
#A15 INTEGERS 18A (2018)

FINDING THE FOUR SQUARES IN LAGRANGE’S THEOREM

Paul Pollack1

Department of Mathematics, University of Georgia, Athens, Georgia
pollack@uga.edu

Enrique Treviño
Department of Mathematics and Computer Science, Lake Forest College, Lake

Forest, Illinois
trevino@lakeforest.edu

Received: 6/28/17, Accepted: 1/23/18, Published: 3/16/18

Abstract
In 1986, Rabin and Shallit presented three randomized algorithms to compute, given
a positive integer n, integers X,Y,Z,W with X2+Y 2+Z2+W 2 = n. The fastest of
the three has expected runtime O((log n)2), but this runtime analysis assumes the
truth of the Extended Riemann Hypothesis. (Here we measure runtime not by bit
operations, but by the number of “basic operations” one must carry out on numbers
of size / n.) The other two algorithms admit slightly worse runtime estimates but
are unconditional, in the sense that no unproved hypotheses are used in the proof
of correctness or the running-time analysis. In this paper we explain how to modify
their algorithms to do slightly better. We give two algorithms for this problem with
expected runtime O((log n)2(log log n)�1); the first is easily described but depends
on ERH, while the latter is unconditional but slightly involved.

– For Je↵ Shallit on his 60th birthday

1. Introduction

A fundamental result in number theory, claimed by Bachet in 1621 and proved by
Lagrange in 1770 [10], is that every positive integer n can be written as a sum of
four squares, i.e., expressed in the form X2 +Y 2 +Z2 +W 2 for integers X,Y,Z,W .
In this article, we consider the computational problem of finding X,Y,Z,W given
n.

As far as we are aware, Rabin and Shallit were the first authors to describe a
provably e�cient algorithm for this problem, in 1986 [18]. Their article presents

1Research of the first-named author is supported by NSF award DMS-1402268.

INTEGERS: 18A (2018) 2

three randomized algorithms for expressing n as a sum of four squares, with running
time complexity O((lg n)2), O((lg n)2 lg lg n), and O((lg n)2(lg lg n)2).2 Here our
convention for complexity estimates follows [18], so that complexity counts not bit
operations but arithmetic operations on numbers of size nO(1), where an “arithmetic
operation” means computing n±m,n·m, bn/mc, or the least nonnegative remainder
when n is divided by m, denoted here n mod m.3

The fastest of the three algorithms alluded to above comes with an important
caveat: it depends on the Extended Riemann Hypothesis (meaning the Riemann
Hypothesis for Dirichlet L-functions). Without ERH, it is not guaranteed to ter-
minate, although when it does terminate, its output is correct. The two slightly
slower algorithms are unconditional.

In this paper, we present two randomized algorithms for the four-squares prob-
lem, each of which is slightly faster than the fastest of the algorithms in [18]. Our
two randomized algorithms have complexity O((lg n)2(lg lg n)�1). The first, sim-
pler algorithm depends on ERH, while the second is more complicated, but is in-
dependent of any unproved hypotheses. While the core ideas of the algorithms are
borrowed from [18], we are able to shave o↵ double-logarithmic factors by paying
more attention to the e↵ect of the small prime divisors of n on the magnitude of
functions like '(n)/n.

2. Preliminaries on the Gaussian Integers and Integral Quaternions

Our argument depends crucially on convenient arithmetic properties possessed by
two particular “rings of integers”. The first of these rings is the Gaussian integers
Z[i] := {a + bi : a, b 2 Z} ⇢ C. The second is possibly less familiar. Recall that the
ring of real quaternions is the (non-commutative!) R-algebra with R-basis 1, i, j, k
and multiplication determined by i2 = j2 = k2 = �1, ij = �ji = k, jk = �kj = i,
and ki = �ik = j. We work in the subring H of (Hurwitz) integral quaternions,
defined by

H :=
�1

2
(a + bi + cj + dk) : a, b, c, d 2 Z, a ⌘ b ⌘ c ⌘ d (mod 2)

.

In this section we quickly review the facts we need about Z[i] and H. Proofs of the
results we will assume about Z[i] can be found in introductory texts on abstract
algebra (see, e.g., [4, Chapter 8]); for H, section 3 of [18] may be consulted.

In both Z[i] and H, an important role is played by the norm of an element. If
↵ = a + bi 2 Z[i], its conjugate is defined as a � bi. Similarly, the conjugate of

2We write lg n for the number of binary digits in n; e.g., lg 0 = lg 1 = 1, while lg 1957 = 11.
3For the reader who prefers to count bit operations, it is safe to multiply all of our final

complexity estimates by M(lg n), where M(n) is the complexity of multiplying two numbers with
n bits.

INTEGERS: 18A (2018) 3

a + bi + cj + dk 2 H is defined as a� bi� cj� dk. For ↵ in either system, we define
the norm by N↵ = ↵↵̄. Concretely, if ↵ = a + bi 2 Z[i], then N↵ = a2 + b2, and if
↵ = a + bi + cj + dk 2 H, then N↵ = a2 + b2 + c2 + d2. In both systems, N↵ takes
values in the nonnegative integers, and N↵ = 0 if and only if ↵ = 0. A fundamental
fact is that the norm is multiplicative: for all ↵,�, we have N(↵�) = N↵ · N�.

It is immediate that n is a sum of two squares if and only if n = N↵ for some
↵ 2 Z[i]. The corresponding fact holds for sums of four squares relative to H: n
is a sum of four squares if and only if n = N↵ for some ↵ 2 H. In this latter
statement, the “only if” direction is clear, but the “if” direction perhaps less so,
since H contains elements of the form ↵ = 1

2 (a + bi + cj + dk) with a, b, c, d odd.
However, every such ↵ can be multiplied by an ✏ 2 H of norm 1 in such a way that
the product ✏↵ has integer components; indeed, if we choose ✏a, ✏b, ✏c, ✏d 2 {±1} so
that

✏a ⌘ a, ✏b ⌘ �b, ✏c ⌘ �c, ✏d ⌘ �d (mod 4),

then ✏ = 1
2 (✏a +✏bi+✏cj+✏dk) has the required property. Since the norm of ↵ is the

same as the norm of ✏↵, every norm of an element of H is the norm of a quaternion
with integral components, and so is a sum of four squares.

Both Z[i] and H possess division algorithms. Specifically, if ↵,� 2 Z[i] and � 6= 0,
then there are �, � 2 Z[i] with

↵ = �� + �, N�  1
2
N�.

The same statement holds with H replacing Z[i]. In the setting of H, one could also
consider dividing ↵ by � “on the other side”, and the analogous result holds; there
are �, � 2 H with

↵ = �� + �, N�  1
2
N�.

The theory of the Euclidean algorithm now implies that every ideal of Z[i] is prin-
cipal, as is every right-ideal and left-ideal of H.4

The principality of ideals implies the existence of gcds. Specifically, if ↵,� 2 Z[i],
every generator of the ideal (↵,�) is a gcd. Similarly, in H, every generator of the
left-ideal generated by ↵,� is a greatest common right-divisor (gcrd)5 of ↵,�, and
every generator of the corresponding right-ideal is a greatest common left-divisor
(gcld) of ↵,�. The gcd is unique only up to multiplication by a unit (multiplication
on the left in the case of a gcrd, and on the right in the case of a gcld). In both
systems, the units are precisely the elements of norm 1; these are ±1,±i in Z[i] and

±1, ± i, ± j, ± k,
1
2
(±1 ± i ± j ± k)

4For us, a right-ideal is an additive subgroup that absorbs multiplication on the right. Note
that in Z[i], the collections of left-ideals and right-ideals coincide, since Z[i] is commutative.

5We say that � is a right-divisor of ✓ if there is a � such that ✓ = ��. Left-divisors are defined
analogously.

INTEGERS: 18A (2018) 4

in H.
Division is easy from a computational standpoint. Specifically, if ↵,� are given

with N↵, N� having O(lg n) bits, one can determine �, � in O(1) arithmetic opera-
tions on integers having O(lg n) bits.6 Now following the Euclidean algorithm, one
determines a gcd (or gcrd/gcld in the case of H) in O(lg n) arithmetic operations.

We will make essential use of the following two propositions, which tell us that
certain gcd (resp., gcrd) computations yield two-square (resp., four-square) repre-
sentations.

Lemma 1. Let n be an odd positive integer. If n | N(a + bi), where gcd(a, b) = 1,
then every gcd of n and a + bi has norm n.

Lemma 2. Let n be an odd positive integer. If n | N(a + bi + cj + dk), where
gcd(a, b, c, d) = 1, then every gcrd of n and a + bi + cj + dk has norm n.

We prove only Lemma 2. The proof of Lemma 1 is similar but simpler (since Z[i]
is commutative).

Proof sketch of Lemma 2. Let ↵ be a gcrd of n and a + bi + cj + dk, so that ↵
generates the left ideal A := H · n + H · (a + bi + cj + dk). Let Ā = {̄ :  2 A}.
Recalling that conjugation is an antiautomorphism of H (meaning that ↵� = � ·↵),
we see that Ā = n ·H+(a�bi�cj�dk) ·H and Ā is generated as a right ideal by ↵̄.
Consider the product AĀ, by which we mean {µ⌫ : µ 2 A, ⌫ 2 Ā}. Since A consists
of the left-multiples of ↵ and Ā consists of the right-multiples of ↵̄, one finds that
AĀ is the two-sided ideal consisting of all multiples of N↵. (The term “multiples”
is unambiguous here, since Z lies in the center of H.) On the other hand,

AĀ = {(�n + �(a + bi + cj + dk))(n� + (a� bi� cj � dk)✏) : �, �, �, ✏ 2 H}.

By a direct calculation,

(�n + �(a + bi + cj + dk))(n� + (a� bi� cj � dk)✏)

= n(��n + �(a� bi� cj � dk)✏ + �(a + bi + cj + dk)� +
N(a + bi + cj + dk)

n
�✏).

We see from this that n divides every element of AĀ. Hence, n�1AĀ is also a
two-sided ideal of H. Taking � = � = 1 and ✏ = � = 0, we see that n�1AĀ contains
n. Taking � = 1, � = 0, and � = 0 shows that n�1AĀ contains

(a� bi� cj � dk)✏

for all ✏. Similarly, taking � = 1,� = 0 and ✏ = 0, we find that n�1AĀ contains

�(a + bi + cj + dk)
6See [18, §3] for the details of how to e�ciently implement division in Z[i] and H.

INTEGERS: 18A (2018) 5

for all �. Since n�1AĀ is an ideal, these last two results together imply that

(a� bi� cj � dk)✏ + (a� bi� cj � dk)✏ 2 n�1AĀ

for all choices of ✏. Now letting ✏ = 1, i, j, k, we find that 2a, 2b, 2c, 2d 2 n�1AĀ.
By assumption, a, b, c, d generate the unit ideal of Z, and so n�1AĀ contains 2.
Since n�1AĀ also contains n, and n is odd, n�1AĀ is all of H. Hence, AĀ consists
precisely of the multiples of n. Since AĀ also consists precisely of the multiples of
N↵, and both N↵ and n are positive integers, we must have n = N↵.

We suspect Lemmas 1 and 2 are classical. However, they are perhaps not as
well-known as they could be. As some evidence, Lemma 2 implies that the repeated
splitting procedure described on pp. S246, S251 of [18] is never necessary.

3. An ERH-conditional Algorithm

Our ERH-conditional algorithm is a ri↵ on the ERH-conditional algorithm described
in [18], which was discovered by Rabin in 1977 (see the interview [20]). Here is a
sketch of that algorithm. First, we can assume that the number n we are trying to
represent is odd. To see this, write n = 2en0 with n0 odd. If X 02 +Y 02 +Z02 +W 02 =
n0, then X2 + Y 2 + Z2 + W 2 = n for X,Y,Z,W defined by

(1 + i)e(X 0 + Y 0i + Z0j + W 0k) = X + Y i + Zj + Wk.

The computation of e here, as well as the computation of X,Y,Z,W from e and
X 0, Y 0, Z0,W 0, requires only O(lg n) steps.

To represent an odd n as a sum of four squares, we look for a prime p ⌘ �1
(mod n), p ⌘ 1 (mod 4) smaller than (2n)5. Since p ⌘ 1 (mod 4), we can write
p = A2 + B2. Suppose we have computed A,B. Then

n | p + 1 = A2 + B2 + 1 = N(A + Bi + j).

By Lemma 2, we recover a four squares representation of n by computing gcrd(n,A+
Bi+j), where we assume the gcrd has been multiplied by a unit in H to have integer
components. Without the restriction that p < (2n)5, the existence of such a prime
p follows by Dirichlet’s theorem on primes in arithmetic progressions. So we see
that these ideas lead immediately to a quick proof of Lagrange’s theorem (but one
that assumes the theorem of Dirichlet, proved nearly 70 years later).

Rabin realized that (under ERH) one can quickly find the needed prime p by
making randomized choices. Indeed, under ERH, among all integers up to (2n)5 that
are ⌘ �1 (mod n) and ⌘ 1 (mod 4), the proportion of primes is� n

'(n) ·
1

lg n �
1

lg n .
So we expect to hit a prime p in O(lg n) trials.

INTEGERS: 18A (2018) 6

We now present our modified algorithm for representing an odd n as a sum of
four squares. The new idea is, rather than simply using the trivial lower bound of 1
on n

'(n) , to exploit that n
'(n) is large when n is divisible by many small primes; this

allows us to reduce the expected number of trials to O(lg n/ lg lg n). We assume
that n > 20; for n  20 it is trivial to find a four-squares representation.

(1) [Precomputation] Determine the primes not exceeding log n and compute their
product M .

(2) [Random trials] Choose an odd number k < n5 at random, and let

p = Mnk � 1.

(Notice that p ⌘ 1 (mod 4), since 2 k M and n, k are odd.) For a randomly
chosen u 2 [1, p�1], compute s = u(p�1)/4 mod p and test if s2 ⌘ �1 (mod p).
If so, continue to the next step. Otherwise, restart this step.

(3) [Denouement] Compute A+Bi := gcd(s+ i, p). Then compute gcrd(A+Bi+
j, n), normalized to have integer components. Write this gcrd as X + Y i +
Zj + Wk, and output the representation n = X2 + Y 2 + Z2 + W 2.

We now explain why the algorithm is correct and why the expected number of
required arithmetic operations is O((lg n)2(lg lg n)�1).

First, we address the correctness of the output. At the conclusion of (2), p |
N(s + i), and so Lemma 1 gives that A2 + B2 = p. Since p + 1 = Mnk, we have

n | p + 1 = A2 + B2 + 1 = N(A + Bi + j).

Now Lemma 2 shows that every gcrd of n and A+Bi+j has norm n. This completes
the correctness proof.

We remark that although we used the letter p, it is not necessary to assume here
that p is prime. (But it is unlikely we would have found s2 ⌘ �1 (mod p) unless p
were prime.)

Now we address the complexity. Each integer in [2, log n] can be tested for
primality in O((lg n)1/2) operations (by trial division), and so the complete list
of primes in [2, log n] can be found with O((lg n)3/2) operations.7 We can then
compute M using O(lg n) multiplications. (By the prime number theorem, all of
the partial products arising in the computation of M are of size nO(1).) Hence, the
precomputation step can be carried out with O((lg n)3/2) arithmetic operations.

In order to continue, we must recall two consequences of the ERH.
7It would be more e�cient to use the sieve of Eratosthenes here, but this part of the algorithm

is not the bottleneck.

INTEGERS: 18A (2018) 7

(a) For each real x and each pair of integers a, q with q > 0, let ⇡(x; q, a) denote
the count of primes p  x with p ⌘ a (mod q). If a, q are relatively prime and
x � 2, then ����⇡(x; q, a)� 1

'(q)

Z x

2

dt

log t

����  px(log x + 2 log q).

(See Oesterlé [12] for a more general result.)

(b) (Bach and Sorenson [2]) For q � 2 and a coprime to q, the least prime p ⌘ a
(mod q) satisfies p  2(q log q)2.

We will use the following crude consequence of (a) and (b): For q � 2 and x � 2q3,

⇡(x; q, a)� x

'(q) log x
.

(We leave the task of deducing this statement from (a) and (b) to the reader.)
We now apply this lower bound on ⇡(x; q, a) to estimate the number of primes p ⌘

�1 (mod Mn), p ⌘ 1 (mod 4) not exceeding Mn6. The two congruence conditions
place p in a coprime residue class modulo 2Mn. It is known (see [17]) that

Y
` prime

`T

`  e1.02T (1)

for all T > 0. Taking T = log n yields M  n1.02. Using this, it is straightforward
to check that Mn6 � 2(2Mn)3 for n � 18. So under ERH, the number of primes p
as above is

� Mn6

'(2Mn) log(Mn6)
� n5

log n
· Mn

'(Mn)
=

n5

log n

Y
`|Mn

(1� 1/`)�1 � n5 log log n

log n
,

using in the last step that Mn is divisible by all primes up to log n and that the
sum of the reciprocals of those primes is log log log n + O(1). Thus, if an odd k is
selected at random from the positive integers  n5, then p = Mnk � 1 is prime
with probability � log log n/ log n. Moreover, when p is prime, half of the values of
u 2 [1, p� 1] (namely, the quadratic nonresidues) are such that u(p�1)/4 is a square
root of �1 mod p.

It follows that each trial step has probability � log log n/ log n of success, so
that the expected number of trials is O(log n/ log log n). The most expensive step
in an individual trial is the computation of u(p�1)/4 mod p; by repeated squaring,
this can be done with O(lg p) = O(lg n) operations. Thus, the expected number
of operations required in step (2) is O((lg n)2(lg lg n)�1), which is acceptable. (We
have used here that log and lg have the same order of magnitude in the range of n
we are considering, as do log log and lg lg.)

INTEGERS: 18A (2018) 8

Finally, (3) requires O(lg n) arithmetic operations, using the Euclidean algorithm
to compute the gcds. Putting everything together, we see that the expected total
number of arithmetic operations required by the algorithm is O((lg n)2(lg lg n)�1).

4. An Unconditional Algorithm

In the ERH-conditional algorithm, we find a prime p from the progression 1 modulo
4 that is also congruent to �1 modulo n. Writing p = x2 +y2 gives a solution to n |
x2+y2+1, allowing us to extract a four-square representation from Lemma 2. In our
unconditional algorithm, we instead search for x, y for which (�(x2+y2)) mod n can
be quickly expressed as a sum of two squares, say z2+w2. Then n | x2+y2+z2+w2

and a four-square representation can again be obtained from Lemma 2. (Of course,
we need n odd and gcd(x, y, z, w) = 1 to apply Lemma 2; we will arrange below for
these conditions to hold.)

We began the previous section by mentioning that we can easily reduce to con-
sidering only odd n. In fact, for an acceptable computational cost, we can reduce
to the more special case of odd n having no prime factors `  log n with ` ⌘ 1
(mod 4). As in the previous section, we assume that n > 20, so that log n > 3.

To see how this reduction goes, first note that we can flag each number in [1, log n]
as prime or composite using O((lg n)3/2) operations. Since our goal is to produce
an algorithm requiring O((lg n)2(lg lg n)�1) operations, such a computation is ac-
ceptable. In another O(lg n) operations, we can compute X2 +Y 2 for all pairs X,Y
with 0  X,Y  (log n)1/2. We record, for ` = 2 and for the primes `  log n with
` ⌘ 1 (mod 4), integers X`, Y` with

` = X2
` + Y 2

` .

Writing “` = ⇤ + ⇤” for the condition that ` = 2 or ` ⌘ 1 (mod 4), we factor

n =

0
BB@

Y
`log n
`=⇤+⇤

`e`

1
CCAn0,

where n0 is odd and coprime to all primes ` ⌘ 1 (mod 4), `  log n. This can be
done with O(lg n) operations: For each `, we repeatedly divide n by ` until the
division leaves a remainder. For a given `, this requires e` + 1 divisions, and so the
total number of divisions required is

X
`log n
`=⇤+⇤

(e` + 1) =
X

`log n
`=⇤+⇤

e` +
X

`log n
`=⇤+⇤

1  log n

log 2
+ log n,

INTEGERS: 18A (2018) 9

which is O(lg n). If X 02 + Y 02 + Z02 + W 02 = n0, then X2 + Y 2 + Z2 + W 2 = n,
where

(X 0 + Y 0i + Z0j + W 0k)
Y

`log n
`=⇤+⇤

(X` + Y`i)e` = X + Y i + Zj + Wk.

Computing X,Y,Z,W , given the e` and the numbers X 0, Y 0, Z0,W 0, requires an-
other O(lg n) operations. Collecting the estimates, we may perform this reduction
at the cost of O((lg n)3/2) steps.

Before describing our unconditional algorithm, which is a variant of the method
described in §3 of [18], we make some observations. From now on, n > 20, n is odd,
and n has no prime factors `  log n from the arithmetic progression 1 mod 4. Let

P =
Y

`log n
`⌘3 (mod 4)

`,

and let
N = n · P/ gcd(P, n).

We have already computed the primes up to log n, and so computing P and N
requires only O(lg n) operations. Note that n  N  nO(1), where the second
inequality comes from the prime number theorem (or (1)).

The following lemma is a special case of Lemma 3.2 on p. S247 of [18], and was
seemingly first proved by Hermite in 1854 [8].

Lemma 3. Let N be an odd positive integer. For every a coprime to N , the number
of solutions x, y mod N to x2 + y2 ⌘ a (mod N) is precisely

N
Y
`|N

✓
1�

✓
�1
`

◆
1
`

◆
,

where
��1

`

�
is the Legendre symbol.

From the primes `  log n, our N is divisible by none that are congruent to 1
(mod 4) and by all that are congruent to 3 (mod 4). Writing n0 for the largest
divisor of n supported on primes exceeding log n, we deduce that

Y
`|N

✓
1�

✓
�1
`

◆
1
`

◆
�

Y
`log n

`⌘3 (mod 4)

✓
1 +

1
`

◆ Y
`|N

`>log n

✓
1� 1

`

◆

� (log log n)1/2
Y
`|N

`>log n

✓
1� 1

`

◆
� (log log n)1/2 ·

✓
1� 1

log n

◆!(n0)

,

INTEGERS: 18A (2018) 10

where, as usual, !(·) counts the number of distinct prime divisors. (In moving from
the first to the second line, we used that the sum of the reciprocals of the primes
congruent to 3 (mod 4) up to T , for T � 2, is 1

2 log log T + O(1). See, e.g., [11,
pp. 449–450]. We also used that N and n have the same prime divisors exceeding
log n.) Notice that (log n)!(n0)  n0, so that !(n0)  log n0/ log log n < log n.
Consequently,

✓
1� 1

log n

◆!(n0)

�
✓

1� 1
log n

◆log n

�
✓

1� 1
3

◆3

>
1
4
.

(We used here that log n � 3 and that (1 � 1/T)T is increasing for T � 3.) Thus,
each congruence x2 + y2 ⌘ a (mod N), with gcd(a,N) = 1, has � N(log log n)1/2

solutions (x, y) mod N .
The algorithm begins by selecting x, y at random from [1, N] and computing

r := (�(x2 + y2)) mod N.

We show below (Lemma 4) that there are � N(log log n)1/2/ log N integers in
[1, N] that have the form r1p, where r1 is a product of primes `  log n with ` ⌘ 1
(mod 4), and p > log n is a prime congruent to 1 modulo 4 not dividing N . All
of these numbers r1p are coprime to N . Using the concluding result of the last
paragraph, we see that the number of choices for x, y where r lands on one of the
numbers r1p is

� N
(log log n)1/2

log N
· N(log log n)1/2 � N2 log log n

log n
.

Thus, with x, y chosen at random from [1, N], we expect to have r = r1p within
O(log n/ log log n) trials.

Having located r = r1p, we note that it is easy to compute a two-squares repre-
sentation of r1:

u2 + v2 = r1, where u + vi :=
Y

`v`kr1

(X` + Y`i)v` . (2)

Determining the exponents v` and computing u, v requires only O(lg n) operations,
by arguments similar to those appearing at the start of this section.

Suppose we have written p = U2 + V 2, and let z + wi = (u + vi)(U + V i), so
that z2 + w2 = r1p. Then

�(x2 + y2) ⌘ r = r1p = z2 + w2 (mod N),

so that
n | N | x2 + y2 + z2 + w2. (3)

INTEGERS: 18A (2018) 11

We show below (see Lemma 5) that gcd(x, y, z, w) = 1 — in fact, that gcd(z, w) = 1
— so that by Lemma 2 a four squares representation of n is obtained by computing
gcrd(n, x + yi + zj + wk) (normalized to have integer components).

As it stands, the above description is incomplete. We have glossed over how we
determine whether r = r1p for some r1, p as above, and how to write p as a sum of
two squares. To circumvent these issues, we amend the initial (trial) steps of the
algorithm to the following, denoted (T):

(T) For a random choice of x, y 2 [1, N], compute r := (�(x2 + y2)) mod N .
Immediately choose another x, y unless r ⌘ 1 (mod 4) and gcd(r,N) = 1.
Once an r satisfying these conditions is found, determine r1 by

r = r1p, where r1 =
Y

`log n
`⌘ 1 (mod 4)

`v`kr

`v` . (4)

(Finding r1 requires only O(lg n) operations.) If p = 1, we stop and declare
victory.

Now assume that p > 1. In that case, we choose u 2 [1, p� 1] at random and
test whether s := u(p�1)/4 mod p is a square root of �1 mod p. If not, we
restart (T) with another random choice of x, y.

When p is a prime, s is a square root of �1 half the time. Thus (from Lemma
4) the random trial (T) succeeds with probability � log log n/ log n. So we expect
to do only O(log n/ log log n) trials before (T) succeeds. Each trial requires O(lg n)
operations, and so we expect (T) to require O((lg n)2/ lg lg n) operations.

When (T) succeeds, we know a pair x, y with

�(x2 + y2) ⌘ r1p,

we have the factorization of r1 in the form (4), and either p = 1 or we have a square
root s of �1 modulo p. Compute the u, v in (2), so u2+v2 = r1. If p = 1, put U = 1
and V = 0; otherwise, calculate gcd(p, s+ i) = U +V i. In either case, p = U2 +V 2.
With z + wi = (u + vi)(U + V i), we have, as in (3), n | x2 + y2 + z2 + w2. By
Lemma 5 below, gcd(z, w) = 1, and so, by Lemma 2, we can extract a four-squares
representation of n by computing gcrd(n, x+yi+ zj +wk). These concluding steps
require O(lg n) operations in total, and so the expected number of steps in the entire
(amended) algorithm is O((lg n)2/ lg lg n), as desired.

We have two outstanding debts: proving that there are indeed many values of
r1p, and proving that gcd(z, w) = 1.

Lemma 4. Let n and N be odd integers with 20 < n  N . The number of positive
integers R  N which admit a decomposition R = r1p where r1 is a product of

INTEGERS: 18A (2018) 12

primes `  log n, ` ⌘ 1 (mod 4), and p > log n is a prime congruent to 1 (mod 4)
with p - N , is

� N

p
log log n

log N
.

Proof. We first prove the lemma when n is su�ciently large. For each r1 that can
be written as a product of primes `  log n, ` ⌘ 1 (mod 4), we count the number of
corresponding choices for p. For a given r1, the number of choices for p is at least

⇡(N/r1; 4, 1)� ⇡(log n; 4, 1)� !(N).

We obtain a lower bound by summing this expression over r1  N1/2. By the prime
number theorem for arithmetic progressions, for all large N and all r1  N1/2,

⇡(N/r1; 4, 1)� N/r1

log(N/r1)
� N

r1 log N
.

This last quantity is � N1/2

log N . On the other hand,

⇡(log n; 4, 1)  log n  log N and !(N)  log N/ log 3 < log N.

Since log N = o(N1/2/ log N), as N !1, we see that the number of p correspond-
ing to a given r1 is � N/(r1 log N), uniformly for r1  N1/2 (once n, and hence N ,
is large). Thus, the total number of values of r = r1p we produce this way is

� N

log N

0
@X

r1

1
r1
�

X
r1>N1/2

1
r1

1
A ,

where the sums on r1 are over numbers composed of primes `  log n, ` ⌘ 1 (mod 4).
Now X

r1

1
r1

=
Y

`log n
`⌘1 (mod 4)

✓
1 +

1
`

+
1
`2

+ · · ·
◆
�

p
log log n.

(We use here that the sum of the reciprocals of the primes congruent to 1 (mod 4)
up to T , for T � 2, is 1

2 log log T +O(1). See [11, pp. 449–450].) To handle the sum
on r1 > N1/2, note that every such r1 is (2 log r1)-smooth (since log n < 2 log r1).
But the number of integers t 2 (1, T] that are (2 log t)-smooth is T o(1), as T !1.
(This can be deduced from [21, Theorem 5.2, p. 513].) It now follows by partial
summation that the sum on r1 > N1/2 appearing above is O(1). Assembling these
estimates yields the lemma for all su�ciently large n, say n � n0.

It is clear that the lemma also holds when 20 < n < n0 (adjusting the implied
constant appropriately), provided that there are � N/ log N values of R for all
choices of n,N . To obtain this lower bound, we consider the contribution from

INTEGERS: 18A (2018) 13

values of R with r1 = 1. This includes all numbers R = p with p 2 (N/3, 2N/3]
and p ⌘ 1 (mod 4). Indeed, since N � n > 20, we have p > N/3 > log N � log n.
And it cannot be that p | N : since N/p 2 [3/2, 3), for p to divide N we would need
N = 2p, contradicting that N is odd. The proof is completed by recalling that
the number of p 2 (N/3, 2N/3] with p ⌘ 1 (mod 4) is � N/ log N . Indeed, it was
proved by Erdős [6] that the number of primes congruent to 1 (mod 4) in (T, 2T]
is � T/ log T for all T � 13

2 .

Lemma 5. We have gcd(z, w) = 1, where z and w are defined by z + wi = (u +
vi)(U + V i).

Proof. In our algorithm, z + wi = (u + vi)(U + V i), where u + vi is a product of
certain of the numbers X` + Y`i , and either U + V i = 1 (in the case p = 1) or
U + V i = gcd(p, s + i) for some square root s of �1 mod p. Note that p is not
necessarily prime, but we do know that p has no prime factors up to log n. When
p > 1, the fact that �1 has a square root mod p implies that every prime factor of
p belongs to the residue class 1 modulo 4.

Suppose now that the prime q divides z and w. Then q | z + wi in Z[i]. The
Gaussian primes X` + Y`i, as well as all the Gaussian primes dividing U + V i,
lie above primes 1 modulo 4. Hence, q ⌘ 1 (mod 4), and q = ⇡⇡̄ with ⇡ and ⇡̄
nonassociated Gaussian primes. Then ⇡ and ⇡̄ both divide z+wi. By construction,
u + vi is divisible by at most one of ⇡ and ⇡̄. (For each `, at most one of the two
primes above ` divides u + vi, namely X` + Y`i.) So either ⇡ and ⇡̄ both divide
U + V i or one of ⇡, ⇡̄ divides u + vi while the other divides U + V i. If U + V i = 1,
each of these scenarios is absurd, so we may assume U + V i = gcd(p, s + i) with s
a square root of �1 mod p.

If ⇡ and ⇡̄ both divide U + V i, then q = ⇡⇡̄ | U + V i = gcd(p, s + i). But
then q | s + i, which is absurd. If one of ⇡, ⇡̄ divides u + vi while the other divides
U + V i, then N(u + vi) and N(U + V i) are both divisible by q = N(⇡) = N(⇡̄).
Since N(u + vi) is a product of primes not exceeding log n, it must be that q 
log n. But N(U + V i) = p has no prime factors in [2, log n], so again we have a
contradiction.

5. Concluding Remarks

It would, of course, be desirable to possess a deterministic polynomial-time algo-
rithm for computing a representation of n as a sum of four squares. Such an algo-
rithm is available when n is prime (a result of Bumby [3]) and so, via quaternion
multiplication, whenever we are given the prime factorization of n.

It seems di�cult to prove that a representation of n can always be found in
deterministic polynomial time (without prior information on the factorization of

INTEGERS: 18A (2018) 14

n). This would follow from the conjecture of Heath-Brown [7] that the least prime
congruent to a (mod q), when gcd(a, q) = 1, is ⌧ q(lg q)2. For reasons already
discussed, we can restrict attention to odd n. For k = 1, 3, 5, 7, . . . , use the AKS
test [1] to decide whether p = 2nk � 1 is prime. Assuming the truth of Heath-
Brown’s conjecture (with q = 4n), we are certain to hit upon a prime p within
O((lg n)2) steps. Use Schoof’s algorithm [19] to compute the number of Fp-points
on the elliptic curve y2 = x3�x. If this is N , let a = 1

2 (p+1�N). Then a 2 Z and
p = a2 + b2 for some b (see, e.g., [9, Theorem 5, p. 307]), whose value is easily found
from p, a. We have that n | 2nk = p + 1 = a2 + b2 + 1, and we find a four-squares
representation of n by computing gcrd(n, a + bi + j).

Unconditionally, we can show that a positive proportion of numbers can be writ-
ten as a sum of four squares in deterministic polynomial time. Certainly all integers
of the form 4k + p, where p is a prime congruent to 1 (mod 4), have this property.
(In fact, these numbers can be quickly expressed as a sum of three squares!) That
these numbers comprise a set of positive lower density can be proved by an easy
modification of a method of Romanov [16].

Under ERH, we can do better: Almost all natural numbers (by which we mean
asymptotically 100%) can be expressed as a sum of four squares in determinis-
tic polynomial time. Assuming ERH, Prachar showed that for a certain absolute
constant C, almost all n admit a representation in the form

n = p + m2, where 0  m < (log n)C .

(This is a special case of [14, Satz 1]. The constant C could be computed from
the proof but is not given explicitly in [14].) When n is congruent to 2 (mod 4)
and not of the form m2 + 2, every such representation of n has p ⌘ 1 (mod 4). It
follows that almost all n ⌘ 2 (mod 4) can be expressed as a sum of four squares
in deterministic polynomial time. Elementary arguments now su�ce to transition
from almost all n ⌘ 2 (mod 4) to almost all positive integers n (cf. the discussion
in the middle of p. S244 of [18]).

We conclude with a word about sums of higher powers. Confirming a 1770 con-
jecture of Waring, Hilbert showed in 1909 that for each fixed k � 2, every positive
integer can be written as a sum of Ok(1) nonnegative kth powers. Hilbert’s proof
goes by reducing the case of arbitrary k to Lagrange’s four-square theorem (corre-
sponding to k = 2). It seems interesting to note that this reduction can be made
computationally e↵ective: for every fixed k � 2, whenever one has an algorithm
that runs in expected (respectively, deterministic) polynomial time for representing
an arbitrary positive integer as a sum of four squares, one gets an algorithm run-
ning in expected (respectively, deterministic) polynomial time for representing an
arbitrary positive integer as a sum of Ok(1) nonnegative kth powers. This is clear,
for instance, from the simplified solution to Waring’s problem described by Dress in
[5]. To make the algorithm explicit, one needs an explicit form of the “fundamental

INTEGERS: 18A (2018) 15

Hilbert identities”. The existence of these identities is proved nonconstructively in
[5] (following Ellison), but a constructive proof, due to Hausdor↵ and Stridsberg,
can be given by means of the Hermite polynomials. Details can be found in G. J.
Rieger’s dissertation [15]. See also [13] for an exposition of the ideas of Rieger and
Dress.8

Acknowledgements. We thank the referees for detailed comments on the manuscript
that led to improvements in the readability.

References

[1] M. Agrawal, N. Kayal, and N. Saxena, PRIMES is in P, Ann. of Math. (2) 160 (2004),
781–793.

[2] E. Bach and J. Sorenson, Explicit bounds for primes in residue classes, Math. Comp. 65
(1996), 1717–1735.

[3] R.T. Bumby, Sums of four squares, Number Theory (New York, 1991–1995), Springer, New
York, 1996, pp. 1–8.

[4] D. S. Dummit and R.M. Foote, Abstract Algebra, third ed., John Wiley & Sons, Inc., Hobo-
ken, NJ, 2004.

[5] F. Dress, Méthodes élémentaires dans le problème de Waring pour les entiers, Université de
Provence, Marseille, 1971, Journées Arithmétiques Françaises, Mai 1971.

[6] P. Erdős, Über die Primzahlen gewisser arithmetischer Reihen, Math. Z. 39 (1935), 473–491.

[7] D.R. Heath-Brown, Almost-primes in arithmetic progressions and short intervals, Math.
Proc. Cambridge Philos. Soc. 83 (1978), 357–375.

[8] C. Hermite, Sur la théorie des formes quadratiques. Second mémoire, J. Reine Angew. Math.
47 (1854), 343–368.

[9] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, second ed.,
Graduate Texts in Mathematics, vol. 84, Springer-Verlag, New York, 1990.

[10] J.-L. Lagrange, Démonstration d’un théorème d’arithmétique, Nouv. Mém. Acad. Roy. Sc.
de Berlin (1770), 123–133. Also in Oeuvres de Lagrange 3 (1869), pp. 189–201.

[11] E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen. 2 Bände, second edition,
Chelsea Publishing Co., New York, 1953.

[12] J. Oesterlé, Versions e↵ectives du théorème de Chebotarev sous l’hypothèse de Riemann
généralisée, Astérisque 61 (1979), 165–167.

[13] P. Pollack, On Hilbert’s solution of Waring’s problem, Cent. Eur. J. Math. 9 (2011), 294–301.

[14] K. Prachar, Über Zahlen, die sich als Summe einer Primzahl und einer “kleinen” Potenz
darstellen lassen, Monatsh. Math. 68 (1964), 409–420.

8Using [13], the last occurrence of Ok(1) can be replaced with (2k + 1)2000k5
.

INTEGERS: 18A (2018) 16

[15] G. J. Rieger, Zur Hilbertschen Lösung des Waringschen Problems: Abschätzung von g(n),
Mitt. Math. Sem. Giessen. (1953), no. 44, 35 pages.

[16] N.P. Romanov, Über einige Sätze der additiven Zahlentheorie, Math. Ann. 109 (1934),
668–678.

[17] J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers,
Illinois J. Math. 6 (1962), 64–94.

[18] M.O. Rabin and J.O. Shallit, Randomized algorithms in number theory, Comm. Pure Appl.
Math. 39 (1986), no. S, suppl., S239–S256.

[19] R. Schoof, Elliptic curves over finite fields and the computation of square roots mod p, Math.
Comp. 44 (1985), 483–494.

[20] D. Shasha, An Interview with Michael Rabin, Commun. ACM 53 (2010), no. 2, 37–42.

[21] G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, third ed., Gradu-
ate Studies in Mathematics, vol. 163, American Mathematical Society, Providence, RI, 2015.

