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Abstract
Let w be any word over the alphabet {0,1,...,¢ — 1}, and denote by f either a
polynomial of degree d > 1 or f : n+— m” for a fixed m. Furthermore, denote by

eq(w; f(n)) the number of occurrences of w as a subword in the base-¢ expansion
of f(n). We show that

: eq(w; f(n)) 7 (w)
1 ¢ >
i logn = f(w)logq’

where ¢(w) is the length of w and ~(w) > 1 is a constant depending on a property
of circular shifts of w. This generalizes work by the second author and is related to
a generalization of Lagarias of a problem of Erdés.

— In honor of the 60th birthday of Jeff Shallit

1. Introduction

Let ¢ > 2 be an integer and w a non-empty finite word over the alphabet A4, :=
{0,1,...,9—1}. We denote by £(w) the length of w, which is the number of symbols
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(or letters) in w. For any integer n > 1, consider the finite base-g expansion of n,

M
n= nq,
=0

where M = M(n) = |log,n| denotes the position of the most significant digit. We
write

(n)g =npna—1---No
as a shorthand notation and regard this as a word over A,. For convenience, put
(0)q := 0. In this paper, we are concerned with the quantity e,(w;n) which denotes
the number of (possibly overlapping) occurrences of the word w in the finite base-

q expansion of n. For example, for ¢ = 10, w = 202 and n = 20202 we have
€10(202; 20202) = 2. Note that

logn

eq(w;n) < Tog ¢
The aim in this paper is to study the quantity e,(w;n) for thin subsequences of the
integers. In what follows, we denote by w* the k-th concatenation power of a word
w; if k = 0, then w® will denote the empty word. For instance, for the word w = 20
and k = 3 we have w* = 202020.

The investigation on the number of occurrences of subwords in digital expansions
along special subsequences of integers has undergone some fundamental progress in
recent times. A classical point of view, dating back to the work of Gelfond [4], is
to study the distribution in residue classes. The related sequences are automatic
sequences such as, for example, the Thue-Morse sequence or the Rudin—Shapiro
sequence. We refer the reader to [2, 5, 10, 11, 12] for an up-to-date list of the
related work.

+1. (1)

A second and different problem is to investigate the number of occurrences of
digital blocks in these rarefied sequences. We will consider this problem along poly-
nomial and exponential subsequences in the present paper. We will show that for
any fixed w there are terms in these rarefied sequences whose base-¢g expansion
contains mot too few occurrences of w as subwords. For that purpose we will es-
tablish lower bounds on the maximal order of magnitude of the associated counting
function.

We denote the set of nonnegative integers (resp. positive integers) by N (resp.
Z71) and use the standard Landau (resp., Vinogradov) notation f = O(g) (resp.,
[ < g) to indicate that | f| < C|g| for some absolute constant C' > 0. As is common,
we denote a possible dependence on the parameters in the index of the symbols.

For a better understanding of the flavour of our results, let us first give two
examples in the case of a polynomial rarification.

First, consider w’ = 0! (I fixed) which is the I-th concatenation power of the
single letter 0 and let f(X) € Z[X] be any arbitrary but fixed polynomial of degree
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d > 1 with f(N) C N. Since by (1),

log f(n)
log q

eq(w; f(n)) < +1

for all non-empty words w and sufficiently large n, we have

.
lim sup eq(w's /(n)) < d . (2)
n—o0 logn log q

On the other hand, by choosing a positive integer a such that the coefficients of
f(X + a) are all positive, we have
/. /. L d
lim sup eq(ws f(n)) > lim sup eq(w's /g” + a)) > .
n—00 logn oo log(¢r + a) log q

3)

This is due to the fact that in the base-q expansion of f(¢* + a) the d blocks of 0’s
between consecutive powers of ¢ are each of length L+ Oy (1) as L — co. The two
inequalities (2) and (3) lead to

lim sup cq(w'; f(n)) — d
n—oo logn logq’

(4)

As a second example, on the other end of the spectrum, let w” = (¢ — 1)! be
the I-th concatenation power of the single letter ¢ — 1. Theorem 1 in [12] states
that there exists Ny(q, f,1) > 1 such that for all N > Ny(q, f,) there is an n with
eq(w”; f(n)) = N. From the method of the proof, it follows that

lim sup eq(w"; /(n) > !
00 logn ~ logq’

()

In fact, in the proof the author generates one block of consecutive g — 1’s, hence
also losing the factor d with respect to the previous result.

Our first result gives a result for general w in the spirit of (5) and deals with a
question posed in [12].

Theorem 1. Let g > 2 be a positive integer and let w be a finite word in the alphabet
A, =1{0,1,...,q — 1} with length ¢(w) > 1. Let f(X) € Z[X] be a polynomial of
degree d > 1 with f(N) C N. Then

- eq(w; f(n)) v(w)
1 d >
l,ﬂrlsiip logn ~ 4(w)logq’

where y(w) = v'(w) — 1 and ' (w) > 2 is the number of circular shift occurrences

of w in w?.
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Note that 1 < y(w) < €(w) for all non-empty words w. For example, v(2020) = 2,
v(0) = v((¢ — 1)!) = I. Unfortunately, our method of proof does not allow us to
get the degree d as a multiplicative factor in the lower bound (compare with (3)).

We conjecture that (4) holds true for any w, however, this seems to be a very
difficult question.

Conjecture 1. Let f(X) € Z[X] be a polynomial of degree d > 1 with f(N) C N.
Let w be a word in the alphabet A, = {0,1,...,¢ — 1} with length ¢(w) > 1 and
denote by e, (w; f(n)) the number of (possibly overlapping) occurrences of the word
w in the finite base-q expansion of f(n). Then

lim sup cq(w; f(n)) = d .
n—00 logn log q

Our second result concerns exponential functions. A famous (still open) problem
by Erdés says that for all sufficiently large n the ternary expansion of 2™ always
contains the digit 2. We refer to the article of Lagarias [8] and to [3] for recent and
related results. Lagarias [8, Conjecture 1.12] generalized Erdds’ conjecture: For all
multiplicatively independent positive integers m and ¢ the base-q expansion of the
integers m™, n = 1,2... contain any given word w in its base-¢ expansion for all
sufficiently large n > no(w). While Theorem 2 does not provide an answer to this
conjecture, it gives a quantitative lower bound along a subsequence of integers and
therefore (up to a constant factor) the correct maximal order of magnitude.

Theorem 2. Letp > 2 be a prime number and let w be a finite word in the alphabet
A, =A{0,1,...,p— 1} with length {(w) > 1. Let f(x) = m® for an integer m > 2,
m not a power of p. Then

Jiam sup ep(wim™) _ y(w)
I, logn = 4(w)logp’

where y(w) = +'(w) — 1 and ' (w) > 2 is the number of circular shift occurrences
2

of w in w=.

In Section 2 we provide a proof of Theorem 1, while Section 3 is devoted to a
proof of Theorem 2. Both proofs are based on Hensel’s lifting lemma. For a prime
number p we use Z, for the ring of p-adic integers and Q,, for the field of p-adic
numbers; we denote by v,(u) the p-adic order of u € Z,,.

2. Proof of Theorem 1

In what follows, we suppose that w # 0! since we have a better result by (4) in the
case of a block consisting of 0’s only. We start with an important auxiliary result.
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Lemma 1. Let f(X) € Z[X] be a polynomial of degree d > 1 with f(N) C N.
Denote by ag a nonnegative integer satisfying f'(ap) # 0. Let w be a word in the
alphabet A, = {0,1,...,q — 1} that we write

szkwkH---wb k+1<I

with w11 # 0, where all of the w;, i = k+1,...,1, are of length 1 (letters). For
any positive integers ¢ and L, let L be the length of the word w*0¢(f(ag)),. Then
there exists ¢ = ¢(q, f) > 0 only depending on q and f, such that for any positive
integer L there is a nonnegative integer N < qu with

(f(N))g = viwpr - wiw™10°(f(ao))g,

where v is some finite (or the empty) word over Ay ={0,1,...,¢ —1}.

Proof. Let q := p§'---p;*, where pi1,...,p; are distinct prime factors of ¢ and
e1,...,e are positive integers. Let b, 1 be a nonnegative integer whose base-q
expansion is denoted as

(bg.r)g = Wit1 - ww=10°(f(ao))q,

for some ¢ that we will determine later.

Let L' be the length of the word w”0°(f(ag)),. For any i = 1,...,t, consider the
pi-adic order of an integer m by v, (m). If ¢ is sufficiently large depending only on
g and f(X), then we see for any ¢ = 1,...,¢ that

vp, (f(a0) = bg,z) > 20y, (f'(a0))
by f'(ao) # 0. Putting
9(X) := f(X) = bg,L,
we get
Up; (g(ao)) > 2’U;Di(f/(a0)) = 21)1% (gl(ao))'

By Hensel’s lifting lemma [9], there exists a p;-adic integer & € Z,, such that
f(&) = bg,r. Thus, for any i =1, ..., ¢, there exists an integer NV; < piL’ei such that

f(N;) = by (mod p»L,e").

3

By the Chinese remainder theorem, there is an integer N with

0< N <pf'™ - pfe =g" (6)
and
N=N; (mod ple)
for any i = 1,...,t. Consequently, we obtain

f(N)=bgr (mod qL/),

which implies the lemma. O
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Note that the statement of the lemma also implies an upper bound on the length
of the prefix v.
We are now ready to prove Theorem 1.

Proof of Theorem 1. In what follows, we use the integer IV constructed in the proof
of Lemma 1 (note that N < ¢~', see (6)). For any positive integer L, we see by
Lemma 1 that

eq(w; f(N)) = v(w)(L - 2). (7)
By (6) and the definition of L', we get
N <q"” <q", ®)

where ¢ = ¢/(q, f) is a constant depending only on ¢ and f(X). Thus, we obtain
from (7) and (8) that

1 < L < 2 eq(w; f(N))
llogg llogN ~ logN ~ logN = ~(w)logN °

Noting that N tends to infinity as L tends to infinity (by w # 0'), we deduce the
theorem by the inequality above. This concludes the proof of Theorem 1. O

3. Proof of Theorem 2

For the proof of Theorem 2, we first introduce a generalization of Hensel’s lemma
and define the notation which we use throughout this section. Let p be a prime
number. For any positive integer m; with m; = 1 (mod p), we set m; = 1 + ap®,
where a, e are positive integers with p { a. Put g(u) := (1 + ap®)" for any u € Z,.
Let v,(u) again be the p-adic order of u € Z,,. It is known that for any u,u" € Z,
with v,(u —«') > N and N € N, we have

vp(g(u) —g(u')) = N +1 (9)

(see [7, Chapter 2, p.26]).

Let F be a function from Z, to Z, and let u be a fixed element of Z,. We call
F differentiable modulo p® at u with order N, where s € Z* and N € N, if there
exists 0, F(u) € Q, satisfying, for any integer k > N and h € Z,,

F(u+p"h) = F(u) + p*ho,F(u) (mod p**+e). (10)

Note that if we add a constant term to F', then both the differentiability of F' and
the value 0sF'(u) are not changed.
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In the following proposition we generalize the second statement of Corollary 2.6
in [1]. This is needed in order to consider the case where the derivative is not a
p-adic unit. We investigated this concept for general continuous functions that are
not necessarily differentiable in [6].

Proposition 1. Let F' be a function from Zy, to Z,. Let j,n,s, N be nonnegative
integers with j + N <n and j < s and let u € Z,. Assume that

vp(F(u)) > n. (11)

Moreover, suppose for any x € Z, with v = u (mod p"~7) that F is differentiable
modulo p° at x with order N and that

vp (05 F () = j. (12)
Then there exists a & € Z, satisfying
F(§) =0
and

¢=u (mod p" 7).

Proof. We construct { € Z, satisfying the conditions of Proposition 1, using the
Newton method. It suffices to show that there exists a u1 € Z,, satisfying

vp(F(ul)) >n+1 (13)
and
up =u (mod p" ). (14)

In fact, u; will then satisfy (11), the assumption on the differentiability, and (12)
with new nonnegative integers j; = j, ny =n+1, s = s, and N; = N because if
x € 7, satisfies = u; (mod p™ 1), then x = u (mod p"~7).

Let ¢ be an integer with 0 < ¢ < p—1. Noting that n—j > N and n—j+s > n+1,
we see by (10) that

F(u+p"7 i) =F(u)+p" 7 i0,F(u) (mod p"*).
Using

we find ¢ satisfying
Flu4+p"7-i)=0 (modp™*t).

Putting u; := u + p" 7 - i, we obtain (13) and (14). O
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We now prove the differentiability of the function g(u) = (14 ap®)*, where a and

e are positive integers with p 1 a.

Proposition 2. Let g(u) = (1 + ap®)¥, where a, e are positive integers with p 1 a.

1. Suppose that e > 2 or p > 3. Then, for any v € Z,, we have that g is
differentiable modulo p°*' at u with order 0. Moreover,

Oet19(u) = ap®.

2. Assume thate =1 and p =2. Let 1 +a’ - 2! := (1 + 2a)?, where a’ and t are
integers with 2 ¥ a’ and t > 3. Then g is differentiable modulo 2t at u with
order 0. Moreover,

Org(u) = a'271.
For the proof of Proposition 2, we need the following auxiliary result.

Lemma 2. Assume thate > 2 orp > 3. Let k be a nonnegative integer and h € Zy.
Then we have

(1+ ape)hpk =1+ ahp®*® (mod pFtetl). (15)

Proof. We may assume that h is a nonnegative integer because N is dense in Z,,.
Moreover, it suffices to show (15) in the case where h is not divisible by p. In fact,
assume that (15) holds for any h € N not divisible by p. Then, for any nonnegative
integer h = h/p®, where s = v,(h) > 1, we see

1 kts

(1+ ape)hpk =1+ ape)h P =1=1+ ahkare (mod pk+e+1),

which implies (15).
First, we show (15) in in the case of h = 1, namely,

(1+ ape)pk =1+ap*t® (mod pFreth). (16)
If £ =0, then (16) is trivial. If £ > 1, then the inductive hypothesis implies that
(1 Jrape)p’“—l -1 +ape+k*1 +Cpe+k
for some integer ¢, and so

(L+ap)” = (L4 ap ™! 4 op )P = (14 ap"™ ') (mod pHFer).
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Since

P
(Lt ap™™ ) =1+ ap™*+ ) (p> (ap” 1,

= M

we deduce (16), using
e+k<ple+k—1)

by k>1,and e >2or p > 3.
Finally, if h > 0 is a general integer not divisible by p, then (15) follows from (16)
by considering the binomial expansion of (1 + ap®*¢)". O

Proof of Proposition 2. Let k be any positive integer and u,h € Z,. First, we
assume that e > 2 or p > 3. Using Lemma 2, we get

g(u)(1 + ap®)""
g(u)(1+ ahp*™*)  (mod pF+ett)
g k+e+1)

g(u+ hp®)

(u) + hp* - ap®  (mod p

by g(u) =1 (mod p), which implies the first statement.
Next, suppose that e = 1 and p = 2. In the same way as above, using Lemma 2
again, we see by k — 1 > 0 that

g(u+ ok . h) = g(u)(1+a’ - 2t)h-2’“*1
=g(u) + (h-2%)- (- 27")  (mod 2"7),

which implies the second statement. ]
We are now ready to give a proof of Theorem 2.

Proof of Theorem 2. We may assume that m and p are coprime. In fact, if m is not
coprime to p, then putting m =: m’p®, where s = v,(m) and m’ > 2, we have

ep(w;m™) > ep(w;m'™).

Put mP~! =: 14ap® and g(u) := (1+ap®)", where a and e are positive integers with
ptaand u € Z,. If p=2 and e = 1, then we define ¢’ and ¢ as in Proposition 2.
For any finite word v = v4—1v4—2 - - - vo on the alphabet A,, we put

d—1
op(v) = Zvipl.
i=0
Moreover, for any positive integer L, let

op(wh0°1) =: b, 1,
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for some ¢ that we will determine later.
Put F(u) := g(u) — b, 1, for u € Z,,. We apply Proposition 1 with u =0, N =0,

. Je ife>2orp>3,

I t—1 ife=1andp=2,
s=j4+1,n=37+1and put c:=n — 1. Then we see

vp(F(0)) = vp(1 = bp) = m,

which implies (11). Moreover, the assumption on the differentiability and (12) in
Proposition 1 are satisfied by Proposition 2.

Thus, Proposition 1 implies that there exists £ € Z,, satisfying g(§) = b, 1. Let
L’ be the length of the word w’0¢1. Then we have

L'=IL+c+1.

Let N be an integer with
pb <N < 2p*

and
N=¢ (mod ph).

Using (9), we get
mPIN = g(N) = g(§) = b, (mod p™) (17)
Putting N’ = (p — 1)N, we obtain by (17) and m™ > pX’ that
ep(w;m™N') > y(w)(L - 1) (18)
and that

log N’ <log (2(p — 1)) + L' logp
=log (2(p—1)) + (c+1)logp + L logp. (19)

Combining (18) and (19), we deduce Theorem 2 by letting L tend to infinity. O

Acknowledgement. We would like to thank the reviewers for helpful remarks
that helped to improve the presentation of our results.
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