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Abstract
This article revisits a 1981 paper of the author on helices and quasi-helices. It
gives in particular a detailed exposition of quasi-helices in R4 involving automatic
sequences.

– To Je↵ Shallit on the occasion of his 60th birthday

1. History and Definitions

The history of Brownian motion has been described a number of times. In 1905,
Einstein established his celebrated formula

�X2 =
RT

N

1
3⇡µa

�t

for spherical particles of radius a suspended in a liquid of viscosity µ at tempera-
ture T ; the first member, �X2, is the average of the squares of their displacements
during an interval of time �t; R is the constant of perfect gaz, and N the Avo-
gadro number. In the following years Jean Perrin made a series of experiments
leading to a new determination of the Avogadro number, and observed that the
very irregular motion of particles resembled the nowhere di↵erentiable functions of
mathematicians. Norbert Wiener introduced what he called “the fundamental ran-
dom function” as a mathematical model for the physical Brownian motion. It was
called immediately “the Wiener process”, and later on, following Paul Lévy, “the
Brownian motion”. Wiener gave several versions of the construction and derived
a number of fundamental properties, Lévy developed the theory to a high point of

1This paper was written for the conference “Séminaire sur l’interface entre l’analyse harmonique
et la théorie des nombres” held in Luminy in October 2005, and never published.

2Jean-Pierre Kahane did us the honor of accepting to submit his paper for this special issue on
June 9, 2017. He accidentally passed away on June 21, 2017.
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sophistication, and it is now a mathematical object of common use as well as a mine
of interesting problems.

Here is the theory as it appears from the last exposition made by Norbert Wiener.
The problem is to construct a random process X(t,!), also denoted by X(t) (=
X(t, ·)), (t the time, ! 2 ⌦ the probability space) such that

1) for almost all !, X(t,!) is a continuous function of t

2) X(t) is a Gaussian process, meaning that the distribution of any n–uple
(X(t1),X(t2), . . .X(tn)) is Gaussian

3) this Gaussian process has stationary increments, meaning that the distribution
of X(t)�X(s) depends on t� s only

4) it satisfies a normalized Einstein equation; that is,

||X(t)�X(s)||22 = |t� s|

where the norm is taken in L2(⌦).
Here is such a construction. Let H be an infinite–dimensional subspace of L2(⌦)
consisting of Gaussian centered variables, and W an isometric linear mapping of
L2(I) (I = R, or R+, or [0, 1]) into H. Let �t be the indicator function 1[0,t]. Then

X(t) = W (�t)

satisfies all conditions 2) to 4). Moreover, given an orthonormal basis of L2(I), (un),
its image by W is a normal sequence (sequence of independent Gaussian normalized
random variables (⇠n)), and expanding �t in the form

�t = ⌃ an(t)un (in L2(I))

results in an expansion of X(t) as a random series of functions:

�(t) = ⌃ an(t)⇠n (in L2(⌦))

or, more explicitly,
X(t,!) = ⌃ an(t)⇠n(!) .

To prove condition 1), it is enough to establish that the series in the second member
converges uniformly in t for almost all !, and this is done rather easily when the
un are classical orthonormal bases.

By definition, a helix is a curve in a Hilbert space, parametrized by R, such that
the distance between two points depends only on the distance of the parameters:

||X(t)�X(s)||22 =  (t� s) ,

and  (·) is called the helix function. A translation of the parameter results in a
isometric motion of the curve onto itself. It is the abstract model for all Gaussian
processes with independent increments.
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When  (t) = |t| we say that the curve is a Brownian helix. In contrast with the
realizations of the Brownian motions (the functions t �! X(t,!) when ! is fixed),
the Brownian helix is a very regular curve. However some basic properties of the
Brownian motion can be read on the Brownian helix: its Hausdor↵ dimension is 2,
its 2–dimensional Hausdor↵ measure is nothing but dt, and any three points on the
curve are the vertices of a rightangle triangle: the increments starting from a point
are orthogonal to the past (therefore, independent from the past).

Simple examples of helices are:
1) the line ( (t) = a2t2)
2) the circle ( (t) = r2 sin2 !t)
3) the three–dimensional helices ( (t) = a2t2 + r2 sin2 !t)
4) generalizations of those, with

 (t) = a2t2 +
Z

sin2 !t µ(d!) ,

where µ is a positive measure on R+ such that the integral is finite. Actually this
is the general form of a helix function.

Except when µ is carried on a finite set, the helix cannot be imbedded in a finite
dimensional Euclidean space.

At the end of the 1970s, Patrice Assouad developed a theory of Lipschitz em-
beddings of a metric space into another [2]. He introduced and built quasi–helices
in Euclidean spaces, meaning that

0 < a <
||X(t)�X(s)||22

 (t� s)
< b <1

for some a and b, and all t and s. When  (t) = |t| we call them Brownian quasi–
helices. Assouad constructed Brownian quasi–helices in Euclidean Rn for n � 3,
and this gives a new way to prove that the realizations of Brownian motion are
continuous almost surely. He asked whether a and b can be taken near 1 when n is
large, that is, whether the Brownian helix can be approximated (in this sense) by
Brownian quasi–helices. We gave a positive answer with an explicit construction
that was published in our paper on helices and quasi–helices [3].

2. A Construction of Brownian Quasi–helices by Means of Walsh
Matrices

Let us consider R2n
(n � 1) as a Euclidean space. Let N = 2n. If we want to

construct a function X : N �! RN such that X(0) = 0 and ||X(t)�X(s)||2 = |t�s|
when |t � s|  N , we have to choose an orthonormal basis u0, u1, . . . uN�1, define
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uN+j = uj , and write
X(t) =

X
0jt�1

±uj .

At this stage there is no restriction on the signs ±, and we may choose + when
0  j  N�1. If we try to obtain ||X(2t)�X(2s)||2 = 2|t�s|, ||X(4t)�X(4s)||2 =
4|t� s| etc when |t� s|  N , we have more and more conditions on the ± and we
are led to the following construction.

We define the Walsh matrix of order N as the N ⇥N matrix obtained as the nth

tensor power of the matrix
✓

1 1
1 �1

◆
, that is

✓
1 1
1 �1

◆
⌦

✓
1 1
1 �1

◆
⌦ · · ·⌦

✓
1 1
1 �1

◆
(n times) .

For example, the Walsh matrix of order 4 is

M = M2 =

0
BB@

1 1 1 1
1 �1 1 �1
1 +1 �1 �1
1 �1 �1 1

1
CCA

and the matrix Mn+1 of order 2n+1 is obtained from Mn as

Mn+1 =
✓

Mn Mn

Mn �Mn

◆

The first N2 signs ± are those of the entries of the Walsh matrix, read line by line.
In order to obtain the following signs, we extend the Walsh matrix by a series of
vertical translations and change of signs of some lines according to the following
rule: the first row is nothing but the whole sequence of entries, written from line to
line and from left to right.

With this procedure we define X(t) when t is an integer and we can extend the
construction to all t > 0, then to all real t. It is proved in [3] that we obtain a
quasi–helix with a and b close to 1 when n is large enough: it is the answer to the
question of Assouad.

However, it was not proved that the construction provides a quasi–helix when
n = 2 (it was remarked that it gives a Peano curve in the plane when n = 1). The
aim of the present paper is to give a detailed exposition of the case n = 2 (most of
it could be copied for n > 2) and to prove that we obtain a quasi–helix. Instead
of t 2 R we shall consider only t 2 R+ and a curve starting from 0 (X(0) = 0).
We shall investigate the geometric properties of the curve, some of them leading to
open questions of a combinatorial or arithmetical nature.

The sequences that we construct are automatic in the sense of [1].
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3. Description of the Sequence

3.1 It is a sequence of +1 and �1 as described before, in case N = 4. We write it
as a succession of + and �:

+ + + + +�+� + +�� +��+ + + + + · · ·

The gaps between the blocks of four letters have no meaning, except a help to
understand the construction. The construction proceeds as follows: given the initial
word of length 4j , we divide it into four words A, B, C, D of equal length 4j�1 and
write it ABCD; then

A B C D A (�B) C (�D) A B (�C)(�D) A(�B)(�C) D

is the initial word of length 4j+1. We shall give several equivalent definitions, using
substitutions, explicit expressions, or generating functions.

Beforehand let us write the sequence in a tabular form as in the previous section:

+ + + + a0 a1 a2 a3

+ � + � A a4 a5 ...........
+ + � � ....................
+ � � + ............. a15

+ + + + a16 .............
� + � + B ....................
+ + � � ....................
� + + � ............. a31

+ + + + a32 .............
+ � + � C ....................
� � + + ....................
� + + � ............ a47

+ + + + a48 .............
� + � + D ....................
� � + + ....................
+ � � + ............ a63

a64 .............
A ....................

....................

............ a79

a80 .............
�B ....................

....................

....................

3.2 Let us give an explicit expression for an. Writing

n = n0 + 4n1 + · · ·+ 4⌫n⌫ (n⌫ = 1, 2, 3; nj = 0, 1, 2, 3 if j < ⌫)
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the construction shows that

an = an0+4n1 am , m = n1 + 4n2 + · · ·+ 4⌫�1n⌫ ,

that is
an = an0+4n1 an1+4n2 · · · an⌫�1+4n⌫ .

In the second member we find aj ’s with j  15. Their value is �1 when j =
5, 7, 10, 11, 13 and 14 and +1 otherwise. Now let us express an as a function of n
written in the 4–adic system of numeration. We obtain the formula

an = (�1)An

where An is the number of 11, 13, 22, 23, 31, 32 in the 4–adic expansion of n. For
example, if n = 1 3 2 0 0 1 1 1 0 2 3 1 1 1 2 2 the significant links are

1�3�2 0 0 1�1�1 0 2�3�1�1�1 2�2

An is nine and an = �1.

3.3 Let us describe the sequence by means of a substitution rule.
We start from an alphabet made of eight letters: +a,+b,+c,+d,�a,�b,�c,�d.

The substitution rule is

(S0)

+a �! +a + b + c + d
+b +a� b + c� d
+c +a + b� c� d
+d +a� b� c + d
�a �a� b� c� d
�b �a + b� c + d
�c �a� b + c + d
�d �a + b + c� d

The infinite word beginning with +a and invariant under the substitution is

W = +a + b + c + d + a� b + c� d + a + b� c� d + a� b� c + d + · · ·

Replacing a, b, c, d by 1 (or, in a graphic way, in suppressing them), we obtain our
sequence of ±1 (or ±).

3.4 Actually there is a simpler substitution rule leading to the same result, namely

(S1)

+a �! +a + b
+b +c + d
+c +a� b
+d +c� d
�a �a� b
�b �c� d
�c �a + b
�d �c + d
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It can be checked immediately that (S1)(S1) = (S0).

3.5 The generating function of the sequence (an) is

f(z) = a0 + a1z + a2z
2 + · · ·

It can be defined using partial sums of order 4n. Let us introduce the matrix

M(z) =

0
BB@

1 z z2 z3

1 �z z2 �z3

1 z �z2 �z3

1 �z �z2 z3

1
CCA

and define four sequences of polynomials by the formulas0
BB@

P0

Q0

R0

T0

1
CCA =

0
BB@

1
1
1
1

1
CCA

0
BB@

Pn+1

Qn+1

Rn+1

Tn+1

1
CCA = M(z4n

)

0
BB@

Pn

Qn

Rn

Tn

1
CCA

(n = 0, 1, . . .). Then0
BB@

Pn

Qn

Rn

Tn

1
CCA = M(z4n�1

)M(z4n�2
) · · ·M(z4)M(z)

0
BB@

1
1
1
1

1
CCA .

When |z| = 1, we have M(z)M(z) = 4I, therefore the matrix 1
2M(z) is unitary,

hence
|Pn|2 + |Qn|2 + |Rn|2 + |Tn|2 = 4(|Pn�1|2 + |Qn�1|2 + |Rn�1|2 + |Tn�1|2)

= 4n(1 + 1 + 1 + 1) = 4n+1

We obtain the generating function as

f(z) = lim
n!1

Pn(z).

We can write the generating function in a more interesting form:

f(z) = f0(z4) + zf1(z4) + z2f2(z4) + z3f3(z4) ,

where the coe�cients of the power series f0, f1, f2, f3 are the columns of the table
in 3.0. In order to obtain these coe�cients, we can start from W in 3.2 and replace
a, b, c, d by 1, 1, 1, 1 (for f0), 1,�1, 1,�1 (for f1), 1, 1,�1,�1 (for f2) and 1,�1,�1, 1
(for f3). Then f0 = f . Writing

F (z) =

0
BB@

f0(z)
f1(z)
f2(z)
f3(z)

1
CCA ,

we see that the functional equation of the generating functions of the columns is
F (z) = M(z)F (z4) .
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4. Description of the Curve

4.1 Let u0, u1, u2, u3 be an orthonormal basis of the Euclidean space R4, and define
uj+4 = uj (j = 0, 1, . . .). The partial sums of the series

a0u0 + a1u1 + a2u2 + · · ·

(that can be obtained from W in 3.2 by replacing a, b, c, d by u0, u1, u2, u3) will be
denoted by S(n). Then S(n) = a0u0 + a1u1 + · · · + an�1un�1 2 Z4 . It is easy to
check in the table in 3.0 that S(16n) = 4S(n) (n 2 N) . Moreover it is not di�cult
to see (we shall be more specific later) that ||S(n)� S(m)||2  b |n�m| for some
b <1 and all n and m. This allows, first, to define S(t) when t is a binary number
via a formula S(16⌫t) = 4⌫S(t), then to check that

S(16t) = 4S(t) and ||S(t)� S(s)||2  b|t� s|

for such numbers, then to extend S(·) by continuity on R+, and check the above
formulas for all t � 0 and s � 0.

The curve we consider is the image of R+ by S(·).
Clearly (changing t into 16t) the curve is invariant under a homothety of center

0 and ratio 4. Our main purpose is to prove that it is a Brownian quasi–helix. We
shall point out some geometric properties first.

4.2 The matrix M transforms u0, u1, u2, u3 into u00, u
0
1, u

0
2, u

0
3:

(u00, u
0
1, u

0
2, u

0
3) = M(u0, u1, u2, u3)

and the partial sums of order n of the series ⌃aju0j are the partial sums of order 4n
of the series ⌃ajuj . Therefore the equation

S(4t) = M S(t)

holds true when t = n 2 N and by extension for all t 2 R+.
It is easy to check that the eigenvalues of M are 2 and �2, and that

M

0
BB@

1 1
1 0
1 0
�1 1

1
CCA =

0
BB@

2 2
2 0
2 0
�2 2

1
CCA , M

0
BB@

1 0
�1 1
�1 �1
�1 0

1
CCA =

0
BB@
�2 0
2 �2
2 2
2 0

1
CCA .

Let
v0 = 1

2 (u0 + u1 + u2 � u3) , v1 =
p

2
2 (u0 + u3)

v2 = 1
2 (u0 � u1 � u2 � u3) , v3 =

p
2

2 (u1 � u2) .

They constitute an orthonormal system. The vectors v0 and v1 generate a plane, P ,
which is the eigenspace of the eigenvalue 2, and v2 and v3 a plane, Q, corresponding
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to the eigenvalue�2. Expressed via the orthonormal basis v0, v1, v2, v3, the operator
M takes the form

M 0 = U M U�1 = 2

0
BB@

1 0 0 0
0 1 0 0
0 0 �1 0
0 0 0 �1

1
CCA ,

where U is the unitary matrix carrying u0, u1, u2, u3 onto v0, v1, v2, v3. It means
that the transformation S(t) �! S(4t) is the product of a homothety of center 0
and ratio 2 and an orthogonal symmetry with respect to the plane Q.

4.3 Clearly M2 = 4I (I being the identity matrix), In turn, M is the square of
another simple matrix, as it can be guessed from 3.2 and 3.3. Let us define

T =

0
BB@

1 0 1 0
1 0 �1 0
0 1 0 1
0 1 0 �1

1
CCA .

Then M = T 2.
The eigenvalues of T are

p
2, �

p
2, i
p

2 and �i
p

2. The vectors

w0 =
p

2
2

(v0 + v1) , w1 =
p

2
2

(v0 � v1)

are eigenvectors corresponding to
p

2 and �
p

2. Defining w2 and w3 in such a way
that w0, w1, w2, w3 is a direct orthonormal basis, and W being the unitary matrix
carrying u0, u1, u2, u3 onto w0, w1, w2, w3, we can write

WTW�1 = T 0 =
p

2

0
BB@

1 0 0 0
0 �1 0 0
0 0 0 �1
0 0 1 0

1
CCA .

It means that T 0 is decomposed into:
1) a homothety of center 0 and ratio

p
2

2) a rotation of ⇡
2 of the orthogonal projection on Q

3) a symmetry with respect to w1 of the orthogonal projection on P .

In the same way as we obtained the equation S(4t) = MS(t), we now have
S(2t) = T S(t) and we have just given the interpretation of the transformation
S(t) �! S(2t) as a product of simple transformations.

4.4 We have investigated the properties of the transformations S(t) �! S(16t),
S(t) �! S(4t), S(t) �! S(2t) as products of homotheties and isometries. Now
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we shall look at the e↵ect of a translation of t by an integer. We are interested in
di↵erences S(t)� S(s).

Let us begin with integers m < n < 16k. Let us divide the series a0u0+a1u1+· · ·
into consecutive blocks of length 16k, so that the series reads

+A + B + C + D + A�B + C �D + · · ·

If j = j0 + 4j1 (j0 = 0, 1, 2, 3, j1 2 N), the j–th term is of type A,B,C,D according
to the value of j0 and its sign is aj . Therefore

S(n + j · 16k)� S(m + j · 16k) = aj(S(n + j016k)� S(m + j016k)) .

If 0 < s < t < 1, we can approximate s and t by m 16�k and n 16�k and we
obtain

S(t + j)� S(s + j) = aj(S(t + j0)� S(s + j0))

(j0 = 1, 2, 3, 4, j0 = j modulo 4).
This expresses that all arcs Aj = S([j, j+1]) are isometric (actually translates or

symmetric according to the value of aj) of one of the arcs A0,A1,A2,A3 (according
to the value of j0). Using 4.2, this holds true when we replace the Ajs by A⌫

j =
S([j2⌫ , (j + 1)2⌫ ]) whatever ⌫ 2 Z.

5. It is a Brownian Helix

5.1 What we have to prove is that, writing

a = inf
0<s<t

||S(t)� S(s)||p
|t� s|

 sup
0<s<t

||S(t)� S(s)||p
|t� s|

= b ,

we have a > 0 and b <1 . We can also write

a = inf
m<n

||S(n)� S(m)||p
|n�m|

, b = sup
m<n

||S(n)� S(m)||p
|n�m|

5.2 The easy part is b < 1. Let us first assume [m,n] = [j2k, (j + 1)2k]. Then,
according to 4.3, ||S(n) � S(m)|| = 2k/2 . In the general case, let us decompose
[m,n] into such intervals in a minimal way, so that there are at most two intervals
of the same length in the decomposition. If the largest length is 2k, we obtain

||S(n)� S(m)||  2(2k/2 + 2(k�1)/2 + · · · )  2(1 +
p

2)2k/2

and therefore ||S(n)� S(m)||  2(1 +
p

2)|n�m|1/2 . This gives b  2(1 +
p

2).

5.3 To prove a > 0 is more tricky. We shall use two lemmas.
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Lemma 1. There exists ↵ > 0 such that ||S(n + h)� S(n)||  1� ↵ for all n 2 N
and h 2 [�1

2 , 1
2 ] (with n + h � 0).

Lemma 2. There exists an integer A such that ||S(n)�S(m)|| � 2 for all integers
m and n such that n�m � A.

Assuming that this is correct, the result is at hand: given t and s such that
t � s � A + 1, we can write s = m + h and t = n + h0 with h, h0 2 [�1

2 , 1
2 ] and

m�n � A, therefore ||S(t)�S(s)|| � 2↵ . Whenever (A+1)2k < t�s  (A+1)2k+1

(k 2 Z), we have

||S(t)� S(s)|| � 2↵2k/2 � 2↵p
2(A + 1)

|t� s|1/2

and therefore
a � 2↵p

2(A + 1)
.

5.4 Proof of Lemma 1. From now on it may be useful to represent S(n) on the
table of 3.0, and also the di↵erences S(n)�S(m), as figures consisting of consecutive
lines plus or minus part of a line above and below, in such a way that each column in
the figure has a sum equal to the corresponding coordinate of S(n) or S(n)�S(m).

+ + + +
+ � + �
+ + � �
+ � � +
+

S(17)
+ � �

� + + �

S(32)� S(25)

Let us consider ||S(16n+m)�S(16n)||2 for n 2 N and m = 0,±1,±2,±3, . . . ,±8.
It is su�cient to consider the four cases n = 0, 1, 2, 3, and to look at the figures
(depending on m) in each case. The result is

||S(16n + m)� S(16n)||2  8 (n odd)
||S(16n + m)� S(16n)||2  9 (n even)

with equality only when m is odd (as for S(32)�S(25)). Therefore, going one step
further,

||S
�
16n + m + P

16

�
� S(16n)|| 

p
8 + 1

4

p
9 (n odd)

||S
�
16n + m + P

16

�
� S(16n)|| 

p
9 + 1

4

p
8 (n even)
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when p = 0,±1,±2, . . . ,±8. Proceeding that way we finally obtain

||S(16(n + t))� S(16n)||  4(1� ↵)
�
� 1

2  t  1
2

�
where

4(1� ↵) =
�p

9 +
1
4
p

8
��

1 +
1
16

+
1

162
+ · · ·

�
as the second member is less than 4 and that proves Lemma 1.

5.5 Proof of Lemma 2. Here again we look at the table. We can compute ||S(n)�
S(m)|| when n � m is in a given interval, and moreover give the couples (m,n)
for which the infimum is attained, and the expression of S(n)� S(m) (that is, the
coordinates with respect to u0, u1, u2, u3).

1) 4 < n �m  16. It su�ces to consider the first 16 lines of the table (fig. 1),
since adding to m and n a multiple of 64 does not change ||S(n) � S(m)||. We
obtain inf ||S(n)� S(m)||2 = 2 realized for (5, 11), (23, 29), (35, 41) and (53, 59):

S(11)� S(5) = u1 � u4 , S(29)� S(23) = u2 � u3

S(41)� S(35) = �u2 + u3 , S(59)� S(53) = �u1 + u4.

� + � S(11)� S(5)
+ + �

+ S(29)� S(23)
+ + � �
�

+ S(41)� S(35)
+ � + �
�

+ � + S(59)� S(53)
� � +

Figure 1

� + ` 6
+ + � � ` 7
� + + � ` 8
+ + + + ` 9
+ � + � ` 10
� � ` 11

S(42)� S(22)
Figure 2

2) 16  n � m  64. It su�ces now to consider the first 256 terms (the first
64 lines of the table). The idea in order to pick the infimum is to start from
S(4⇥ 11)� S(4⇥ 5) and the analogues, and modify the figure in order to diminish
||S(n)� S(m)||2 (fig. 2). As a first example, S(44)� S(20) = 2u2 + 2u3 (obtained
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by replacing u1 + u2 + u3 + u4 and u4 by u1 � u2 � u3 + u4 in the expression of
S(11) � S(5)), and the modification provides S(42) � S(22) = u1 + u2 + u3 � u4.
The result is

inf ||S(n)� S(m)||2 = 4

realized for (22, 42) and (214, 234), with

S(42)� S(22) = u1 + u2 � u3 � u4 ,
S(234)� S(214) = �u1 � u2 � u3 + u4 .

This proves Lemma 2 with A = 16.

Actually the proof can be given in a more concentrated form. It is enough to show
that ||S(n)�S(m)||2  3 is impossible when n�m � 16. Let us assume ab absurdo
that ||S(n) � S(m)||2  3. Let us add or remove the minimal number of terms
in order to transform S(n) � S(m) into a di↵erence of the form S(4n0) � S(4m0)
(that is, to transform the figure S(n) � S(m) into a rectangle). In general, this
minimal number is  4 and has the same parity as ||(S(n) � S(m)||2; here it is
 3 and the resulting S(4n0) � S(4m0) has its squared norm  2, and therefore
||S(n0)� S(m0)||2  3 and the process goes on until we reach S(n⇥)� S(m⇥) with
n⇥  64. Then we know the possible pairs (m⇥, n⇥), namely (5,11), (23,29), (35,41)
and (53,59), and the reverse process never gives a squared norm  3.

5.6 Remarks and questions
The estimates we gave for b and a are quite rough. We can ask for better estimates

and conjectures. The actual problem, of a combinatorial or arithmetical nature, is
to compute these numbers exactly.

We were interested in estimating b from above and a from below. Examples
provide estimates in the opposite direction:

b � ||S(17)||p
17

= 5p
17
� 1.21

a  ||S(42)�S(22)||p
20

= 2p
20

= 1p
5
 0.45.

It seems not impossible that the estimate for ↵ is precise; that is, a = 1p
5
. A

careful investigation of the table would confirm or disprove this conjecture. It would
lead also to a better estimate for b.

6. Projections of the Curve

6.1 The direction of u0 is special: all first coordinates of the S(n) are � 0. That
means that the partial sums S0(n) of the original series described in 3.0 are positive.
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A simple way to see it is to use Lemma 1 (of 5.2). Since S0(n) � 1 for n =
1, 2, 3, 4, 5, 6, 7, 8, we have S0(t) > 0 for 1

2  t  8, and therefore (changing t into
16kt), S0(t) > 0 for all t > 0.

6.2 We are mainly interested in the three–dimensional projections of the curve.
It seems likely that all parallel projections of the curve on a three–dimensional
subspace of R4 have an infinity of double points. The question can be formulated
in the equivalent forms:

1) is every direction in R4 the direction of some S(t)� S(s)?
2) are the S(n)�S(m)p

n�m
(n > m) dense on the sphere S3?

6.3 Let us project the curve from 0 on the sphere S3; that is, consider

S(t) =
S(t)
||S(t)|| (t > 0) .

We obtain a closed C, the image of any interval [a, 16a] by S(·).
We know that C is invariant under the isometries of R4 defined by 1

2M and 1p
2
T

(see 4.1 and 4.2). The first takes the form

1
2
M 0 =

0
BB@

1 0 0 0
0 1 0 0
0 0 �1 0
0 0 0 �1

1
CCA

with respect to the orthonormal basis (v0, v1, v2, v3) and the second

1p
2
T 0 =

0
BB@

1 0 0 0
0 �1 0 0
0 0 0 �1
0 0 1 0

1
CCA

with respect to the orthonormal basis (w0, w1, w2, w3). The vectors v0 and v1 (w0

and w1 as well) generate a plane P such that the mapping S(t) �! S(4t) is an
orthogonal symmetry with respect to P . For the projection of C on P , the change
of t into 2t means a symmetry with respect to the line generated by w0.

We claim that C has a double point at t = 1
3 , t0 = 4

3 : T (4
3 ) = T (1

3 ). In order to
prove this claim, we expand t and t0 in base 4 (we underline the expansion)

t = 0.1111 · · · t0 = 1.1111 · · · .

Using base 4 again, we easily obtain the figures and the values of S(1), S(11), S(111)
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and so on: S(1) = u0 = (1 0 0 0)

S(11) = S(10) + (S(11)� S(10)) = (1 1 1 1) + (1 0 0 0)
S(111) = S(100) + (S(110)� S(100)) + S(111)� (S(110)

= (4 0 0 0) + (1 1 1 1)� (1 0 0 0)
S(1111) = S(1000) + (S(1100)� S(1000)) + (S(1110)� S(1100))

+(S(1111)� S(1110))
= (4 4 4 4) + (4 0 0 0)� (1 1 1 1) + (1 0 0 0)

S(11111) = (16 0 0 0) + (4 4 4 4)� (4 0 0 0) + (1 1 1 1)� (1 0 0 0)
S(111111) = (16 16 16 16) + (16 0 0 0)� (4 4 4 4) + (4 0 0 0)

�(1 1 1 1) + (1 0 0 0)

The ratio between two consecutive vectors tends to 2 (meaning that the ratios
of coordinates tend to 2), and hence

S(t0) = T (t)
�
t =

1
3
�
.

By isometry we also have
T (2t0) = T (2t) .

These double points are contained in the plane P , and they are symmetric with
respect to the line generated by w0.

We believe, but did not prove, that these are the only multiple points of the curve
C. In that case, C is a Brownian quasi–helix (actually, a Brownian quasi–circle) on
some 4–covering of the sphere S3.

6.4 One can see the curve C in two other ways.
First, taking into account that the first coordinate S0(t) is always positive, we

can consider
R(t) =

S(t)
S0(t)

and the curve C0 described by R(·), projection of the original curve with a source
at 0 and a screen at the hyperplane x0 = 1.

Symmetries and double points can be studied on this model as well.
Secondly, we obtain a projective model of C, say, C00, on choosing four points

A0, A1, A2, A3 in R4, defining Aj+4 = Aj (j = 0, 1, . . .), starting with a point
M0 = A0 and defining the sequence of points

Mn+1 =
1

a0 + a1 + · · · an
((a0 + a1 + · · · an�1)Mn + anAn) .

Some real figures would help. If a reader is willing to draw figures of the above
curves, I’ll appreciate to see them.
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