)⊕ · · ·⊕ g(Hn) (2.2)

where ⊕ is the xor operation (binary addition without carry) and called nim-
addition in this context. The general relation (2.2) follows from the n = 2 case
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of (2.2) which is straightforward to prove with (2.1). Let N(r) be the set of nim-
values of the possible moves of Hr with mr := mex(N(r)). Set M := m1⊕ · · ·⊕mn

and note that M ⊕ mr is the same nim-sum with mr removed. The addition of
games relation we will need later is

M = mex
({

M ⊕mr ⊕ a
∣∣ 1 " r " n, a ∈ N(r)

})
(2.3)

and it is equivalent to (2.2).

In the case that G is a disjoint union of bipartite subgraphs H1, . . . , Hn, then G
is also bipartite and (2.2) becomes

φ(G) = φ(H1)⊕ · · ·⊕ φ(Hn), (2.4)

which is easy to verify directly.

1

1

2
3 01

2

2

nim-value = mex({0, 1, 2, 3}) = 4

Figure 5: A graph with nim-value 4

For a non-bipartite example, we compute the nim-value of a triangle with an edge
attached as shown in Figure 5. The nim-values of the possible moves are indicated.
Removing the degree 3 vertex, for instance, leaves two trees and the resulting graph
has nim-value 1⊕ 2 = 3. Moves with values 0, 1 and 2 are also possible. Hence the
nim-value of this graph is 4.

The symmetry argument we mentioned in the introduction is contained in the
next lemma. It may be used to replace a graph game with a smaller one that has
the same nim-value.

Lemma 2.1. (The symmetry lemma.) Let G = (V (G), E(G)) be a graph and
τ : G → G an automorphism with the following properties:

(i) τ2 is the identity,

(ii) for all v ∈ V (G), the vertices v and τ(v) are not connected by an edge in G.

Let Gτ be the subgraph of G on which τ acts as the identity. Then g(G) = g(Gτ ).

Proof. Let H be a copy of Gτ and consider the game played on the disjoint union
of G and H . The second player has the winning strategy of responding to any move
in H with the same move in Gτ and vice versa. Any removal of vertices or edges
outside of Gτ is answered by removing their image under τ . Hence 0 = g(G∪H) =
g(G)⊕ g(H) and the result follows.
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Figure 6: Using the symmetry lemma to simplify

Lemma 2.1 and its proof are based on a combination of [12, Lemma 3] and [10,
Prop. 3]. This important principle of simplifying a game position using symmetry
is also used in [12, Lemma 3], [19, Thm. 6] for hypergraphs, [19, Thm. 1], [15,
Thm. 1] for simplicial complexes, and [11, Lemma 2.21], [5, Sect. 2.4] for posets.

We may list here some applications of the symmetry lemma:

• An easy application shows that a graph with two edges connecting a pair of
vertices has the same nim-value when both edges are removed. So m edges
between a pair of vertices (or m loops at a single vertex) simplify to a single
edge if m is odd and no edge of m is even.

• A second application of Lemma 2.1 leads to

g(Kn) = n(3) (2.5)

where Kn is the complete graph on n vertices. Removing a vertex of Kn

gives Kn−1 and removing an edge leaves Kn−2 since we may take a τ in the
symmetry lemma that switches the deleted edge’s endpoints and fixes the
remaining vertices. Then (2.5) follows using (2.1) and induction. A similar
argument for the complete multipartite graph Kn1,n2,...,nr shows

g(Kn1,n2,...,nr) =
(
(n1)(2) + (n2)(2) + · · ·+ (nr)(2)

)
(3)

. (2.6)

Formulas (2.5) and (2.6) first appeared in [12]. (In [13] they showed that
g(Kn) = 0 if and only if 3 | n.) We generalize (2.5) in Theorem 7.3 by adding
loops to Kn.

• In the preprint [14], an argument based on Lemma 2.1 succeeds in computing
the nim-values of generalized Kneser graphs. For example, the Petersen graph
is shown to have nim-value 2.

• Clearly the cancellation described in the introduction and pictured in Figure
2 is a special case of the symmetry lemma.

Definition 2.2. Recall that a graph is reduced if no further cancellations are pos-
sible. A graph is simplified if no further non-trivial applications of the symmetry
lemma are possible.
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As we have seen, simplified implies reduced. The next lemma shows that the
reduced version of a graph is well-defined up to isomorphism.

Lemma 2.3. Let G be a graph. Suppose G1 and G2 are graphs obtained by reducing
G. Then G1 and G2 are isomorphic.

Proof. We use induction on the number of vertices of G. The lemma is true in the
base case of an empty graph. If G does not reduce then G1 = G2 = G. Otherwise,
suppose G has a vertex s where cancellation is possible. Let there be a total of k
isomorphic copies of H attached to s. Cancelling in pairs we obtain G′ with all of
the Hs deleted if k is even and one copy left if k is odd. Now G1 and G2 must be
subgraphs of G′ if k is even - or else they are not simplified. If k is odd then we
may say that G1 and G2 are isomorphic to subgraphs of G′. Replace G1 and G2 by
these isomorphic subgraphs of G′ for clarity. By induction, the lemma is true for
G′ and so G1 and G2 are isomorphic.

In the case of a tree, we claim that any application of the symmetry lemma must
involve just cancellation. To see this, suppose a τ from that lemma maps vertex a
to b for a ̸= b. We use the notation P (x, y) for the unique simple path on a tree
connecting two vertices x and y. Then τ(P (a, b)) = P (a, b), since τ2 is the identity,
and P (a, b) must have an even number of edges with the middle vertex r fixed by
τ . In this way we see that the tree attached at r containing a cancels with the tree
attached at r containing b. Any further vertices of the tree not fixed by τ will cancel
in the same way. This proves the claim and shows that if a tree is reduced then it
is simplified.

3. Telescoping Vertices and Cancellation

The graphs we study in Sections 3, 4 and 5 contain a single odd cycle and no further
cycles or loops. In general, such a graph G consists of a cycle component, made up
of a cycle with trees attached to its vertices, and a number of disconnected trees. It
is easy to see that any application of the symmetry lemma to a graph with exactly
one odd cycle must act as the identity on this cycle. It follows from this, and the
discussion at the end of the last section, that G above is simplified if and only if it
is reduced.

We next develop some properties of cancellation and telescoping that we will
need. For a graph G containing a vertex v, let G − v be the graph obtained by
deleting v and all edges incident with v. Recall that cancellation occurs at a vertex
s, say, when we have the situation in Figure 2.

Lemma 3.1. Attach an odd cycle to a tree at vertex A and, from a vertex b in
this tree, join another tree using the edge bv as shown in Figure 7. Let G0 be this
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odd
cycle A

tree tree
b v

G0
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G

Figure 7: Examining possible cancellation in G when v is removed

graph and assume it is reduced. Let G be the connected component of the cycle that
remains when v is deleted. If cancellation is now possible in G at a vertex s then:

(i) The vertex s is in P (A, b) − b.

(ii) The vertex s is unique.

(iii) Cancellation at s can only remove vertices x which have the property that
P (A, x) contains s.

(iv) Suppose the cancellation at s is carried out. If another cancellation is now
possible then it must occur at a unique vertex in P (A, s) − s.

Proof. Suppose the isomorphic subtrees H1 and H2 cancel in G at s, as seen in
Figure 2, with G′ being the graph that remains after cancellation. Note that H1

andH2 must each contain at least one vertex. We haveA ∈ G′ since the cancellation
at s corresponds to an automorphism from the symmetry lemma and A is fixed by
any such automorphism. Part (iii) follows from this observation. We must have v
adjacent to one of the vertices of H1 or H2 in G0 since G0 is reduced. Hence b is in
H1 or H2 and this proves (i).

Without losing generality, assume that b ∈ H1. Suppose G has cancellation at
the vertex s′ as well as s. Then s′ ∈ P (A, b) − b by part (i). We claim that s′

cannot be a vertex of H1. Suppose s′ ∈ H1 and that w ∈ H2 corresponds to s′

under the isomorphism between H1 and H2. Then cancellation at s′ means that
there is also cancellation at w. However this contradicts our requirement from
part (i) that w ∈ P (A, b) − b and so we have proved our claim. It follows that
s′ ∈ G′ ∩P (A, b) = P (A, s). Switching the roles of s and s′ shows that s ∈ P (A, s′)
as well. Consequently we must have s = s′, proving (ii).

Label G1 the subgraph of G obtained by removing H2. Let v1 ∈ H1 be adjacent
to s. Then replace G0 by G1, v by v1, b by s and apply parts (i), (ii) to obtain
(iv).

If an odd cycle has trees attached to a number of its vertices, then Lemma 3.1
applies to each of these trees separately. Since the odd cycle is fixed by the symmetry
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lemma, there can be no cancellation between trees attached at different vertices of
the cycle.

Let G be a reduced graph consisting of an odd cycle attached to a tree at one
point. Suppose G contains a telescoping vertex, so that deleting it gives a cycle
component that may be reduced to the cycle in q cancellations. Label this vertex
aq+1. We next give a precise description of the structure of G.

The simplest case of q = 0 is displayed in Figure 8; removing a1 disconnects
the tree T1 and only the cycle is left. For q ! 1, Lemma 3.1 part (ii) implies

odd
cycle

A

Tq+1

aq+1odd
cycle A

T1

a1 b1

U1c1 d1

Tq

aq bq

Uqcq dq

Tq+1

aq+1

q = 2

q = 0

Figure 8: Graphs with telescoping vertices aq+1

the first cancellation after deleting aq+1 must be at a unique vertex we label bq−1

with two isomorphic trees Tq and Uq cancelling as seen in Figure 8. If further
cancellation is possible then Lemma 3.1 part (iv) shows it must be at a unique
vertex we label bq−2. Continuing in this way we obtain the well-defined cancellation
vertices {bq−1, bq−2, . . . , b1, A} and in particular the number q is well-defined.

We have shown that G must look like the graphs in Figure 8, where aq+1 is
the telescoping vertex. For 1 " i " q the trees Ti and Ui are isomorphic with ai
corresponding to ci and bi corresponding to di. Note that these vertices may have
large degrees. On the other hand, Ti may be a single vertex in which case ai and bi
coincide (and then similarly for Ui). In this way we see that having a telescoping
vertex can be a fairly complicated situation. It is straightforward, at least, to prove
these necessary conditions.

Lemma 3.2. Let G be a reduced graph consisting of an odd cycle attached at vertex
A to a tree. Let the set of vertices of the tree a distance x from A be labelled Sx.
Suppose G has a telescoping vertex v ∈ Sd for d ! 1. Then the following are true:

(i) We have degA " 4 and degA = 3 if and only if d = 1.

(ii) The numbers |S1|, |S2|, . . . , |Sd−1| are even and |Sd| is odd.
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(iii) The total degree of the vertices in Sd − v is even.

For G, as in Lemma 3.2, it follows from (ii) above that if there are any further
telescoping vertices then they must also be in Sd. In fact we will show in the next
section that telescoping vertices are unique. This requires some more definitions,
notation and a couple of lemmas on subgraphs of isomorphic rooted trees.

Suppose T is a tree with root vertex r. We use the notation T (r) for this rooted
tree. For any vertex x of T we set ρT (x) to be the subgraph of T induced by the
set of vertices {v ∈ T : x ∈ P (r, v)}. Then ρT (x) consists of x and everything in
T on the other side of x from the root.

An isomorphism of rooted trees ψ : T (r) → U(s) is a graph isomorphism mapping
T to U and r to s. For two vertices x, y in T , the distance between them is the
length (number of edges) of P (x, y). Clearly

ψ(P (x, y)) = P (ψ(x),ψ(y))

and so the isomorphism ψ preserves distance. We also have

ψ(ρT (x)) = ρU (ψ(x)).

Let C and T ′ be trees with C attached at q to T ′. Recall this means that
C ∩ T ′ = q. Let T = C ∪ T ′ and choose a root for T . If this root is in T ′ then
C ⊆ ρT (q). There may be another tree C′ attached at q so that ρT (q) = C ∪ C′.
Note that for any v ∈ C − q we have ρT (v) ⊆ C − q.

ψ

∼=
T Y

ba Z
dc U

D1 D2

Figure 9: The isomorphic trees in Lemmas 3.3 and 3.4

Lemma 3.3. As shown in Figure 9, let T and Y be trees with T ∩ Y = b and set
D1 := T ∪ Y . Let U and Z be trees with U ∩ Z = d and set D2 := U ∪ Z. Suppose
a ∈ T and c ∈ U . Let ψ : D1(a) → D2(c) be an isomorphism of rooted trees.

If |V (Z)| ! |V (Y )| then there are three possibilities:

ψ(Y ) ⊆ U − d, ψ(Y ) ⊆ Z − d or ψ(b) = d.

Proof. If d ∈ ψ(Y − b) then ψ−1(d) ∈ Y − b and

ψ−1(Z) ⊆ ψ−1(ρD2(d)) = ρD1(ψ
−1(d)) ⊆ Y − b.
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But this is not possible as ψ−1(Z) has too many vertices. Hence d /∈ ψ(Y − b). If
ψ(b) ̸= d then d /∈ ψ(Y ). Since ψ(Y ) is connected we obtain ψ(Y ) ⊆ U − d or Z − d
completing the proof.

Lemma 3.4. As shown in Figure 9, let T and Y be trees with T ∩ Y = b and set
D1 := T ∪ Y . Let U and Z be trees with U ∩ Z = d and set D2 := U ∪ Z. Suppose
a ∈ T and c ∈ U . Let ψ : D1(a) → D2(c) be an isomorphism of rooted trees.

Let θ : T (a) → U(c) also be an isomorphism of rooted trees, satisfying θ(b) = d.
Then Y (b) ∼= Z(d).

Proof. To make the proof clearer, relabel U as T and c, d as a, b respectively. In this
way θ becomes the identity map and we have the situation in Figure 10. Note that

ψ

∼=
T Y

ba Z
ba T

D1 D2

Figure 10: The isomorphic trees in Lemma 3.4

we may have a = b. Since |V (Y )| = |V (Z)|, Lemma 3.3 implies that ψ(Y ) ⊆ T − b,
ψ(Y ) ⊆ Z − b or ψ(b) = b. It cannot be true that ψ(Y ) ⊆ Z − b as Y is too large.
We claim that ψ(b) = b implies that Y (b) ∼= Z(b), proving the lemma directly. To
see this, let Y ′ := ρT (b). Then ρD1(b) = Y ∪ Y ′ and the claim follows from

ψ(Y ∪ Y ′) = ψ(ρD1(b)) = ρD2(b) = Y ′ ∪ Z.

This also proves the lemma when a = b since this implies ψ(b) = b.

We may therefore assume that Y2 := ψ(Y ) ⊆ T − b. Let b2 := ψ(b). Considering
Y2 as a subgraph of D1 we may apply ψ again and either ψ(Y2) ⊆ T − b or ψ(b2) = b.
Repeat this, with Yi+1 := ψ(Yi) and bi+1 = ψ(bi) until bn+1 = b for some integer
n. This integer n must exist since the subgraphs Y2, . . . , Yn are disjoint in T − b.
(Otherwise, if Yi ∩ Yj ̸= {} for i, j satisfying 2 " i < j " n then we may apply ψ1−i

to get Y ∩ Yj−i+1 ̸= {} which is not true.) It follows that b, b2, . . . , bn are distinct
vertices in T .

Let Y ′ := ρT (b) as before so that ρD1(b) = Y ∪ Y ′. Put Y ′
2 := ψ(Y ′) and we

claim that Y ′
2 ⊆ T − b. Since b2 ∈ Y ′

2 and we know that b2 ∈ T − b, the claim follows
if we can show that b /∈ Y ′

2 . We have

b ∈ Y ′
2 =⇒ ψ(bn) ∈ ψ(Y ′) =⇒ bn ∈ Y ′.

The distance from a of every vertex in Y ′ − b is greater than the distance from
a to b which equals the distance from a to bn. Hence bn ∈ Y ′ implies bn = b, a
contradiction. This proves our claim.
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Repeating this argument with Y ′
i+1 := ψ(Y ′

i ), we find Y ′
i ⊆ T − b for 2 " i " n

and
ρD1(bi) = Yi ∪ Y ′

i
∼= Y ∪ Y ′ for 2 " i " n.

Then
Y ∪ Y ′ ∼= ψ(Yn ∪ Y ′

n) = ψ(ρD1(bn)) = ρD2(b) = Z ∪ Y ′.

Hence Y ∪ Y ′ ∼= Z ∪ Y ′ under an isomorphism that maps b to b. This completes
the proof.

4. Uniqueness of Telescoping Vertices

odd
cycle

A

Ta b

Uc d

X

Z

T ∼= U

Figure 11: The graph G in Proposition 4.1

Proposition 4.1. Suppose the tree T with root a is isomorphic to U with root c. Let
the tree X be attached to T at b and the tree Z attached to U at the corresponding
point d. Connect an odd cycle containing a vertex A to these trees by the edges Aa
and Ac. Call this graph G, as seen in Figure 11, and assume that G is reduced.
Then any telescoping vertex of G is in X − b or Z − d.

Proof. Recall from Lemma 3.1 that, if we remove a vertex v from the tree part of
G, any cancellations that are then possible must occur at a sequence of distinct and
uniquely defined vertices in P (A, v) − v that each get closer to A.

Assume, without losing generality, that |V (X)| ! |V (Z)|. We first claim that
any v ∈ U cannot be telescoping. Since the cancellations can only occur at points
in U and at A, it is clear that a final cancellation at A will not be possible as there
are too many vertices in T ∪ X to cancel those left from U ∪ Z. This proves the
claim.

Now we suppose that v ∈ T is telescoping. Let e be the last vertex in T where
cancellation occurs, or the remaining vertex adjacent to v if there is no cancellation
in T . Then we may write T = Y ∪W with v ∈ Y and Y ∩W = e; see the left of
Figure 12. After removing v and cancelling, we are left with W from T and, since
v is telescoping, there is one further cancellation at A. Note that P (a, b) must be
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contained in W or else there will be too few vertices to cancel with U ∪ Z at A.
Since U ∼= T , the following arguments become clearer if we relabel U as T and the
vertices c, d as a, b respectively. The last cancellation at A requires an isomorphism
θ from D1 := T ∪ Z to D2, which is what remains of T ∪X , that fixes a. All of X
will remain after the cancellation at e except possibly if e = b, so we examine this
case first.

The case when e = b. Suppose the cancellation at b removes Y − b from T as well
as Y ′− b fromX . (If Y ′ = b then the cancellation at b does not affectX .) Write
X = Y ′ ∪X ′ with Y ′ ∩X ′ = b. So after the cancellation at b, T ∪X becomes
W ∪X ′. Therefore we may write our isomorphism as θ : W ∪Y ∪Z → W ∪X ′.
By Lemma 3.4, Y ∪Z and X ′ are isomorphic as trees rooted at b. This shows
that there are two copies of Y attached to b in T ∪X that may be cancelled.
This contradicts G being reduced.

We may assume for the remainder that e ̸= b. If a = b then we have θ(b) = b. As
a consequence of this, X and Z are isomorphic as trees rooted at b which contradicts
G being reduced. Hence we may also assume that a ̸= b. It is possible that a = e.

T = U = θ

∼=W

Y
e

a b W

Y
e

a b Z W

e

a b X

D1 D2

Figure 12: Examining cancellation in G for Proposition 4.1

The isomorphism θ from D1 := W ∪ Y ∪ Z to D2 := W ∪X is shown in Figure
12. Recall that T ∪X = W ∪Y ∪X . Roughly, our goal is to show that the existence
of θ means that X contains a copy of Y , implying that T ∪ X has cancellation.
This contradicts our assumption that G was reduced and rules out v ∈ T being
a telescoping vertex. In more detail, we seek adjacent vertices x, r ∈ W so that
θ(x) ̸= x and θ(r) = r. Set T ∗ := ρD1(x) which implies θ(T ∗) = ρD2(θ(x)). We
also require

ρD1(x) ⊆ Y ∪ (W − b), (4.1)

ρD2(θ(x)) ⊆ X ∪ (W − e). (4.2)

Then (4.1) and (4.2) imply that T ∗ = ρT∪X(x) and θ(T ∗) = ρT∪X(θ(x)). If

T ∗ ∩ θ(T ∗) = {} (4.3)
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then it follows that we have cancellation at r in T ∪X , giving our desired contradic-
tion. In fact it is easy to see that (4.3) holds since otherwise there would be more
than one path between x and θ(x). If e ∈ T ∗ then (4.3) implies (4.2).

By Lemma 3.3 we know that θ(Z) ⊆ W − b, θ(Z) ⊆ X − b or θ(b) = b. As we
saw earlier, θ(b) = b may be ruled out. If θ(Z) ⊆ X − b then θ(b) ∈ X − b and
so the distance from a to b must increase under θ which is not possible. Therefore
θ(Z) ⊆ W − b and we set b2 := θ(b). We may consider Z2 ⊆ W − b as a subgraph
of D1 and apply θ again. As in the proof of Lemma 3.4, there exists n ! 2 so
that we obtain Zi ⊆ W − b for 2 " i " n where Zi+1 := θ(Zi), bi+1 = θ(bi) and
bn+1 = b. We have that Z1 := Z, Z2, . . . , Zn are all disjoint as subgraphs of D1 and
b1 := b, b2, . . . , bn are all distinct in W .

Let Z ′ = Z ′
1 := ρW∪Y (b) so that

ρD1(b) = Z ∪ Z ′.

As in the proof of Lemma 3.4 for Y ′
i , we have Z ′

i ⊆ W − b for 2 " i " n where
Z ′
i+1 := θ(Z ′

i). Suppose e is never a vertex of Zi ∪ Z ′
i for 1 " i " n. Then

ρD1(bi) = Zi ∪ Z ′
i
∼= Z ∪ Z ′ for 1 " i " n.

This being the case, we have

X ∪ Z ′ ∼= ρD2(b) = θ(ρD1(bn)) ∼= Z ∪ Z ′

and so X ∼= Z as trees rooted at b. However, this contradicts G being reduced and
so we must have e ∈ Zk ∪ Z ′

k for some k in the range 1 " k " n.

The case when e ∈ Z1 ∪ Z ′
1. Clearly, e /∈ Z1 so assume that e ∈ Z ′

1. Let R :=
ρW (b) so that Z ′

1 = R ∪ Y with R ∩ Y = e. By applying θ n times to ρD1(b)
we obtain

R ∪ Y ∪ Z ∼= R ∪X (4.4)

as trees rooted at b. Then P (b, e) ⊆ R and we let x be the vertex adjacent to b
in P (b, e). Put R1 := bx∪ρW (x) ⊆ R. This makes R1 the tree inW containing
e that is attached to b by a single edge. A short argument using (4.4) shows
that X must contain a copy of R1 ∪Y . In other words X = R1 ∪Y ∪X1 with
(R1 ∪Y )∩X1 = b. We have ρT∪X(b) = R∪Y ∪X which means there are two
copies of R1 ∪ Y attached to b in T ∪X . So in this case we have cancellation
at b in G, contradicting our assumption that G was reduced.

It remains to suppose that e ∈ Zk ∪ Z ′
k only for k in the range 2 " k " n. We

choose the minimal such k. Then

ρD1(bk) = Y ∪ Zk ∪ Z ′
k.
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The distinct vertices b1, . . . , bn are in W and so P (a, b1), . . . , P (a, bn) are in W with

θ(P (a, bi)) = P (a, bi+1) for 1 " i " n.

Write P (a, b1) ∩ P (a, b2) as P (a, r) so that θ(r) = r. Then P (a, r) ⊆ P (a, bi) for
1 " i " n. Now let x be the vertex in P (r, bk) adjacent to r. Put T ∗ := ρD1(x) and
we claim that T ∗ ⊆ Y ∪ (W − b). If b ∈ T ∗ then there is a path from bk to b in T ∗

that does not pass through r. But this is not possible as the path P (bk, r)∪P (r, b)
does pass through r. Since T ∗ is connected and contains a vertex bk in W − b, we
have proved the claim and so (4.1) holds. By construction we have e ∈ T ∗, giving
(4.2) by (4.3). As discussed there, these conditions prove that G has cancellation
at r giving a contradiction that implies v ∈ T cannot be a telescoping vertex.

Proposition 4.1 is next extended to cases with more cancellation.

odd
cycle

A

T1
a1 b1

U1c1 d1

Tq
aq bq

Uqcq dq

X

Z

X

Z
odd
cycle A

HG

Figure 13: The graphs for Proposition 4.2

Proposition 4.2. For i = 1, 2, . . . , q, let the trees Ti and Ui be isomorphic with
vertices ai, bi ∈ Ti corresponding to ci, di ∈ Ui respectively. Include edges biai+1 and
bici+1 for i = 1, 2, . . . , q − 1. Let an odd cycle containing the vertex A be connected
with edges Aa1 and Ac1. Attach the tree X at bq and the tree Z at dq. The left of
Figure 13 shows the q = 2 case of this construction. Call this graph G and assume
it is reduced with a telescoping vertex t.

Then the following are true:

(i) The vertex t is in X − bq or Z − dq.

(ii) Make a new graph H from G by removing all the trees Ti, Ui and identifying the
vertices A, bq, dq as displayed on the right of Figure 13. Then t is a telescoping
vertex for H.

Proof. We use induction on q to prove (i). The q = 1 case is covered by Proposition
4.1 so assume q ! 2. Proposition 4.1 implies that t is not in T1 or U1. Suppose that
the first cancellation after t is removed happens at sm, the next at sm−1 and the
last at s0 = A. By Lemma 3.1, we know that every si is in P (A, t) − t. The last
cancellation before A is at s1. We cannot have s1 in T1 − b1 as there will be too
few vertices remaining to cancel with U1 at A. If s1 is not in T1 then there will be
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too many vertices remaining to cancel with U1 at A. Therefore s1 = b1. Let G∗ be
G with T1, U1 removed and b1 identified with A. Induction now shows that t is in
X − bq or Z − dq.

We next show (ii). Repeating the above argument that s1 = b1 also shows that
s2 = b2, . . . , sq−1 = bq−1. Assume |V (X)| ! |V (Z)| and, as at the beginning of the
proof of Proposition 4.1, this implies that t ∈ X − bq and also that the cancellation
before sq−1 = bq−1 (or before A if q = 1) occurs at vertices in X − bq. Suppose the
last cancellation before bq−1 is at the vertex s ∈ X − bq. We may write X = Y ∪X ′

for Y ∩X ′ = s so that the cancellation at s removes X ′ − s. To cancel at bq−1 we
must have Uq ∪ Z isomorphic to Tq ∪ Y as trees rooted at cq and aq respectively.
Then Lemma 3.4 implies that Y rooted at bq is isomorphic to Z rooted at dq. It
follows that t is a telescoping vertex for H .

We will need Proposition 4.2 to prove Proposition 5.3 in the next section. It also
allows us to prove the goal of this section:

Corollary 4.3. Let G be a reduced graph consisting of a tree attached to an odd
cycle at one vertex. Then G has at most one telescoping vertex.

Proof. Suppose G has at least one telescoping vertex. We may describe G as in
Figure 8 and its related discussion, with telescoping vertex aq+1. By Proposition
4.2 part (i), applied with X = bqaq+1 ∪ Tq+1 and Z = dq, any telescoping vertex t
of G must be in Tq+1. Lemma 3.2 part (ii) implies that t must be the same distance
from A as aq+1. Hence t = aq+1.

5. Nim-values of Graphs With One Odd Cycle

The following result is Theorem 4 of [15]. We reproduce their proof in a slightly
shorter form.

tree
B

odd
cycle A

G

Figure 14: A tree attached to an odd cycle
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Theorem 5.1. Let G be an odd cycle connected to a tree by an edge AB as shown
in Figure 14. Then

g(G) =

{
4 or more if B has odd degree;
φ(G) otherwise.

Proof. Let n be the number of vertices and edges of G outside the cycle. The proof
uses induction on n and the base case with n = 2 may be easily verified. The
following cases establish our argument.

Case (i). Suppose the degree of B is odd. Removing a degree 2 vertex or an edge
from the cycle gives trees with nim-values 1 and 2. Removing vertices A and
B gives nim-values 0 and 3. It follows that the nim-value of G is greater than
3.

Case (ii). Suppose the degree of B is even. We have φ(G) = 0 or 3 and want
to show that this equals the nim-value of G. Removing a degree 2 vertex or
an edge from the cycle gives trees with nim-values 1 and 2. Removing B or
the edge AB also yields nim-values 1 or 2. Deleting A gives nim-value 3 if
φ(G) = 0 and nim-value 0 if φ(G) = 3. To complete the proof it remains to
show that no other moveH gives nim-value φ(G). By the induction hypothesis
g(H) ! 4 or g(H) = φ(H) and clearly φ(H) ̸= φ(G).

Theorem 1.3 will generalize Theorem 5.1. It requires the next definition and
proposition.

Definition 5.2. For trees X and Z, we call the tree constructed in the statement
of Proposition 4.2 an (X,Z) tree of level q ! 1. If X or Z is just a single vertex
then we may replace them by • in the notation.

Proposition 5.3. Let G be a reduced graph consisting of an odd cycle connected at
vertex A to a tree. Suppose A has even degree at least 4. Then there exists an odd
degree vertex of the tree that is not telescoping and so that removing it and reducing
produces a subgraph with no telescoping vertices of odd degree.

Proof. As in Lemma 3.2, label the set of vertices of the tree a distance x from A
as Sx. Let ℓ be the largest x for which |Sx| > 0. In other words, ℓ is the height of
the tree rooted at A. We use induction on ℓ. Since G is reduced, the base case has
ℓ = 2 with the tree in G consisting of paths of length 1 and 2 attached to A. The
proposition is clearly true in this case. Now assume ℓ ! 3.

For some d with 2 " d " ℓ, suppose that the numbers |S1|, |S2|, . . . , |Sd−1| are
even and |Sd| is odd. Then the total degree of the vertices in Sd−1 is odd and hence
there exists a vertex t ∈ Sd−1 of odd degree. Remove vertex t and reduce. Note
that t ̸∈ Sd and so cannot be telescoping by Lemma 3.2 part (ii). Also from Lemma
3.2 part (ii), if the resulting graph has a telescoping vertex v then it must be one
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of the remaining vertices in Sd−1 − t. But it cannot be a telescoping vertex of odd
degree since that would contradict Lemma 3.2 part (iii) which says that the total
degree of (Sd−1 − t) − v is even. Therefore, t is the desired vertex.

odd
cycle

A

Tq

aq bq

Uqcq dq

Tq+1

aq+1

W
t

W
t

Tq+1

aq+1

odd
cycle

A

LG

Figure 15: Graphs in the proof of Proposition 5.3

Otherwise, |S1|, |S2|, . . . , |Sℓ| are all even, as we now assume. Remove an odd
degree vertex t in Sm for some m with 3 " m " ℓ. For example, t could be a leaf.
After removing t suppose there are p ! 0 cancellations to obtain the reduced graph
H . In general t is contained in the subgraph W := ρG(t) so that W − t becomes
disconnected from the cycle component H . Note that t cannot be telescoping by
Lemma 3.2 part (ii). IfH has no telescoping vertices of odd degree then we are done.
Otherwise, the telescoping vertex is in Sm by Lemma 3.2 part (ii). We see that H
must take the form shown in Figure 8 with q ! 1 since m > 1. The telescoping
vertex is labelled as aq+1 with odd degree.

The degrees of vertices bq and dq in that figure must have opposite parity in H .
They will have opposite parity in G as well unless p = 0 and t is connected by an
edge to one of bq or dq. This is illustrated on the left of Figure 15, in the case of
q = 1, with dashes denoting the possible edges. We need to examine this situation
in detail.

The case when t is attached to bq or dq. We find a vertex r satisfying the propo-
sition in this case. Consider the graph L on the right of Figure 15. It is
obtained from G by removing Ti, Ui for 1 " i " q and adding the edges Aaq+1

and At. Then L is reduced since G is. By induction, L has an odd degree ver-
tex r of the tree that is not telescoping, and so that removing it and reducing
produces a subgraph L′ with no telescoping vertices of odd degree. Let X be
what remains of Aaq+1 ∪ Tq+1 after this reduction and Z be what remains of
At ∪W . Then L′ = X ∪ Z. If r ∈ Tq+1 then all the cancellation is in Tq+1

and Z = At ∪W . Similarly, If r ∈ W then all the cancellation is in W and
X = Aaq+1 ∪ Tq+1.

Now we remove the same vertex r from G. The initial cancellations in G after
removing r will be the same as those that produced L′ and we carry them out
in G to obtain G′. Depending on where t is connected, the tree part of G′

is an (X ∪ Z, •) graph or an (X,Z) graph. If G′ is a reduced graph then it



INTEGERS: 18 (2018) 20

follows from Proposition 4.2 part (ii) that if G′ has a telescoping vertex then
so does L′ and it must be the same vertex. Therefore L′ having no telescoping
vertices of odd degree implies that G′ does not have them either and so r is
the desired vertex in this case.

However, it may be the case that further cancellation is possible in G′. This
cancellation must be at vertices in P (A, r), though not at the vertex A since
r is not telescoping by Proposition 4.2 part (ii). Assume, without losing gen-
erality, that r ∈ Tq+1 so that any cancellation happens in T1, . . . , Tq. Suppose
that after cancellation in Tq+1 the next cancellation is at s ∈ Tm. If s ̸= bm,

Tm

Um

· · · · · ·
bm−1

am
Tm,3

Tm,1

Tm,2

bm W1

W2

s

Um,3

Um,1

Um,2

cm

dm

W3

Figure 16: Studying cancellation at s

then as shown in Figure 16, Tm contains the parts Tm,1 and Tm,2, which will
cancel, and Tm,3 which contains s. Suppose that bm ∈ Tm,1. Let W1 be the
part of G′ attached to bm containing Tm+1, Um+1, . . . , X, Z. Then W1 is an
(X ∪ Z, •) graph or an (X,Z) graph. For cancellation at s, Tm must also
contain W2 which is isomorphic to W1 and attached to Tm,2 in the same way.
Now Um

∼= Tm and so has the same components Um,1, Um,2, Um,3 and W3

with dm ∈ Um,1 and W3
∼= W1 attached to Um,2. Therefore we see that after

cancellation at s we obtain a graph whose tree part is still an (X ∪Z, •) graph
or an (X,Z) graph. Similar reasoning gives the same conclusion when s = bm.

Repeating this argument shows that the reduced version, G∗, of G′ is still
an (X ∪ Z, •) graph or an (X,Z) graph. By Proposition 4.2, any telescoping
vertex of G∗ must be in X or Z and a telescoping vertex for L′. Therefore
L′ having no telescoping vertices of odd degree implies that G∗ does not have
them either and so r is the desired vertex as before.

Returning to our main argument, we are left with the situation that one of bq
and dq has odd degree in G. We have proved that there are three alternatives: the
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original odd degree vertex t ∈ Sm we chose satisfies the proposition, the vertex r
does, or else there exists a new odd degree vertex in Sm−1, one unit closer to A.

odd
cycle

A

T2

T1

U1

a1

c1

x

y

X

Y

a2

t
W

T1(a1) ∼= U1(c1)

X(x) ∼= Y (y)

Figure 17: A possible configuration in the proof of Proposition 5.3

Repeating this reasoning, we eventually find a vertex satisfying the proposition
or else we find an odd degree vertex t in S2 so that removing t and reducing (with
p cancellations) produces a graph H with an odd degree telescoping vertex a2 ∈ S2

(the number of cancellations in H is necessarily q = 1 and in our notation we have
a1 = b1 and c1 = d1). Since t ∈ S2, the only options for p are 0 and 1. If p = 1
then we have the situation in Figure 17 with degA = 6. Then S1 contains four
vertices and two have odd degree. Deleting one of these odd degree vertices leaves
a reduced graph where degA = 5. It follows from part (i) of Lemma 3.2 that this
graph does not have a telescoping vertex. This completes the p = 1 case.

Lastly, when p = 0 we necessarily have t adjacent to b1 or d1. This is the
highlighted case we covered earlier in the proof, and the argument there shows that
the desired vertex r may be found by induction.

Proof of Theorem 1.3. Let n be the number of vertices and edges of G outside the
cycle. The proof uses induction on n and the base case with n = 0 is clearly true.
Assume n ! 1 and let A be the vertex on the cycle with degree greater than 2.
If degA = 3 then denote by B its adjacent vertex in the tree. Clearly B is a
telescoping vertex for G and, with Lemma 3.2 part (ii) or Corollary 4.3, it is the
only one. The result then follows from Theorem 5.1. Hence we may assume that A
has degree at least 4.

Case (i). Suppose G contains a telescoping vertex of odd degree. Removing a
degree 2 vertex or an edge from the cycle gives trees with nim-values 1 and
2. Removing the telescoping vertex leaves a graph H , consisting of a cycle
component and a disconnected forest, and with φ(H) = 3 ⊕ φ(G) because
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we removed a vertex of odd degree. Since the cycle component has φ = 3
and g = 0 it follows that g(H) = φ(G) which is 0 or 3. Next we note that
degA = 4 by Lemma 3.2 part (i). Proposition 5.3 then implies there exists
an odd degree vertex in the tree part of G so that deleting it and reducing
gives a graph H ′ that does not contain a telescoping vertex of odd degree and
in which degA ! 3. By induction g(H ′) = φ(H ′) and so this move gives the
fourth element of the set {0, 1, 2, 3}. Therefore the nim-value of G is at least
4.

Case (ii). Suppose G does not contain a telescoping vertex of odd degree. We
have φ(G) = 0 or 3 and want to show that this equals the nim-value of G.
Removing a degree 2 vertex or an edge from the cycle gives trees with nim-
values 1 and 2. Deleting any vertex or edge from the tree part of G and
reducing gives a graph H in which degA ! 3 and that by induction has nim-
value φ(H) or at least 4. If φ(G) = 0 then it follows that all moves have
nim-value ̸= 0 and so g(G) = 0. If φ(G) = 3 then it follows that all moves
have nim-value ̸= 3. To show that g(G) = 3 it remains to find a move with
nim-value 0. If A has odd degree then removing it is such a move. If A is even
then Proposition 5.3 implies there exists an odd degree vertex in the tree part
of G so that deleting it and reducing gives a graph H ′ that does not contain
a telescoping vertex of odd degree and in which degA ! 3. By induction
g(H ′) = φ(H ′) and so we have located the required nim-value 0 move.

We may now prove Theorem 1.4, as conjectured in [15].

Proof of Theorem 1.4. In general, the graph G consists of trees attached to an odd
cycle and possibly a number of other disjoint trees. Let n be the number of vertices
and edges of G that are not on the cycle. The proof uses induction on n and the
base case with n = 4 is easy to verify. If g(G) = φ(G) then, with Proposition 1.1
and (2.4), we obtain the same relation if we add disjoint trees to G. Hence we may
assume that G is connected. Then φ(G) = 0 or 3 and want to show that this equals
the nim-value of G. The following cases establish the argument.

Case (i). Suppose φ(G) = 0. This corresponds to n being odd. Removing a
vertex or edge from the cycle leaves a non-zero nim-value by Proposition 1.1.
Removing a vertex or edge not on the cycle and reducing leaves a graph H
where m vertices of the cycle have degree greater than 2 for m ! 1. (There
cannot be any cancellation between trees attached to different vertices of the
cycle; see the discussion after Lemma 3.1.) If m ! 2 then g(H) = φ(H) by
induction. If m = 1 then g(H) = φ(H) or g(H) ! 4 by Theorem 1.3. In
either case g(H) ̸= 0 and so g(G) = 0.

Case (ii). Suppose φ(G) = 3. This corresponds to n being even. Similar argu-
ments to Case (i) show that all moves of G have nim-value ̸= 3. It remains
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to show that moves with nim-values 0, 1 and 2 exist. Removing an edge of
the cycle gives nim-value 1. Deleting an odd degree vertex on the cycle gives
nim-value 0 and deleting an even degree vertex on the cycle gives nim-value
2. If all the cycle vertices have odd degree then there must exist an even
degree vertex in the rest of G (since G has an odd number of vertices) and
removing it gives nim-value 2 by induction. In the last case to consider, all
the cycle vertices have even degree and we need to locate a move with nim-
value 0. Choose a cycle vertex A with even degree at least 4. Proposition 5.3
implies there exists an odd degree vertex in the tree attached to A so that
deleting it and reducing gives a graph H ′ in which degA ! 3. By induction
g(H ′) = φ(H ′) and this provides the nim-value 0 move we wanted.

Corollary 5.4. Let G be a reduced, possibly disconnected graph containing one odd
cycle and no other cycles or loops. Then g(G) ̸= φ(G) if and only if one of these
conditions is true:

(i) all of the cycle vertices have degree 2 or

(ii) exactly one of the cycle vertices has degree greater than 2 and there exists a
telescoping vertex of odd degree.

The results we have proved in this section are for graphs with exactly one odd
cycle and no even cycles or loops. It is natural to also ask what happens when we
allow even cycles or if we replace the odd cycle with a loop.

6. Unbounded Nim-values

· · · · · · · · · · · ·

G1(n) G2(n)

Figure 18: Graphs with unbounded nim-values

All the graphs we have encountered so far have had quite small nim-values. In
[12] the authors conjectured that the nim-values of graph games are unbounded.
This was demonstrated in [9] with the family of graphsG1(n) on n vertices in Figure
18. Let

λ(k) :=

⎧
⎨

⎩

2m, if k = 3m+ 0;
2m+ 1, if k = 3m+ 1;
2m, if k = 3m+ 2.
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So the first few values of λ, starting with λ(0), are 0, 1, 0, 2, 3, 2, 4, 5, 4, . . . . Then
an induction argument, given in the proof of [19, Thm. 3], shows that

g(G1(n)) = 2 · λ(n − 3) for n ! 4.

The family G2(n) on n vertices in Figure 18 is just a path with a loop at the end.
A similar proof shows

g(G2(n)) = 2 · λ(n) for n ! 0.

Some examples of the nim-values that arise when an odd cycle is attached to a
tree are explored in Appendix A of [19]. The next result generalizes Theorem 5 of
[15] and demonstrates that the nim-values of “4 or more” from the statements of
Theorems 1.3 and 5.1 may become arbitrarily large.

odd
cycle

A B

x1

x2

x3

x4

Figure 19: An example of Rx1,x2,...,xn with n = 4 and (x1, x2, x3, x4 ) = (7, 6, 5, 3)

Define the family of graphs Rx1,x2,...,xn for positive integers x1, . . . , xn as follows.
They consist of an edge AB with an odd cycle attached to A and n paths of lengths
x1, . . . , xn attached to B as in Figure 19.

Set ℓ(x) := 2 · λ(x − 1). The first few values of ℓ are 0, 2, 0, 4, 6, 4, 8, 10, 8, . . . ,
starting with ℓ(1).

Theorem 6.1. We have

g(Rx1,x2,...,xn) =

{
φ(Rx1,x2,...,xn) if n is odd;
ℓ(x1)⊕ · · ·⊕ ℓ(xn) + 4 if n is even.

Proof. Set L := ℓ(x1) ⊕ · · · ⊕ ℓ(xn) and the same nim sum with ℓ(xr) removed is
L ⊕ ℓ(xr). Let X := x1 + · · · + xn. For n = X = 0 we understand the empty
nim-sum L is 0. To compute g(Rx1,x2,...,xn) we look at all possible moves and use
induction on X . The base case with n = X = 0 has nim-value 4 by Theorem 5.1.
When n is odd the result also follows from Theorem 5.1, so we may assume n is
even.

From the cycle and vertices A and B we obtain moves with nim-values 0, 1, 2
and 3. The only possible nim-values outside of these come from removing vertices
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and edges from the n paths giving:

L⊕ ℓ(xr)⊕ ℓ(xr − 1) + 4,

(L⊕ ℓ(xr)⊕ ℓ(xr − 1) + 4)⊕ 1,

(L⊕ ℓ(xr)⊕ ℓ(i) + 4)⊕ 1,

(L⊕ ℓ(xr)⊕ ℓ(i) + 4)⊕ 2

for all r, i satisfying 1 " r " n and 1 " i " xr− 2. Noting that (a+4)⊕b = (a⊕b)+4
for b = 1, 2 we obtain

g(Rx1,x2,...,xn) = 4 +mex
({

L⊕ ℓ(xr)⊕ ℓ(xr − 1)⊕ (b − 1), L⊕ ℓ(xr)⊕ ℓ(i)⊕ b
})

(6.1)
where 1 " r " n, 1 " i " xr − 2 and b = 1, 2. To compute this, let

E(k) :=
{
ℓ(k − 1), ℓ(k − 1)⊕ 1

}
∪
{
ℓ(i)⊕ 1, ℓ(i)⊕ 2

∣∣∣ 1 " i " k − 2
}
.

It is straightforward to prove that, for all positive integers k,

ℓ(k) = mex(E(k)). (6.2)

We may rewrite (6.1) as

g(Rx1,x2,...,xn) = 4 +mex
({

L⊕ ℓ(xr)⊕ a
})

(6.3)

where 1 " r " n and a ∈ E(xr). It follows from (6.2), (6.3) and the addition of
games relation (2.3) that g(Rx1,x2,...,xn) = 4 + L as desired.

︸ ︷︷ ︸
length k

tree · · ·odd
cycle

Figure 20: Connecting an odd cycle, a tree and a path

Suppose we fix each xi in Rx1,x2,...,xn except for x1 say, and let k = x1 in-
crease. By Theorem 6.1, the sequence of nim-values gk := g(Rk,x2,...,xn) will be
0, 3, 0, 3, 0, 3, 0, . . . if n is odd and ℓ(k) ⊕ r + 4, for some even number r ! 0, if n
is even (since the image of ℓ is the set of all even numbers). Khandhawit and Ye
investigated what happens in general when a path of length k, a tree and an odd
cycle are attached together as in Figure 20. They found two types of behavior for
the sequence of nim-values gk for large k; see Table 6 of [15]. We see there is also
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a third type of behavior (which invalidates their Conjecture 1) given in (iii) next.
In the examples we have computed, the sequence g1, g2, g3, . . . eventually matches
one of the following three sequences:

(i) ℓ(1)⊕ r + 4, ℓ(2)⊕ r + 4, ℓ(3)⊕ r + 4, . . . for some fixed r ! 0,

(ii) the period 2 sequence 4m, 4m+ 3, 4m, 4m+ 3, . . . for some fixed m

(iii) or the period 2 sequence 4m+1, 4m+2, 4m+1, 4m+2, . . . for some fixed m.

An instance of (iii) is shown for the family H1,k in Figure 21. The family H2,k in
that figure shows that r in (i) may be odd as the sequence is gk = ℓ(k)⊕ 3 + 4 for
k ! 13. The examples in Figure 21 also confirm Theorem 1.3; we see the highlighted
vertices in H1,k and H2,k are odd degree telescoping vertices and the nim-values of
these graphs are 4 or more. By comparison, H3,k is similar to H2,k but does not
have a telescoping vertex and its nim-values are φ(H3,k).

︸ ︷︷ ︸
length k

· · ·odd
cycle

H3,k 0, 3, 0, 3, 0, 3, 0, 3, . . .

gk for k ! 1

︸ ︷︷ ︸
length k

· · ·odd
cycle

H2,k 23, 21, 23, 27, 25, 27, 31, . . .

gk for k ! 13

︸ ︷︷ ︸
length k

· · ·odd
cycle

H1,k 18, 17, 18, 17, 18, 17, . . .

gk for k ! 8

Figure 21: Examples of nim-value sequences

Are any further types of sequences possible? In general we may ask what kinds
of nim-value sequences arise when a path of length k is attached to any graph.

7. Nim-values of Some Graphs With Many Odd Cycles or Loops

Let G be a connected graph without loops. If every vertex of G has degree at most
two then it is just a path or a cycle. If we allow one vertex P to have higher degree,
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then G must consist of a number of cycles and paths attached to P . Attaching

r odd cycles

P

x1

x2

x3

x4

Figure 22: A graph from Theorem 7.1

an even cycle to a vertex in a graph is the same as adding a disjoint vertex, by
Lemma 2.1, and the nim-value simply changes by ⊕1. So we may assume that the
r cycles attached to P are all odd. Let the m paths attached to P have lengths
x1 ! x2 ! · · · ! xm ! 0 and it is convenient to set

X :=
m∑

i=1

xi, X̂ :=
m∑

i=1

(−1)i+1xi. (7.1)

See for example Figure 22. We have X̂ = 0 if and only if the paths cancel in pairs
and G reduces to just the r cycles. Similarly, X̂ = 1 if and only if G reduces to the
r cycles with two paths of lengths differing by 1 (or one path of length 1) attached
at P .

Theorem 7.1. Let G consist of a vertex P to which r odd cycles and m paths are
attached. Then with the above notation we have

g(G) =

⎧
⎨

⎩

0 for r odd and X̂ = 0;
4 for r odd and X̂ = 1;
φ(G) otherwise.

Proof. We use induction on (r,X) ordered lexicographically. In other words, (r,X) >
(r′, X ′) exactly when r > r′ or when r = r′ and X > X ′. Any move of G gives a
graph with smaller (r,X) (and removing P gives a bipartite graph). The base case
of the induction is true since r = X = 0 means G is a single vertex.

Note that
φ(G) = (X + 1)(2) + 2((X + r)(2)).

The following cases establish the argument.

Case (i). Suppose r is odd and X̂ = 0. Then degP is even, X is even and
φ(G) = 3. We want to show that g(G) = 0 and this follows if all moves H
have g(H) ̸= 0. Removing P or removing an edge or vertex on a cycle gives H
with g(H) = φ(H). But for these moves φ(H) ̸= 0 since we may only get 0 by
removing an odd degree vertex. If H is a move that deletes a vertex or edge
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from one of the paths of G then clearly g(H) ̸= 0 if X̂ → 1. The last option
is that H makes X̂ greater than 1 so that g(H) = φ(H). If φ(H) = 0 then H
removes a vertex of odd degree. However, the only path move that does this
removes a leaf vertex and has X̂ → 1. Hence g(H) ̸= 0 in this option.

Case (ii). Suppose r is odd and X̂ = 1. Then X is odd, φ(G) = 0 and we want
to show that g(G) = 4. First we prove that moves with nim-values 0, 1, 2
and 3 exist. Deleting a vertex or edge on the cycle gives nim-values 1 and 2.
Since X̂ = 1, there exists r such that xr = 1 + xr+1 (with xr+1 possibly 0).
Removing the vertex at the end of the path of length xr makes X̂ → 0, giving
nim-value 0. If degP is odd then removing P is a move with nim-value 3.
Otherwise degP is even implying there exists r such that xr = 1 + xr+1 and
xr+1 ! 1. Removing the vertex at the end of the path of length xr+1 makes
X̂ → 2 and this move has nim-value 3.

Next we show that all moves H have g(H) ̸= 4. The only possible moves with
nim-value ! 4 have X̂ remaining as 1. If xr = 1 + xr+1 then the only move
that does this has xr → xr − 2 by removing a degree 2 vertex. But this move
has nim-value 4⊕ 1 = 5.

Case (iii). Suppose r is even and X is even. Then φ(G) = 1 and we want to
show that g(G) = 1. To find a move with nim-value 0 we may remove a degree
2 vertex on one of the paths of G. We cannot do this if x1 " 1. Since X is
even, it follows that the degree of P must be even if x1 " 1. Removing P
then gives the move with nim-value 0. If H is any move then g(H) = 0, 4 or
φ(H) and not equal to 1.

Case (iv). Suppose r is even and X is odd. Then φ(G) = 2 and we want to show
that g(G) = 2. We have x1 ! 1 and removing the end edge and vertex on this
path gives nim-values 0 and 1 respectively. If H is any move then g(H) is 0,
4 or φ(H) and not equal to 2.

Case (v). Suppose r is odd, X is even and X̂ ! 2. Then φ(G) = 3 and we want to
show that g(G) = 3. Removing a cycle edge and vertex gives nim-values 1 and
2 respectively. If degP is odd the removing it gives nim-value 0. Otherwise,
the largest r for which xr is positive is even. Removing the vertex at the end
of this path increases X̂ and therefore this move has nim-value 0. We have
shown that moves with nim-values 0, 1 and 2 exist.

It remains to show that all moves H have g(H) ̸= 3. By induction we have
g(H) = 0⊕t or 4⊕t or φ(H) for t = 0, 1 or 2, the nim-value of the disconnected
path. It follows that g(H) ̸= 3.

Case (vi). Suppose r is odd, X is odd and X̂ ! 2. Then φ(G) = 0 and we want
to show that g(G) = 0. This is true if all moves H have g(H) ̸= 0. As in the
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previous case, g(H) = 0⊕ t or 4 ⊕ t or φ(H) for t = 0, 1 or 2. The only way
to obtain g(H) = 0 is if a vertex or edge is removed so that X̂ → 0 and the
disconnected path has nim-value t = 0. This is not possible for X̂ ! 2.

z4

z3

z2

z1

P Q

x1

x2

y1

y2

y3

Figure 23: A graph from Theorem 7.2

We next consider a family of graphs where two vertices P and Q may have high
degree and the remaining vertices have degree " 2. Suppose there are k paths of
lengths z1, . . . , zk ! 1 linking P and Q. We also have m paths from P of lengths
x1 ! x2 ! · · · ! xm ! 0 and n paths from Q of lengths y1 ! y2 ! · · · ! yn ! 0 as
shown in Figure 23. Similarly to (7.1), put

X :=
m∑

i=1

xi, Y :=
n∑

i=1

yi, Z :=
k∑

i=1

zi,

X̂ :=
m∑

i=1

(−1)i+1xi, Ŷ :=
n∑

i=1

(−1)i+1yi.

Theorem 7.2. Let G be a member of the above family of graphs involving paths
linking to P and Q. With the defined notation we have

g(G) =

⎧
⎨

⎩

0 for k even, Z odd and X̂ + Ŷ = 0;
4 for k even, Z odd and X̂ + Ŷ = 1;
φ(G) otherwise.

Proof. We argue similarly to the proof of Theorem 7.1 and use induction on (k,X+
Y ) ordered lexicographically. The result is true in the base cases of k = 0 (so
that Z = 0) and k = 1 since G is then bipartite. Hence we assume k ! 2. If
z1 = · · · = zk = 1 then we have a multiple edge which simplifies to a single edge or
no edge as discussed after Lemma 2.1. Therefore we may assume there exists a zi
with zi ! 2. Also note that

φ(G) = (X + Y + Z + k)(2) + 2((X + Y + Z)(2)).

The following cases establish the argument.
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Case (i). Suppose k is even, Z is odd and X̂ + Ŷ = 0. Then X, Y, degP and
degQ are all even and φ(G) = 3. To show that g(G) = 0 we need to prove that
all moves H have g(H) ̸= 0. Removing P , Q or an edge or vertex between P
and Q gives H with g(H) = φ(H). But for these moves φ(H) ̸= 0 since we
may only get 0 by removing an odd degree vertex. If H is a move that deletes
a vertex or edge from a path of G not between P and Q then clearly g(H) ̸= 0
if X̂ + Ŷ → 1. The last option is that H makes X̂ + Ŷ greater than 1 so that
g(H) = φ(H). If φ(H) = 0 then H removes a vertex of odd degree. However,
the only path move that does this removes a leaf vertex and has X̂ + Ŷ → 1.
Hence g(H) ̸= 0 in this option.

Case (ii). Suppose k is even, Z is odd and X̂ + Ŷ = 1. Then X + Y is odd,
φ(G) = 0 and we want to show that g(G) = 4. First we prove that moves
with nim-values 0, 1, 2 and 3 exist. Deleting a vertex or edge between P
and Q gives nim-values 1 and 2. With X̂ + Ŷ = 1 we must have X̂ = 1 or
Ŷ = 1. If X̂ = 1, there exists r such that xr = 1 + xr+1 (with xr+1 possibly
0). Removing the vertex at the end of the path of length xr makes X̂ → 0,
giving nim-value 0. If degP is odd then removing P is a move with nim-value
3. Otherwise degP is even implying there exists r such that xr = 1 + xr+1

and xr+1 ! 1. Removing the vertex at the end of the path of length xr+1

makes X̂ → 2 and this move has nim-value 3. The same argument works if
Ŷ = 1.

Next we show that all moves H have g(H) ̸= 4. The only possible moves with
nim-value ! 4 have X̂ + Ŷ remaining as 1. If X̂ = 1 and xr = 1 + xr+1 then
the only move that does this has xr → xr − 2 by removing a degree 2 vertex.
But this move has nim-value 4 ⊕ 1 = 5. We have the same argument when
Ŷ = 1.

Case (iii). Suppose k is odd and X + Y + Z is even. Then φ(G) = 1 and we
want to show that g(G) = 1. To find a move with nim-value 0 we may remove
a degree 2 vertex between P and Q if Z is even. Now assume Z is odd.
Removing a degree 2 vertex on one of the paths not between P and Q gives
nim-value 0. We cannot do this if all xi, yi are " 1. Since one of X or Y
is odd, it follows that the degree of P or Q must be even if xi, yi are " 1.
Removing this even degree vertex then gives the move with nim-value 0. If H
is any move then g(H) = 0, 4 or φ(H) and not equal to 1.

Case (iv). Suppose k is odd and X + Y +Z is odd. Then φ(G) = 2 and we want
to show that g(G) = 2. If any of xi, yi are ! 1 then removing the end edge
and vertex on this path gives nim-values 0 and 1 respectively. Otherwise,
X = Y = 0 and Z, degP are odd. Removing P gives nim-value 1 and
removing a central edge from a path with zi odd gives nim-value 0. If H is
any move then g(H) is 0, 4 or φ(H) and not equal to 2.
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Case (v). Suppose k is even, X + Y + Z is odd and X̂ + Ŷ ! 2. Then φ(G) = 3
and we want to show that g(G) = 3. Removing a cycle edge and vertex gives
nim-values 1 and 2 respectively. If degP is odd the removing it gives nim-
value 0. Otherwise, the largest r for which xr is positive is even. Removing
the vertex at the end of this path increases X̂ and therefore this move has
nim-value 0. We have shown that moves with nim-values 0, 1 and 2 exist.

It remains to show that all moves H have g(H) ̸= 3. By induction we have
g(H) = 0⊕t or 4⊕t or φ(H) for t = 0, 1 or 2, the nim-value of the disconnected
path. It follows that g(H) ̸= 3.

Case (vi). Suppose k is even, X + Y +Z is even and X̂ + Ŷ ! 2. Then φ(G) = 0
and we want to show that g(G) = 0. This is true if all movesH have g(H) ̸= 0.
As in the previous case, g(H) = 0⊕t or 4⊕t or φ(H) for t = 0, 1 or 2. The only
way to obtain g(H) = 0 is if a vertex or edge is removed so that X̂ + Ŷ → 0
and the disconnected path has nim-value t = 0. This is not possible for
X̂ + Ŷ ! 2.

Propositions 1.6 and 1.7 follow as special cases of Theorems 7.1 and 7.2 respec-
tively. Note that X̂ = 1 in Theorem 7.1 and X̂ + Ŷ = 1 in Theorem 7.2 exactly
when there is a single telescoping vertex of odd degree. So these theorems fit a sim-
ilar pattern to the results in Section 5 and could be part of a larger encompassing
theory.

We consider one more family of graphs in this section.

Theorem 7.3. Let Kn(m) be the complete graph Kn with a loop attached to m
different vertices. Then

g(Kn(m)) = (m+ n)(3).

Proof. We use induction on n with the n = 0, 1 cases easily verified. Assume n ! 2.
If m = 0 then we just have the complete graph and the theorem follows by (2.5). If
0 < m < n then Kn(m) contains two vertices v and v′ connected by an edge such
that exactly one of them has a single loop attached.

To proceed we need the following extension of the symmetry lemma. Suppose
that τ : G → G satisfies the conditions of Lemma 2.1 with u ̸= τ(u) for vertex u.
Let G∗ be G with an edge e added between u and τ(u) and a loop l added to either
vertex. The proof of Lemma 2.1 goes through if we respond to e with l and vice
versa. This proves g(G∗) = g(Gτ ).

Applying the above argument, where τ maps v → v′ and fixes the remaining
vertices, shows that

g(Kn(m)) = g(Kn−2(m − 1)) = (m+ n − 3)(3) = (m+ n)(3)

by induction. In the final case,m = n and all vertices ofKn(n) have a loop attached.
The three possible moves from this position are to:
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(i) remove a loop and get a graph with nim-value equal to g(Kn−2(n− 2)) by the
above extension to the symmetry lemma,

(ii) remove an edge and get a graph with nim-value equal to g(Kn−2(n − 2)) by
the symmetry lemma,

(iii) remove a vertex and get Kn−1(n − 1).

Therefore

g(Kn(n)) = mex
(
{g(Kn−2(n − 2)), g(Kn−1(n − 1))}

)

= mex
(
{(2n − 4)(3), (2n − 2)(3)}

)

= mex
(
{(2n+ 1)(3), (2n+ 2)(3)}

)
= (2n)(3).

8. Wheel Graphs and Subgraphs

As we saw in the introduction, the wheel graph Wn is constructed by joining a
central hub vertex to each vertex of the cycle graph Cn. We will later need the
fan graph Fn and also F ∗

n which we may call a fan with a handle. Construct Fn by
removing a rim edge of Wn and construct F ∗

n by removing two adjacent rim edges
of Wn. Examples are shown in Figure 24.

Fn for n = 7 F ∗
n for n = 8

Figure 24: Some wheel subgraphs – fans denoted Fn and fans with a handle denoted
F ∗
n

The wheel graph Wn for n even is easily seen, with the symmetry lemma, to have
nim-value 1. This follows by letting τ fix a diameter and reflecting the graph from
one side of the diameter to the other. The fixed diameter is a path of length 2 with
nim-value 1. Alternatively, τ could fix the central hub of Wn and send each vertex
and edge to the opposite side. The nim-value of a single vertex is again 1. These
techniques do not work for Wn with n odd since a short argument shows that any
τ satisfying the conditions of Lemma 2.1 must be the identity on Wn.

In a computer calculation we have found the nim-values of Wn and all its sub-
graphs for n " 14. This proves directly that g(Wn) = 1 for 3 " n " 14. It also
reveals interesting patterns that we describe throughout this section.
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To prove g(Wn) = 1 for n > 14, we consider the graph made up of Wn and
an isolated vertex and want to show that the second player has a winning strategy.
Clearly, removing the central hub vertex ofWn has the reply of removing the isolated
vertex and vice versa. Also deleting a vertex on the rim of the wheel has the response
of deleting the opposite edge and vice versa; the remaining graph is equivalent to
two isolated vertices by symmetry.

v(4k + 2)v(1)

v(2k + 2)

er

el

c

v(4k)v(1)

v(2k + 1)
erel

c

K1 ∪W9 less a spoke Qn for n = 4k + 1 = 9 Qn for n = 4k + 3 = 11

Figure 25: Wheel subgraphs with labelling

If the first player removes a spoke then the winning responses in K1 ∪Wn, with
n = 9 for example, are highlighted on the left in Figure 25: six spokes and two
vertices. This same pattern appears for all odd n " 13. Removing one of the
indicated vertices leaves the graph labelled Q9 in the middle of Figure 25. In
general we let Qn be the graph consisting of K1 and Wn with one spoke and one of
the two opposite vertices deleted. Label the vertices of Qn as shown in Figure 25,
v(1), · · · , v(n − 1) with central hub vertex c. The missing spoke is between c and
v((n+ 1)/2).

Theorem 8.1. We have g(Wn) = 1 for all n in the range 3 " n " 25.

Proof. We already saw that g(Wn) = 1 for n even and that g(Wn) = 1 for 3 " n "
14. This computation also shows that g(Qn) = 0 for n odd in the range 3 " n " 13.
We prove the theorem by demonstrating that g(Qn) = 0 for all odd n in the range
15 " n " 25.

Suppose that g(Qm) = 0 for all odd m in the range 3 " m " n − 2 and consider
Qn. We first look at the case n = 4k + 1 as shown in the middle of Figure 25. Let
el be the edge between v(2k − 1) and v(2k). Let er be the edge between v(2k + 1)
and v(2k+2). To show that g(Qn) = 0 we look for winning responses to any moves
of the first player. If K1 is removed then the winning response is v(1) since an
application of the symmetry lemma shows the remaining graph has the same nim-
value as two isolated vertices. Also deleting v(1) is a winning response to deleting
K1. We may write this move/response pair as K1 ↔ v(1). Exercises with the
symmetry lemma give the following pairs: c ↔ v(1), v(2k) ↔ v(2k + 1) and, since
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g(Qm) = 0 for smaller m, v(i) ↔ v(n − i) for 1 " i " n − 1. For edge moves we
have (v(2k), v(2k+1)) ↔ (c, v(1)) and also (v(i), v(i+1)) ↔ (v(n− i− 1), v(n− i))
for 1 " i " 2k − 1.

It remains to find winning replies to the first player removing a spoke. We
choose the response of removing el when any of the spokes on the left are removed:
(v(i), c) with 1 " i " 2k. The resulting graph simplifies to F ∗

2k+2 with two spokes
missing (the edge connected to the degree one vertex must remain). We choose the
response of removing er when any of the spokes on the right are removed: (v(i), c)
with 2k+ 2 " i " 4k. The resulting graph also simplifies to F ∗

2k+2 with two spokes
missing.

For the case n = 4k + 3 we argue similarly, with the initial moves and responses
using the same symmetries. The spoke move responses are defined slightly differ-
ently with el the edge between v(2k + 1) and v(2k + 2), and er the edge between
v(2k + 3) and v(2k + 4). We choose the response of removing el when any of the
spokes on the left are removed: (v(i), c) with 1 " i " 2k + 1. The resulting graph
simplifies to F ∗

2k+2 with two spokes missing. We choose the response of removing er
when any of the spokes on the right are removed: (v(i), c) with 2k+3 " i " 4k+2.
The resulting graph simplifies to F ∗

2k+4 with two spokes missing.

Let F ∗∗
m be F ∗

m with any two spokes missing. Since F ∗∗
m is a subgraph of Wm, our

computation verifies that g(F ∗∗
m ∪ K1) = 0 (i.e. g(F ∗∗

m ) = 1) for all even m " 14.
This shows that g(Wn) = 1 for all odd n up to n = 23 (requiring F ∗∗

12 and F ∗∗
14 ) and

n = 25 (requiring F ∗∗
14 ).

From the proof of Theorem 8.1 we see that the following conjecture implies
Conjecture 1.8, i.e. that g(Wn) = 1 for all n.

Conjecture 8.2. (Even fans with handles and two spokes removed.) Let the spokes
of F ∗

n be all edges connected to the hub except the edge connected to the degree 1
vertex. For all even n ! 4 the nim-value of F ∗

n with any two spokes removed is 1.

Exploring the nim-values of the move options for the fans Fn and the fans with
handles F ∗

n reveals the following patterns for the given n values up to 14 and we
conjecture they hold for all n.

1

1
1

1

1

33
1

4

0

φ = 2
g = 2

1

1

111

1

1

3 3
1

Figure 26: Nim-values for the move options of F7 and F9
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22
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1

0

φ = 3
g = 3

4

4
44

4

4

2 2
2

Figure 27: Nim-values for the move options of F6 and F8

Conjecture 8.3. (Fan options.)

(i) For all odd n ! 7 the nim-values of the options in the fan Fn are as follows.
All vertices have value 1 except the degree 2 vertices which have value 3. All
edges have value 4 except the edge on the axis of symmetry with value 0. See
the examples in Figure 26.

(ii) For all even n ! 4 the nim-values of the options in the fan Fn are as follows.
All vertices have value 4 except the degree 2 vertices and the central vertex
which have value 2. All edges on the rim along with the two spokes on each
side of the axis of symmetry have value 1. The remaining spokes have value
0. Hence g(Fn) = 3 for n even. See the examples in Figure 27.

2

2
2

2

2

44
0

2

3

0

φ = 1
g = 1

2

2

222

2

2

4 4
0

2

Figure 28: Nim-values for the move options of F ∗
8 and F ∗

10

Conjecture 8.4. (Fan with a handle options.)

(i) For all even n ! 6 the nim-values of the options in the fan F ∗
n are as follows.

All vertices have value 2 except the degree 2 vertices which have value 4 and
the central vertex with value 0. All edges have value 3 except two on the rim
a distance 1 from the degree 2 vertices. They have value 0. See the examples
in Figure 28.
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Figure 29: Nim-values for the move options of F ∗
9 and F ∗
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(ii) For all odd n ! 7 the nim-values of the options in the fan F ∗
n are as follows.

Almost all vertices have value 3. The exceptions are the degree 2 vertices with
value 1 and the two vertices on the rim a distance 2 from these with value
0. All edges have value 2. Hence g(F ∗

n) = 4 for n odd. See the examples in
Figure 29.

It is clear by the symmetry lemma that g(Fn) = 2 for n odd and that deleting the
edge on the axis of symmetry gives nim-value 0. Similarly we may show that g(F ∗

n) =
1 for n even and the highlighted edges in Figure 28 give nim-value 0 when removed
because the graph simplifies to a cycle. It is remarkable that, except for those just
mentioned, all other edges in each F ∗

n seem to have the same nim-value: 3 for n
even and 2 for n odd. Perhaps proving the patterns in these conjectures requires
characterizing when g(H) = φ(H) for subgraphs of Wn, similarly to Theorem 1.3.

Computer calculations indicate that a subgraph H of Wn with φ(H) = 2 never
has nim-value 0. This leads us to the following conjecture.

Conjecture 8.5. Let H be any subgraph of Wn for n ! 3. Suppose φ(H) = 2 (i.e.
H has an even number of vertices and an odd number of edges). Then there exists
an edge of H so that removing it gives a graph with nim-value 0.

This conjecture is true for all subgraphs with φ = 2 of Wn for 3 " n " 14. For
example, the graphs shown in Figure 26 have φ = 2 and contain a single edge move
with nim-value 0. The conjecture is also true for bipartite graphs but not for general
graphs and fails for instance for the three graphs shown in Figure 30. These graphs
have φ = 2 but no edge moves give nim-value 0 and a computer search shows they
are the only graphs on 6 or fewer vertices with this property. Interestingly, they are
of the form Ki ∪Kj for i+ j = 7 with a vertex of Ki and Kj identified.

We list five straightforward consequences of Conjecture 8.5 with H any subgraph
of a wheel:

(i) If H has an odd number of edges then there exists an edge of H so that
removing it gives a nim-value of φ(H)⊕ 2.
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Figure 30: Three examples with φ = 2 but no winning edge moves

(ii) If H has an even number of edges then g(H) = φ(H) or there exists an edge
of H so that removing it gives a nim-value of φ(H)⊕ 2 (or both).

(iii) If H has an even number of vertices then g(H) = 0 implies φ(H) = 0.

(iv) If φ(H) = 0 then any winning move must remove a vertex.

(v) Lastly we note that Conjecture 8.5 implies Conjecture 1.8, i.e. that g(Wn)
always equals 1. To see this implication, recall from the proof of Theorem
8.1 that g(Wn) = 1 for n odd follows if we can show that there is a winning
response to Qn with a spoke removed. Since Qn with a spoke removed has
φ = 2, Conjecture 8.5 implies there is a winning edge response.
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