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Abstract
Consider the power pseudorandom-number generator in a finite field Fq. That is,
for some integer e � 2, one considers the sequence u, ue, ue2

, . . . in Fq for a given
seed u 2 F⇥q . This sequence is eventually periodic. One can consider the number
of cycles that exist as the seed u varies over F⇥q . This is the same as the number of
cycles in the functional graph of the map x 7! xe in F⇥q . We prove some estimates
for the maximal and average number of cycles in the case of prime finite fields.

– For Je↵rey Outlaw Shallit on his 60th birthday

1. Introduction

1.1. Set Up

For a prime power q, we use Fq to denote the finite field of q elements. For a fixed
integer e � 2 we denote by Ge,q the functional graph of the map x 7! xe with
vertices formed by the elements of F⇥q . We also denote by N(e, q) the total number
of cycles in Ge,q. Alternatively, N(e, q) can be defined as the number of connected
components of Ge,q when it is considered as an undirected graph.

By a result of [4, Theorem 1] for prime fields (see also [15] for e = 2), which can
easily be extended to arbitrary finite fields, we have

N(e, q) =
X
d|⇢

'(d)
`e(d)

, (1)



INTEGERS: 18A (2018) 2

where ⇢ is the largest divisor of q � 1 which is relatively prime to e and, for a, b
relatively prime and b positive, `a(b) denotes the multiplicative order of a modulo
b.

Here we are interested in the extreme and average values of N(e, q) when e is
fixed and q varies over primes.

We remark that under the Generalized Riemann Hypothesis, the orders `a(b)
tend to be large (of magnitude b in a logarithmic scale); we refer to [13]. Hence one
expects that for most primes we have N(e, p)  po(1). On the other hand, we show
that the average value of N(e, p) is quite large.

1.2. Notation

Throughout the paper, the letters p and r always denote prime numbers while the
letters a, e, k, m, and n denote positive integers.

As usual, for a positive real number x we use ⇡(x) to denote the number of primes
p  x. Furthermore, for integers a and k � 1 we define ⇡(x; k, a) as the number of
primes p  x in the arithmetic progression p ⌘ a (mod k).

We also use P (k) and '(k) to denote the largest prime divisor and the Euler
function of k, respectively, with P (1) = 1.

We recall that the statements U = O(V ), V � U and U ⌧ V are all equivalent
to the inequality |U |  cV with some positive constant c. In this note, implied
constants may depend on the exponent e unless stated otherwise.

1.3. New Results

First, we show that N(e, p) is rather large for infinitely many primes p.

Theorem 1. For any fixed integer e � 2, there are infinitely many primes p with

N(e, p) � p5/12+o(1).

We also show the following lower bound on the average value of N(e, p).

Theorem 2. For any fixed integer e � 2 and all su�ciently large real numbers x,
we have

1
⇡(x)

X
px

N(e, p) � x0.293.

2. Preliminaries

2.1. Primes in Arithmetic Progressions

We need a version of a result of Alford, Granville and Pomerance [1, Theorem 2.1].
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Lemma 1. For each fixed " > 0 and su�ciently large x, depending on ", there is a
finite set {m1, . . . ,mt} of integers, where t depends only on ", and each mi > log x,
with the following property. If m  x5/12�", and m is not divisible by any of
m1, . . . ,mt, then we have, uniformly over integers a with gcd(a,m) = 1, that

⇡(x;m,a)� 1
'(m)

⇡(x)

where the implied constant depends only on ".

2.2. Shifted Primes With Prescribed Smoothness

We also need the following result, which follows from the work of Baker and Har-
man [2, Theorem 1], which improves the estimate in [7]. We recall our convention
that r always denotes a prime number

Lemma 2. There is an absolute positive constant  with the following property.
Let u > 10,

v =
log u

log log u
, w = v1/0.2961,

and let
Q = {r 2 [w/(log w), w] : r � 1 | Mv} ,

where Mv is the least common multiple of the integers in [1, v]. Then for u su�-
ciently large, we have

#Q � w/(log w).

3. Proofs of Main Results

3.1. Proof of Theorem 1

We fix some integer e � 2 and a real " > 0. For a su�ciently large number K we
define x by the equation

eK = x5/12�".

Now let m1, . . . ,mt be as in Lemma 1.
Clearly if gcd(mi, e) > 1 then mi - ek � 1. For each i with mi coprime to e, we

obviously have

`e(mi)� log mi � log log x, i = 1, . . . ,m. (2)

Hence for any integer h � 1 we have at least

h�
tX

i=1

✓
h

`e(mi)
+ 1

◆
= h + O(h/ log log x + 1)
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integers k in the interval [K � h,K], which are not divisible by any of the multi-
plicative orders `e(mi) for which gcd(mi, e) > 1. Thus ek�1 is not divisible by any
of the integers mi, i = 1, . . . , t. In particular, we can always find k 2 [K � h0,K],
where h0 depends only on ", for which mi - ek � 1, i = 1, . . . , t. We fix such an
integer k and denote m = ek � 1. Thus by Lemma 1 there exists a prime

p⌧ x = e12K/(5�12") ⌧ m12/(5�12") (3)

with
p ⌘ 1 (mod m).

Since gcd(m, e) = 1, we have m | ⇢, where ⇢ is the part of p� 1 coprime to e. Thus,
using `e(m) = k, we obtain

N(e, p) =
X
d|⇢

'(d)
`e(d)

� '(m)
k

� '(m)
log m

.

Using the minimal order of the Euler function, see [9, Theorem 328], we thus
have

N(e, p)� m

log m log log m
,

which together with (3) and taking into account that " > 0 is arbitrary, concludes
the proof.

3.2. Proof of Theorem 2

We follow the construction from the proof of [14, Theorem 1] which in turn is based
on some ideas of Erdős [5] .

We fix some su�ciently small " > 0 and let x be large. For

u = x5/12�"

we consider the set Q and parameters v and w as in Lemma 2. Furthermore, let
m1, . . . ,mt be as in Lemma 1. Note that (2) guarantees that for each i = 1, . . . , t
with gcd(mi, e) = 1 we have `e(mi) > 1 and thus we can choose a prime divisor ri

of `e(mi) (we do not claim nor require these primes to be distinct). We now remove
at most t such primes from the set Q and denote the remaining set by Q⇤. Thus
#Q⇤ = #Q+ O(1). Note too that Q⇤ contains no prime dividing e.

Put
⌫ =

�
log u

log w

⌫

and consider the set S of all products of ⌫ distinct primes from Q⇤. Clearly

u � w⌫ � m � (w/(log w))⌫ = u1+o(1) (4)
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for every m 2 S.
Furrthermore, using Lemma 2, an easy calculation shows that

#S =
✓

#Q⇤
⌫

◆
= u0.7039+o(1). (5)

For every m 2 S we have
`e(m) | Mv

and so by the prime number theorem, we obtain that

`e(m)  exp((1 + o(1))v) = uo(1) = xo(1). (6)

Recalling the definition of Q⇤ we see that for any m 2 S we have mi - m, i = 1, . . . , t.
By the choice of u and the upper bound in (4) we see that by Lemma 1 we have

⇡(x;m, 1)� 1
'(m)

⇡(x) = x1+o(1)u�1

for every m 2 S. Thus, using (5) we obtain
X
m2S

⇡(x;m, 1) � x1+o(1)u�0.2961. (7)

Now, let P be the union of all primes p  x with m | (p � 1) for some m 2 S.
Since, by the classical bound on the divisor function, each prime p 2 P can come
from at most xo(1) integers m 2 S, we obtain from (7) that

#P � x1+o(1)u�0.2961. (8)

For every p with m | (p� 1) for some m 2 S, using (6) and then (4), we have

N(e, p) � '(m)
`e(m)

= m1+o(1) = u1+o(1).

Therefore, using (8),
X
px

N(e, p) �
X
p2P

N(e, p) � u1+o(1)#P � x1+o(1)u0.7039.

Recalling the choice of u and taking " to be su�ciently small, we conclude the proof.

4. Possible Improvements

Hypothetically the exponents in Theorems 1 and 2 may be replaced with any fixed
number smaller than 1. This is true for Theorem 1 on the assumption that we have
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exponent 1 + " in Linnik’s theorem; that is, for each integer k > k0(") and residue
class a (mod k) coprime to k, the least prime in this residue class is smaller than
k1+". The proof that N(e, p) > p1�" for infinitely many primes p then follows the
same lines as our proof of Theorem 1.

To prove a 1� " analogue of Theorem 2 we need in addition to the strong Linnik
constant as above, the conjecture that in Lemma 2 we may replace the number
0.2961 with any " > 0. This conjecture of Erdős is known to follow from the
Elliott–Halberstam conjecture. The proof that the average of N(e, p) for p  x
exceeds x1�" is then the same as our proof of Theorem 2.

The above improvements are probably out of reach. However, there is a possible
way to achieve more modest improvements of Theorems 1 and 2, which is based
on a combination of a recent result of Chang [3] with a result of Harman [11]. For
this approach, one first has to verify that the exponent 3/4 in [11, Equation (1.2)]
can be replaced by any constant c < 1, see also the remark after [10, Theorem 1.2].
Then this result can be combined with the bound of Chang [3, Theorem 10] on
the zero-free region of L-functions of characters with smooth moduli, where the
modulus m is chosen to satisfy two properties

• m = ek � 1 where k is an integer with a small value of '(k), that is, with
'(k) = o(k);

• m is not divisible by a Siegel modulus, which can be achieved via the same
argument as that used in the proof of Theorem 2.

Combining these ideas with our approach one is likely to be able to replace 5/12
with 0.472 and 0.293 with 0.332 in Theorems 1 and 2, respectively. We also note
that using the moduli of the form m = ek � 1 with '(k) = o(k) as in the above,
together with the version of the Linnik theorem given by Chang [3, Corollary 11]
one can obtain an alternative proof of Theorem 1. However this produces a much
sparser sequence of primes than in the current proof of Theorem 1.

5. Further Results and Directions

In [12, Theorem 2] lower bounds are given for the order of e modulo the part of
p � 1 coprime to e that translate to upper bounds for N(e, p). Indeed, we have
for any function "(p) # 0 that N(e, p) < p1/2�"(p) for almost all primes p and
on the generalized Riemann Hypothesis, N(e, p) < p"(p) for almost all p. (These
normal-order results are in stark contrast to the above extremal and average-order
results.)

One can also consider the average cycle length. For a positive integer n, let `⇤e(n)
denote the order of e modulo the prime-to-e part of n. The average cycle length is
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then
C(e, p) =

1
p� 1

X
d|p�1

'(d)`⇤e(d).

Note that `⇤e(p� 1) = `e(⇢), so we have

'(p� 1)
p� 1

`e(⇢)  C(e, p)  `e(⇢).

One then sees that results on `e(⇢) immediately translate to results on C(e, p). So, it
follows from [12, Theorem 2] that for any "(p) # 0, we have that for almost all primes
p, C(e, p) > p1/2+"(p). Further, the average of C(e, p) for p  x exceeds x0.592 for
all su�ciently large values of x. And on the Generalized Riemann Hypothesis, the
average exceeds x1�✏. An upper bound for the minimal order of C(e, p) follows from
the proof of Theorem 1. In particular, we have C(e, p) < p0.472+o(1) for infinitely
many primes p.

It would be interesting to generalize the results of this paper to arbitrary finite
fields, or perhaps to consider quantities such as

N(e, pk), k = 1, 2, . . . .

For example, we can show that for any fixed choice of e and p, for infinitely many
k we have

N(e, pk) > exp(kc/ log log k), (9)

where c is a positive constant. Indeed, from [6, Theorem 1] there are infinitely many
positive integers m with �(m)  (log m)O(log log log m), where �(m) is the maximum
order of an element in (Z/mZ)⇥. Further, with an easy argument, one can insure
that m is coprime to ep. Let k = `p(m)  �(m). We have

N(e, pk) � '(⇢)/`e(⇢) � '(⇢)/�(⇢) � m/�(m),

using [8, Lemma 2]. Hence N(e, pk) � m1+o(1). The small size of �(m) in compar-
ison to m implies that m is large in comparison to �(m). In particular, we have
m � exp(�(m)c/ log log �(m)) for some c > 0. The bound (9) follows using �(m) � k.

It also may be of interest to study the number of cycles of the power generator
in the ring Z/nZ, where a seed is coprime to n. It is likely that the methods of this
paper and of [12] should be helpful.
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