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Abstract
An identity stated by Kimura and proved by Ruehr, Kimura and others stipulates
that for any continuous function f on [�1

2 , 3
2 ] one has

Z 3/2

�1/2
f(3x2 � 2x3)dx = 2

Z 1

0
f(3x2 � 2x3)dx.

We prove that this equality is not an isolated example by providing a family of
polynomials, related to the Tchebychev polynomials and of which (3x2 � 2x3) is a
particular case, giving rise to similar identities.

– To Je↵ Shallit on the occasion of his 60th birthday

1. Introduction

In this text, we address an identity that we call the Kimura–Ruehr identity: this
was a question posed by Kimura and answered by Ruehr, but also by the proposer
as well as by nine other contributors; see [3]. It reads

Let f be a real function that is continuous on [�1
2 , 3

2 ]. Then

Z 3/2

�1/2
f(3x2 � 2x3)dx = 2

Z 1

0
f(3x2 � 2x3)dx. (1)

In his proof [3], Ruehr notes that the identity is equivalent to the identities
obtained for f(x) = xn for all nonnegative integers. In particular, he points out the
identities X

0jn

3j

✓
3n� j

2n

◆
=

X
0j2n

(�3)j

✓
3n� j

n

◆
(2)
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and X
0jn

2j

✓
3n + 1
n� j

◆
=

X
0j2n

(�4)j

✓
3n + 1

n + 1 + j

◆
. (3)

Equality (2) is the corrected version of the corresponding one given in [3], as indi-
cated in [4] (also see [1]).

A way to generalize these Identities (2) and (3) is to introduce polynomials whose
values at some point coincide with the quantities above: this was done in [1], and,
with two extra parameters, in [2].

Now another question that quickly comes to mind when looking at Equality (1)
is whether this equality is “isolated”, or whether it is an instance in a general
family of identities. Here we give a countable family of equalities that generalize
Equality (1): they are somehow based on trigonometry (actually on the use of
Tchebychev polynomials), in relation to the spirit of Ruehr’s original proof.

2. Definitions

Recall that the Tchebychev polynomials of the first kind, Tn(X), are defined by
T0(X) = 1, T1(X) = X, and for all n � 0, Tn+2(X) = 2XTn+1(X)� Tn(X). They
have the property that, for all ✓ 2 R, the relation Tn(cos ✓) = cosn✓ holds.

In the rest of the paper we will use the following quantities.

Definition 1.

• For each integer n > 1, an and bn are defined by

an := cos2
⇡

n
� cos2

⇡

2n
=

1
2

✓
cos

2⇡
n
� cos

⇡

n

◆
,

bn := cos2
⇡

2n
=

1
2

⇣
cos

⇡

n
+ 1

⌘
.

• Furthermore, let f be a continuous function on [0, 1]. For n > 1, we let An(f)
and Bn(f) denote the two quantities

An(f) :=
1
an

Z ⇡/2n

0
f(cos2 nu) sin 2u du,

Bn(f) :=
1
an

Z ⇡/2n

0
f(cos2 nu) cos 2u du.

Remark 1. Note that an < 0.
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Definition 2. We define the polynomials Vn(X) and Wn(X) by

Vn(X2) := T 2
n(X) and Wn(X) := Vn(anX + bn).

Remark 2. It is clear from the recurrence property of the Tchebychev polynomials
given above that Tn(X) is even (resp. odd) if n is even (resp. odd). Thus T 2

n(X) is
always an even polynomial, so that the polynomial Vn is well defined.

3. Three Lemmas

Lemma 1. Let f be a continuous function on [0, 1]. Then
Z 1

0
f(Wn(x)) dx = An(f) cos

2⇡
n
�Bn(f) sin

2⇡
n

·

Proof. We make the change of variables anx + bn = cos2 t. Thus t 2 [ ⇡
2n , ⇡

n ], and
an dx = �2 sin t cos t dt = � sin 2t dt. Hence

an

Z 1

0
f(Wn(x)) dx = an

Z 1

0
f(Vn(anx + bn)) dx = �

Z ⇡
n

⇡
2n

f(Vn(cos2 t)) sin 2t dt

= �
Z ⇡

n

⇡
2n

f(T 2
n(cos t)) sin 2t dt = �

Z ⇡
n

⇡
2n

f(cos2 nt) sin 2t dt.

Putting t = ⇡
n � u in the last integral yields

an

Z 1

0
f(Wn(x)) dx = �

Z ⇡
2n

0
f(cos2 nu) sin

✓
2⇡
n
� 2u

◆
du,

which gives the result by expanding sin(2⇡
n � 2u).

Lemma 2. Let f be a continuous function on [0, 1]. Then
Z 0

1�bn
an

f(Wn(x)) dx = �An(f).

Proof. We make the same change of variables as in Lemma 1, obtaining

an

Z 0

1�bn
an

f(Wn(x)) dx = �
Z ⇡

2n

0
f(Vn(cos2 t)) sin 2t dt = �

Z ⇡
2n

0
f(cos2 nt) sin 2t dt.
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Lemma 3. Let f be a continuous function on [0, 1]. Then

Z � bn
an

1�bn
an

f(Wn(x)) dx =

8><
>:
�An(f)�Bn(f) cos ⇡

2n
sin ⇡

2n
, if n is odd;

�2An(f)� 2Bn(f) cos ⇡
n

sin ⇡
n

, if n is even.

Proof. Making once more the change of variable used in Lemma 1, we obtain

an

Z � bn
an

1�bn
an

f(Wn(x)) dx = �
Z ⇡

2

0
f(cos2 nt) sin 2t dt = �

n�1X
k=0

Ik,n,

where

Ik,n =
Z (k+1)⇡

2n

k⇡
2n

f(cos2 nt) sin 2t dt.

Now we will give another expression for Ik,n according to the parity of k.

• If k is odd, we make in Ik,n the change of variable t = (k+1)⇡
2n �u. This yields

Ik,n =
Z ⇡

2n

0
f(cos2( (k+1)⇡

2 � nu)) sin( (k+1)⇡
n � 2u) du.

But k is odd, hence (k+1)
2 is an integer. Thus, expanding the sine, we obtain

Ik,n = �anAn cos
✓

(k + 1)⇡
n

◆
+ anBn sin

✓
(k + 1)⇡

n

◆
.

• If k is even, we make in Ik,n the change of variable t = k⇡
2n + u. This yields

Ik,n =
Z ⇡

2n

0
f(cos2(k⇡

2 + nu)) sin(k⇡
n + 2u) du.

But k is even, hence k
2 is an integer. Thus, expanding the sine, we obtain

Ik,n = anAn cos
✓

k⇡

n

◆
+ anBn sin

✓
k⇡

n

◆
.

We thus have

an

Z � bn
an

1�bn
an

f(Wn(x)) dx = �
n�1X
k=0

Ik,n = ⌃1(n) + ⌃2(n),

where

⌃1(n) = anAn

X
0kn�1

k odd

cos
✓

(k + 1)⇡
n

◆
� anBn

X
0kn�1

k odd

sin
✓

(k + 1)⇡
n

◆



INTEGERS: 18A (2018) 5

and
⌃2(n) = �anAn

X
0kn�1

k even

cos
✓

k⇡

n

◆
� anBn

X
0kn�1

k even

sin
✓

k⇡

n

◆
.

Rearranging ⌃1(n) + ⌃2(n) and simplifying by an finally gives

Z � bn
an

1�bn
an

f(Wn(x)) dx =

8>>>>><
>>>>>:

�An � 2Bn

X
1kn�1

k even

sin
✓

k⇡

n

◆
, if n is odd;

�2An � 2Bn

X
1kn�1

k even

sin
✓

k⇡

n

◆
, if n is even.

To finish the proof of the lemma it su�ces to recall the classical computation (where
=(z) is the imaginary part of the complex number z)

X
1kn�1

k even

sin
✓

k⇡

n

◆
= =

0
B@ X

1kn�1
k even

e
ik⇡
n

1
CA =

8>>><
>>>:

cos ⇡
2n

2 sin ⇡
2n

if n is odd,

cos ⇡
n

sin ⇡
n

if n is even.

4. The Main Result

Now we are ready to prove our main result (recall the definitions of an, bn, An(f),
Bn(f) and Wn(X) given in Section 2).

Theorem 1. Let n > 2 be an integer, and let f be a continuous function on [0, 1].

• For odd n, we have

Z 1

0
f(Wn(x)) dx =

� cos
2⇡
n

Z �bn
an

1�bn
an

f(Wn(x)) dx +
⇣
2 cos

⇡

n
� 1

⌘Z �bn
an

0
f(Wn(x)) dx.

• For even n, we have

Z 1

1�bn
an

f(Wn(x)) dx = sin2 ⇡

n

Z �bn
an

1�bn
an

f(Wn(x)) dx.
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Proof. First we eliminate Bn(f) between the relations given in Lemmas 1 and 3.
Then we use Lemma 2 to get rid of An(f). Finally, for even n, we multiply by sin ⇡

n ,
divide by 2 cos ⇡

n , and we combine two integrals, obtaining the statement above; for
odd n, we multiply by sin ⇡

2n and we divide by cos ⇡
2n , obtaining the equality

Z 1

0
f(Wn(x)) dx =

4 cos
⇡

n
sin2 ⇡

2n

Z �bn
an

1�bn
an

f(Wn(x)) dx +
⇣
1� 2 cos

⇡

n

⌘Z 0

1�bn
an

f(Wn(x)) dx.

The theorem follows by writing
R 0

1�bn
an

=
R �bn

an
1�bn

an

�
R �bn

an
0 and rearranging.

Remark 3.

• Theorem 1 above is still true, but trivial, for n = 1 and n = 2.

• For n = 3, Theorem 1 gives
Z 1

0
f(3x2 � 2x3) dx =

1
2

Z 3
2

� 1
2

f(3x2 � 2x3) dx,

which is exactly Ruehr’s identity.

• If n = 4, then a4 = �
p

2
4 , and b4 = 2+

p
2

4 . Thus, Theorem 1 gives

Z 1

1�
p

2
f((x2 � 2x)2) dx =

1
2

Z 1+
p

2

1�
p

2
f((x2 � 2x)2) dx.
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