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Abstract
According to a converse theorem of Hamburger type, Ramanujan’s tau numbers are
completely determined by the functional equation for Ramanujan’s tau L-function.
The paper presents a computational method for “extracting” the numbers from the
equation.

1. The Result

The celebrated Ramanujan’s tau numbers arise in many di↵erent areas of mathe-
matics. For example, in the Online Encyclopedia of Integer Sequences (OEIS) [8],
besides the main sequence

A000594: ⌧(1) = 1, ⌧(2) = �24, ⌧(3) = 252, ⌧(4) = �1472, ⌧(5) = 4830,
⌧(6) = �6048, ⌧(7) = �16744, ⌧(8) = 84480, ⌧(9) = �113643, . . . (1)

one finds more than a hundred other related sequences. The tau numbers have many
remarkable number-theoretical and combinatorial properties, and there is a great
number of still unproved conjectures about them (see, for example, [2, Chapter 10]
and [5, Chapter 2]).

Ramanujan’s tau numbers can be defined in many diverse ways. One of the
standard definitions is via the ordinary generating function:

1X
n=1

⌧(n)qn = q
1Y

n=1

(1� qn)24. (2)

The right-hand side of (2) looks a bit mysterious: what is special about the
exponent 24, and what is the role of the first factor q? But it turns out that with
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this definition Ramanujan’s tau numbers have a great deal of remarkable number-
theoretical properties. In particular, S.Ramanujan [7] made two striking discoveries:

• if m and n are relatively prime, then

⌧(mn) = ⌧(m)⌧(n); (3)

• if p is prime and k > 1, then

⌧(pk+1) = ⌧(p)⌧(pk)� p11⌧(pk�1). (4)

These two properties were proved later by L. J.Mordell [4].
Together with the Fundamental Theorem of Arithmetic, property (3) implies that

all values of ⌧ are uniquely determined by the values of this function at n = 1 and
at all prime numbers. Analytically, this fact means that the Dirichlet generating
function for Ramanujan’s tau numbers can be expressed as a product over prime
numbers:

L⌧ (s) =
1X

n=1

⌧(n)n�s =
Y

p prime

1X
k=0

⌧(pk)p�ks. (5)

Property (4) allows one to find a closed expression for the the sum in the right-
hand side of (5):

1X
k=0

⌧(pk)p�ks =
1

1� ⌧(p)p�s + p11p�2s
. (6)

Respectively,

L⌧ (s) =
Y

p prime

1
1� ⌧(p)p�s + p11p�2s

. (7)

Expressions such as the right-hand side of (7) are usually called Euler products after
the very first identity of this type, namely,

1X
n=1

n�s =
Y

p prime

1
1� p�s

, (8)

found by L.Euler.
Riemann’s zeta function ⇣(s) (defined by (8)) and Ramanujan’s tau L-func-

tion L⌧ (s) (defined by (5)) have many similar properties (see, for example, [2,
Chapter 10]). While series and products in (5), (7) and (8) converge absolutely in
half-planes only (for <(s) > 1 and for <(s) > 13/2 respectively), both functions can
be analytically extended to the whole complex plane (except for the point s = 1 in
the case of the zeta function).

It is expected that L⌧ (s) satisfies a counterpart of the Riemann Hypothesis which
was stated for the zeta function. Namely, B.Riemann predicted (this still remains
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unproved) that all non-real zeroes of the zeta function lie on the critical line <(s) =
1/2; for Ramanujan’s tau L-function, the similar critical line is defined as <(s) = 6.

Both Riemann’s zeta function and Ramanujan’s tau L-function satisfy functional
equations

g(s)⇣(s) = g(1� s)⇣(1� s) (9)

and
g⌧ (s)L⌧ (s) = g⌧ (12� s)L⌧ (12� s) (10)

respectively, where
g(s) = ⇡�

s
2 (s� 1)�( s

2 + 1), (11)

g⌧ (s) = (2⇡)�s �(s). (12)

H.Hamburger established that the functional equation (9) essentially uniquely
(up to a constant factor) distinguishes the zeta function among all functions defined
by Dirichlet series and satisfying certain mild extra restrictions. More precisely, he
proved ([1], see also [6, Theorem 2.1]) the following.

Theorem (H.Hamburger). Let F (s) be a Dirichlet series, absolutely convergent
for � > 1, such that (s � 1)mF (s) is entire of finite order for some integer m.
Moreover, suppose that F (s) satisfies the functional equation

g(s)F (s) = g(1� s)F (1� s)

where g(s) is defined by (11). Then F (s) = c⇣(s) for some c 2 C.

Later, similar converse theorems were established for many other functional equa-
tions (for a recent survey of converse theorems of Hamburger type, see [6]). In
particular, from general results of E.Hecke [3] it follows that function L⌧ (s) is in a
similar sense determined by the functional equation

g⌧ (s)D(s) = g⌧ (12� s)D(12� s) (13)

where g⌧ (s) is defined by (12) and

D(s) =
1X

n=1

ann�s (14)

is a Dirichlet series.
Ramanujan’s tau numbers are just the coe�cients of their Dirichlet generating

function L⌧ (s), so together with an extra normalizing condition

a1 = 1 (15)

these numbers are also uniquely determined by the functional equation (13).
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The author was interested in the computational aspect of theorems of Hamburger
type: a functional equation is given, how could one find the coe�cients of the
corresponding Dirichlet series? For example, how such a simple factor (12) from
(13) produces the sequence (1) with such a rich structure? Moreover, how such a
rediscovery of Ramanujan’s tau numbers could be made by a computer, that is, by
pure calculation without any knowledge from the proof of the Hamburger theorem?
This paper presents a possible way to do it.

The main tool in our computations will be as follows. We will consider a two-
parameter family of finite Dirichlet series

DM,N (s) =
NX

n=1

aM,N,nn�s (16)

with growing M and N > M . These finite Dirichlet series will mimic the infinite
sum (14) in the following sense.

The gamma function satisfies the functional equation

�(s + 1) = s�(s) (17)

or, more generally, for a natural number k

�(s + k) = (s + k � 1)k �(s) (18)

where
mk = m(m� 1) . . . (m� k + 1) (19)

denotes the falling factorial. Respectively, if s is greater than 6 and is an integer or
a half-integer, then the functional equation (13) simplifies to

(s� 1)2s�12D(s) = (2⇡)2s�12D(12� s). (20)

We will require that DM,N (s) should satisfy the formal counterpart of this equation,
that is,

(s� 1)2s�12DM,N (s) = (2⇡)2s�12DM,N (12� s). (21)

This goal will be achieved in two steps. At first, on the basis of previous cal-
culations of DM 0,N (s) for M 0 < M , certain integer values will be assigned to the
coe�cients aM,N,1, . . . , aM,N,M . After that the values of the remaining coe�cients,

aM,N,M+1, . . . , aM,N,N , (22)

can be determined by solving the system consisting of N �M linear equations (21)
for s = 6.5, . . . , 6 + (N �M)/2.

In accordance with (15), we start by putting

aM,N,1 = 1 (23)
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n a1,40,n
a1,40,n

⌧(n)

1 1
2 -23.9999998088... 0.99999999203...
3 251.9999296657... 0.99999972089...
4 -1471.9896684994... 0.99999298131...
5 4829.1878260000... 0.99983184803...
6 -6008.7075108132... 0.99350322599...
7 -18021.2327635150... 1.07628002648...
8 114131.4715225206... 1.35098806252...
9 -627764.9680649609... 5.52400911683...

10 677139.33398...·101 -5.84143662855...·101
11 -726508.78159...·102 -1.35894589271...·102
12 629469.61495...·103 -1.69693974011...·103
13 -446455.39726...·104 7.72764466361...·103
14 264116.58937...·105 6.57241871152...·104
15 -131902.30896...·106 -1.08368915312...·105
16 561177.40571...·106 5.68490467083...·105
17 -204930.92070...·107 2.96746132682...·105
18 646393.69446...·107 2.36997180670...·106
19 -177017.07880...·108 -1.66035179936...·106
20 422662.28121...·108 -5.94481784499...·106
21 -882873.93521...·108 2.09237219116...·107
22 161757.14922...·109 -1.26070518766...·107
23 -260436.65773...·109 -1.39694715462...·107
24 368904.12765...·109 1.73284241061...·107
25 -459911.72578...·109 1.80363021143...·107
26 504456.23327...·109 3.63815600146...·107
27 -486221.38176...·109 6.63520041136...·106
28 410936.63100...·109 1.66727727502...·107
29 -303565.31021...·109 -2.36409374047...·106
30 195131.34182...·109 -6.67987164868...·106
31 -108491.66351...·109 2.05308779963...·106
32 517628.62548...·108 -2.63147959653...·105
33 -209725.08751...·108 -1.55672227852...·105
34 711610.74909...·107 4.29347397164...·104
35 -198413.79513...·107 2.45338393998...·104
36 442674.42823...·106 2.64626867015...·103
37 -759775.20238...·105 4.16970190434...·102
38 941751.85236...·104 -3.68052853327...·101
39 -750306.74459...·103 5.15356046621...
40 288516.93819...·102 0.07070828093...

Table 1: Coe�cients of D1,40(s) (the value in bold font was assumed)
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n a2,60,n

1 1
2 -24
3 251.9999996376...
4 -1471.9998178947...
5 4829.9632177702...
6 -6043.9015870799...
7 -17034.7222907912...
8 98781.1308120727...
9 -630524.2005730589...

10 141967.69945...·102
11 -312893.27864...·103
12 556396.60637...·104
13 -816921.70473...·105
14 100802.31458...·107
15 -105955.66037...·108

n a3,60,n

1 1
2 -24
3 252
4 -1471.9999996964...
5 4829.9999074631...
6 -6047.9911420556...
7 -16744.1087033100...
8 84437.2081240563...
9 -109486.8742145104...

10 -328560.5125312068...
11 790626.86817...·101
12 -190170.19334...·103
13 381571.88089...·104
14 -619271.65233...·105
15 830436.31394...·106

n a4,65,n

1 1
2 -24
3 252
4 -1472
5 4829.9999969634...
6 -6047.9990590632...
7 -16744.1075358648...
8 84485.2350828571...
9 -113639.5272105033...

10 -131544.3590314542...
11 159828.55559...·101
12 -428780.81586...·102
13 121315.56362...·104
14 -267038.27692...·105
15 472032.53535...·106

n a5,70,n

1 1
2 -24
3 252
4 -1472
5 4830
6 -6048.0000068875...
7 -16743.9949504933...
8 84478.7635385720...
9 -113484.7770769369...

10 -128610.3182084142...
11 123950.48150...·101
12 -292647.49132...·102
13 912888.84350...·103
14 -230093.88974...·105
15 473484.93436...·106

Table 2: Initial coe�cients of D2,60(s), D3,60(s), D4,65(s), and D5,70(s) (the values
in bold font were assumed)
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s
���D1,40(s)

L⌧ (s) � 1
���

�10.5 3.11427...·10�14

�8 + 2i 1.00329...·10�12

�6 + 4i 7.31581...·10�13

�4 + 6i 3.66512...·10�12

�2 + 8i 1.78973...·10�11

10i 2.03252...·10�10

2 + 10i 1.00476...·10�9

4 + 10i 4.77546...·10�9

6 7.44535...·10�11

s
���D1,40(s)

L⌧ (s) � 1
���

6 + 5i 2.40639...·10�10

6 + 10i 1.85987...·10�8

8 + 10i 4.76871...·10�9

10 + 10i 1.01404...·10�9

12 + 12i 4.78240...·10�10

14 + 12i 5.76541...·10�11

16 + 12i 6.58641...·10�12

18 + 12i 9.05989...·10�13

20 + 12i 1.85557...·10�13

Table 3: The accuracy of approximation L⌧ (s) by D1,40(s) for various values of the
argument

for all M and N . After that we proceed as follows.
Table 1 presents the coe�cients of D1,40(s) defined in the above described way.

We observe that the value of a1,40,2 is very close to an integer and from now on we
will assume that

aM,N,2 = �24 (24)

for N > M > 2.
Table 2 presents (a part of) the coe�cients of D2,60(s). We observe that the

value of a2,60,3 is very close to an integer and from now on we will assume that

aM,N,3 = 252 (25)

for N > M > 3.
Continuing in this style with the other data from Table 2, we’ll come to the

assumptions that for N > M > 5

aM,N,4 = �1472, aM,N,5 = 4830, aN,M,6 = �6048. (26)

The six values, 1, -24, 252, -1472, 4830, -6048 are su�cient for the OEIS [9] to
recognize them as the beginning of A000594, the sequence of Ramanujan’s tau
numbers. In other words, starting from the functional equation (13), calculating
some real numbers and rounding them to rather close integers, we are able to surmise
that Ramanujan’s tau L-function should give a solution of this functional equation.

Remarks. Our introduction of the functional equation (21) was quite formal, by
the mere syntactical resemblance with the functional equations (10) and (13). It
cannot be justified reasonably because the series in right-hand side of (10) does not
converge for the range of values of s used by us (that is, for s � 6.5). So it is not
surprising that most of the coe�cients of our finite Dirichlet series DM,N (s) di↵er,
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and considerably, from the corresponding coe�cients of L⌧ (s) (see, for example,
the last column in Table 1). On the contrary, it was unsuspected that a few initial
coe�cients of DM,N (s) still turned out to be rather close to the initial tau numbers.

Even more startling is the following observation. In spite of the fact that the
coe�cients of the finite Dirichlet series DM,N (s) are so di↵erent from the corre-
sponding coe�cients of the infinite Dirichlet series (5), the values of the both series
are very close each other for a large range of the values of s, including those where
the infinite series diverges – see Table 3.

For getting approximate values of the coe�cients of L⌧ (s) and its values we used
(21) for a discrete set of values of s (for integers and half-integers only). Does it
indicate that the converse theorem for L⌧ (s) can be improved by demanding the
validity of the functional equation (10) just for these values of s?
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