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Abstract
We give two trees allowing us to represent all positive rational numbers. These trees
can be seen as ternary and quinary analogues of the Calkin-Wilf tree. For each of
these two trees, we give recurrence formulas allowing us to compute the rational
number corresponding to the node n. These are analogues of the formulas given by
Donald Knuth and Moshe Newman for the Calkin-Wilf tree. Finally, we show that
the two sequences we have obtained, together with the Calkin-Wilf sequence, are the
only ones which satisfy a relation analogous to Newman’s relation and enumerate
the positive rationals.

1. Introduction

It is well-known, since Cantor’s first works on the theory of cardinality, that the
rationals are countable. However, it is not so simple to give an explicit enumeration
of all of them. Throughout this paper, we designate N as the set of nonnegative
integers {0, 1, 2, 3, . . .} and Q+ as the set of nonnegative rationals. Most of the
time (see [4]), one proves that Q+ is countable by constructing a bijection (or an
injection) from N2 to N, which yields an injection from Q+ to N, and the conclusion
follows from the Cantor-Bernstein theorem.

In 2000, N. Calkin and H. S. Wilf [7] described an elegant explicit enumeration
of Q∗

+ where Q∗
+ denotes the set of positive rationals. Its first few terms are
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This sequence, known as the Calkin-Wilf sequence, is defined by a binary tree in
the following way:

• the top of the tree is 1
1 ;

• the vertex labeled a
b has two children: the left child labeled a

a+b and the right

child labeled a+b
b .
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This leads to the Calkin-Wilf tree, whose first few rows are:
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The Calkin-Wilf sequence is then obtained by reading the fraction 1
1 on level

1, then the two fractions on level 2 from left to right, then the four fractions on
level 3 from left to right, and so on. Besides the fact that every positive rational
number appears once and only once in reduced form in the tree, this sequence has
another remarkable property: the numerator of the term of rank n + 1 is equal to
the denominator of the term of rank n. In other words, there exists a sequence
of positive integers (bn) such that the term of rank n of the Calkin-Wilf sequence
is equal to bn

bn+1
. In fact, the sequence (bn) was discovered as early as the mid

19th century, independently by the German mathematician M. Stern [18] and the
French clockmaker A. Brocot [5] by considering the median fraction a+b

c+d of two
fractions a

b and c
d . This procedure leads to another binary tree which enumerates

the rationals, named the Stern-Brocot tree [8, pp. 116–123 and pp. 305–306] and
closely connected to the Calkin-Wilf tree (see [11] and [2]). B. Reznick [17] notes
that Stern proved in his 1858 paper that, for every pair of positive coprime integers
(a, b), there exists one and only one integer n such that bn = a and bn+1 = b. In other
words, Stern proved that Q∗

+ is countable more than 15 years before Cantor’s first
papers on the subject. The sequence (bn), which is now known as Stern’s diatomic
sequence, has been widely studied since that time and is known to be connected
with many other subjects such as hyperbinary representations, Farey sequences,
continued fractions, the Fibonacci sequence and the Minkowski ?-function (see [1,
pp. 104–108] and [14]).

The Calkin-Wilf sequence gives also the answer to a problem set by D. Knuth
[9]: if vp(n) denotes the p-adic valuation of the positive integer n and N∗ the set of
positive integers {1, 2, 3, . . .}, prove that the sequence (xn) defined by

x0 = 0 and, for every n ∈ N∗, xn =
1

1 + 2v2(n)− xn−1
(1)

enumerates the positive rationals. Various solutions to this problem were given in
[10], among them C. P. Ruppert’s solution, which associates to the sequence (xn)
a tree almost identical to Calkin-Wilf tree. The only difference is that the vertices
are labeled, not by the rationals a

b , but by the pairs of coprime positive integers



INTEGERS: 18A (2018) 3

(a, b), which is clearly the same. Hence Knuth’s sequence (xn) is exactly the same
the Calkin-Wilf sequence.

The editors of [10] also quote an answer of Moshe Newman, who showed that the
sequence (xn) satisfies the recurrence relation:

For every n ∈ N∗, xn =
1

1 + 2 ⌊xn−1⌋ − xn−1
(2)

where ⌊x⌋ denotes the integral part of the real number x. This implies, in particular,
the striking result:

For every n ∈ N∗, ⌊xn−1⌋ = v2(n). (3)

Another way to formulate Newman’s result consists in saying that the function f
defined on R+ by

f : x %→ 1

1 + 2 ⌊x⌋ − x
(4)

generates all positive rationals by iteration starting from x0 = 0.

The purpose of this paper is to construct two sequences (tn) and (sn) satisfying
relations similar to (1) and (2). For doing this, we define two trees: a ternary
tree associated to the sequence (tn) and a quinary tree associated to the sequence
(sn). These two trees are not labeled by rationals or pairs of coprime integers, but
by triples of integers. They can be considered as generalizations of the Calkin-Wilf
tree, in the sense that they lead to sequences which enumerate the positive rationals
and satisfy relations similar to (1), (2) and (3). However, these generalizations are
quite different from those proposed by T. Mansour and M. Shattuck ([12] and [13]),
by B. Bates and T. Mansour [3] and by S. H. Chan [6]. Finally, we show that
the sequences (tn) and (sn) are, together with the Calkin-Wilf sequence, the only
sequences (un) which enumerate the positive rationals and are defined by u0 = 0
and a recurrence relation of the form

un :=
f(un−1)

k
(n = 1, 2, 3, . . .) (5)

where f is defined by (4) and k ∈ N∗.

2. A Ternary Tree

2.1. Definition

We consider the ternary tree A3 whose vertices are labeled by triples of integers
(a ; b ; c) and such that:

• the top of the tree is (1 ; 2 ; 0);
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• the children of (a ; b ; c) are defined by:

! if b is odd:

(a ; b ; c)

(4(c+ 1)a− b ; 2a ; 0) (a ; 2a+ b ; c+ 1) (2a+ b ; 2a+ 2b ; 0)

! if b is even:

(a ; b ; c)

(
2(c+ 1)a− b

2
; a ; 0

)
(a ; 2a+ b ; c+ 1)

(
a+

b

2
; a+ b ; 0

)

Hence the first few levels of A3 are:

(1 ; 2 ; 0)

(1 ; 1 ; 0)

(3 ; 2 ; 0) (1 ; 3 ; 1) (3 ; 4 ; 0)

(1 ; 4 ; 1)

(2 ; 1 ; 0) (1 ; 6 ; 2) (3 ; 5 ; 0)

(2 ; 3 ; 0)

(5 ; 4 ; 0) (2 ; 7 ; 1) (7 ; 10 ; 0)

The three children of the vertex N = (a ; b ; c) are called respectively the left,
the middle and the right child of N and we say that N is the parent of these three
children.

For every n ∈ N∗, we denote by Nn = (an ; bn ; cn) the vertex of index n of the tree
A3 read from the top and, at each level, from left to right. Hence, N1 = (1 ; 2 ; 0),
N2 = (1 ; 1 ; 0), N3 = (1 ; 4 ; 1), and so on. Observe that, by definition, for every
n ∈ N∗, the left, middle and right children of Nn are N3n−1, N3n and N3n+1,
respectively.

Lemma 1. For every n ∈ N∗, cn = v3(n).

Proof. For n = 1, the statement is true since c1 = 0 = v3(1). Assume that cn =
v3(n) for a given n ∈ N∗. Then the left child of Nn is N3n−1, whence by definition
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c3n−1 = 0 = v3(3n− 1). Similarly, N3n+1 is the right child of Nn and c3n+1 = 0 =
v3(3n + 1). Finally, as N3n is the middle child of Nn, c3n = cn + 1 = v3(n) + 1 =
v3(3n), and Lemma 1 is proved by induction.

Lemma 2. For every n ∈ N∗, an and bn are positive coprime integers and, more-
over, 2an " bn − 4ancn.

Proof. For n = 1, the statement is true since a1 = 1 , b1 = 2 and c1 = 0. Assume
that, for a given n ∈ N∗, an and bn are positive coprime integers satisfying 2an "
bn − 4ancn.

Assume that bn is odd. Then the three children of Nn are

N3n−1 = (4(cn + 1)an − bn ; 2an ; 0)

N3n = (an ; 2an + bn ; cn + 1)

N3n+1 = (2an + bn ; 2an + 2bn ; 0)

As an and bn are positive integers, it is clear that b3n−1 = 2an, a3n = an,
b3n = a3n+1 = 2an + bn and b3n+1 = 2an + 2bn are positive integers. Moreover,
since 2an " bn − 4ancn,

a3n−1 = 4(cn + 1)an − bn = 4an − (bn − 4ancn) " 2an (6)

and a3n−1 is also a positive integer.

Let d = gcd (a3n−1, b3n−1). Then d divides b3n−1 = 2an and 2(cn + 1)b3n−1 −
a3n−1 = bn. Hence d is odd since bn is odd and therefore d divides an. As an and
bn are coprime, we have d = 1, which means that a3n−1 and b3n−1 are coprime.
Similarly we obtain gcd (a3n, b3n) = gcd (a3n+1, b3n+1) = 1.

Finally, for N3n−1 we have, by using (6),

b3n−1 − 4a3n−1c3n−1 = 2an # a3n−1 # 2a3n−1.

For N3n, by using (6),

b3n − 4a3nc3n = bn − 4ancn − 2an # 2an − 2an = 0 # 2a3n,

and for N3n+1,

b3n+1 − 4a3n+1c3n+1 = 2an + 2bn # 4an + 2bn = 2a3n+1.

In the case where bn is even, the proof is similar. One only has to replace (6) by

a3n−1 = 2(cn + 1)an − bn
2

= 2an − bn − 4ancn
2

" an. (7)

Hence Lemma 2 is proved by induction.
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Now, for every n ∈ N∗, we put

tn =
an
bn

.

By Lemma 2, (tn)n∈N∗ is a sequence of positive reduced rationals. The first few
terms of this sequence are:
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We remark that, for every k ∈ N∗,

t3k−1 =
4(ck + 1)ak − bk

2ak
= 2(v3(k) + 1)− 1

2tk
= 2v3(3k)−

1

2tk
, (8)

t3k =
ak

2ak + bk
=

tk
2tk + 1

, (9)

t3k+1 =
2ak + bk
2ak + 2bk

=
2tk + 1

2tk + 2
. (10)

We extend this sequence to N by putting

t0 = 0.

We will show that (tn)n∈N enumerates the nonnegative rationals, i.e. that n %→ tn
is a bijection from N to Q+. Before this, we will give two recurrence relations
satisfied by the sequence (tn).

2.2. Two Recurrence Relations

First we prove that the sequence (tn) satisfies a recurrence relation similar to (1).

Proposition 1. For every n ∈ N∗, tn =
1

2(1 + 2v3(n)− tn−1)
.

Proof. The statement is true for n = 1 and n = 2, since

1

2(1 + 2v3(1)− t0)
=

1

2
= t1 and

1

2(1 + 2v3(2)− t1)
= 1 = t2.
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Now assume that, for a given integer n " 3, the property is true for every positive
integer j # n− 1. Denote by Nk (k ∈ N∗) the parent of Nn.

1st case. — If Nn is the left child of Nk, then n = 3k − 1 and Nn−1 is the right
child of Nk−1. As the property is true when n = k, we have by using (8)

tn = 2(v3(k) + 1)− 1

2tk
= 2(v3(k) + 1)− (1 + 2v3(k)− tk−1) = 1 + tk−1. (11)

Moreover, since Nn−1 is the right child of Nk−1, tn−1 = 2tk−1+1
2tk−1+2 by (10). But

v3(n) = v3(3k − 1) = 0, whence

1

2(1 + 2v3(n)− tn−1)
=

1

2
(
1− 2tk−1+1

2tk−1+2

) = 1 + tk−1 = tn.

2nd case. — If Nn is the middle child of Nk, then n = 3k and Nn−1 is the left
child of Nk. By using (8), we have

tn−1 = t3k−1 = 2v3(3k)−
1

2tk
= 2v3(n)−

1

2tk
.

Therefore by using (9) we obtain

1

2(1 + 2v3(n)− tn−1)
=

1

2 + 1
tk

=
tk

2tk + 1
= tn.

3rd case. — If Nn is the right child of Nk, then n = 3k + 1 and Nn−1 is the
middle child of Nk. Hence, by (9) and (10),

tn−1 =
tk

2tk + 1
and tn =

2tk + 1

2tk + 2
.

Since v3(n) = v3(3k + 1) = 0, we have

1

2(1 + 2v3(n)− tn−1)
=

1

2
(
1− tk

2tk+1

) =
2tk + 1

2tk + 2
= tn.

The proof by induction is now complete.

Corollary 1. For every k ∈ N∗, t3k−1 = 1 + tk−1.

Proof. This is exactly the equality (11).

Corollary 2. For every k ∈ N∗, t3k ∈ (0, 1
2 ), t3k+1 ∈ (12 , 1) and t3k+2 ∈ (1,+∞).

Proof. Let k ∈ N∗. Since tk > 0,

t3k =
tk

2tk + 1
∈ (0, 1

2 ) and t3k+1 =
2tk + 1

2tk + 2
∈ (12 , 1).

Moreover, from Corollary 1, t3k+2 = t3(k+1)−1 = 1 + tk > 1.
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Remark 1. As t0 = 0, t1 = 1
2 and t2 = 1, we can also see that for every k ∈ N,

t3k ∈ [0, 12 ), t3k+1 ∈ [ 12 , 1) and t3k+2 ∈ [1,+∞).

Now we prove that the sequence (tn) satisfies relations similar to (2) and (3).

Proposition 2. For every n ∈ N∗, ⌊tn−1⌋ = v3(n).

Proof. For n = 1, clearly ⌊t0⌋ = ⌊0⌋ = 0 = v3(1).

Let n " 2. Assume that, for every positive integer j # n− 1, ⌊tj−1⌋ = v3(j) and
denote by Nk the parent of Nn (k ∈ N∗).

If Nn is the left child of Nk, then n = 3k− 1, whence v3(n) = v3(3k− 1) = 0 and
by Remark 1 ⌊tn−1⌋ =

⌊
t3(k−1)+1

⌋
= 0.

If Nn is the right child of Nk, then n = 3k + 1, v3(n) = v3(3k + 1) = 0 and
⌊tn−1⌋ = ⌊t3k⌋ = 0.

If Nn is the middle child of Nk then n = 3k and Nn−1 is the left child of Nk.
Hence, by Corollary 1, tn−1 = 1 + tk−1 and ⌊tn−1⌋ = 1 + ⌊tk−1⌋. By the induction
hypothesis, it follows that ⌊tn−1⌋ = 1 + v3(k) = v3(3k) = v3(n).

The proof by induction is now complete.

From 1 and 2 we get directly

Corollary 3. Let f be defined as in (4). Then the sequence (tn)n∈N satisfies t0 = 0
and, for every n ∈ N∗,

tn =
1

2(1 + 2 ⌊tn−1⌋ − tn−1)
=

f(tn−1)

2
.

2.3. The Sequence (tn) Enumerates Q+

Theorem 1. The mapping n %→ tn is a bijection from N to Q+.

Proof. As t0 = 0 and tn = an
bn

is reduced for every n ∈ N∗, we have to prove that, for
every pair of coprime positive integers (α,β), there exists one and only one n " 1
such that an = α and bn = β.

The proof is by induction on m = α+β. If m = 2 then α = β = 1 and Corollary
2 implies that n = 2 is the only integer such that an = bn = 1.

Assume that, for a given integer m " 2, the property is true for every k ∈
{2, . . . ,m}. Let (α,β) be a pair of coprime positive integers such that α+β = m+1.

1st case: β > 2α. Then, by Corollary 2, if n exists, there is a k ∈ N∗ such that
n = 3k. Hence Nn is the middle child of Nk. Therefore Nk = (α ;β − 2α ; ck).
Now, α + (β − 2α) = β − α # m and α and β − 2α are coprime. By the induction
hypothesis, there exists one and only one integer k such that ak = α and bk = β−2α,
which proves that n = 3k is the only integer such that an = α and bn = β.

2nd case: β = 2α. Then, (α,β) = (1, 2) since α and β are coprime. By Corollary
2, n = 1 is the sole integer such that an = 1 and bn = 2.
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3rd case: β < 2α < 2β. Then, by Corollary 2, if n exists, there is a k ∈ N∗

such that n = 3k + 1. Hence Nn is the right child of Nk. If β is even Nk =(
α− β

2 ;β − α ; ck
)
. Since α− β

2 +β−α = β
2 # m and α− β

2 and β−α are coprime,

we see, as in the first case, that n = 3k+1 is the only integer such that an = α and
bn = β. If β is odd then Nk = (2α− β ; 2β − 2α ; ck) . As 2α−β+2β−2α = β # m
and 2α−β and 2β−2α are coprime (since β is even), we draw the same conclusion.

4th case: α = β. Then α = β = 1 since α and β are coprime. But this is
impossible because α+ β = m+ 1 " 3.

5th case: α > β. Then, by Corollary 2, if n exists, there is an integer k " 2 such
that n = 3k − 1. Hence Nn is the left child of Nk. In this case, we cannot argue
as before because, for odd bn, an + bn is not necessarily greater than ak + bk; this
can be seen, for example, when N3 = (1 ; 4 ; 1) and N8 = (2 ; 1 ; 0). However, by
Corollary 1, tn = 1 + tk−1, whence tk−1 = α−β

β . As (α − β) + β = α # m and
α−β and α are coprime, by the induction hypothesis there exists one and only one
integer k " 2 such that ak−1 = α− β and bk−1 = β. This shows that n = 3k is the
only integer such that an = α and bn = β.

The proof by induction is now complete.

Remark 2. Theorem 1 appeared in a slightly different version as a problem in
the American Mathematical Monthly [15]. S. Northshield gave a solution to this
problem in [16] by constructing an analogue (bn) of Stern’s sequence for Z[

√
2].

More precisely, by putting Rn =
√
2 bn+1

bn
for every positive integer n, Northshield

shows that, on the one hand, the sequence (Rn) is an enumeration of the positive
rationals and, on the other hand, it satisfies R0 = 2 and, for every positive integer
n, Rn = 4v3(n) + 2 − 2

Rn−1
. Thus, for every positive integer, Rn = 1

tn
. Moreover,

we can see that Northshield’s sequence (bn) is related to the tree A3 as Stern’s
sequence is related to the Calkin-Wilf tree.

In summary, the ternary tree A3 enabled us to construct a sequence (tn) which
enumerates the nonnegative rationals and satisfies recurrence relations similar to
(1) and (2). Now we give a similar construction by using a quinary tree.

3. A Quinary Tree

3.1. Definition

We consider the quinary tree A5 whose vertices are labeled by triples of integers
(a ; b ; c) such that:

• the top of the tree is (1 ; 3 ; 0);
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• the children of (a ; b ; c) are defined by:

! if 3 does not divide b:

(a ; b ; c)

(3(4c+ 3)a− 2b ; 3(6c+ 5)a− 3b ; 0)

((6c+ 5)a− b ; 6(c+ 1)a− b ; 0)

(6(c+ 1)a− b ; 3a ; 0)

(a ; 3a+ b ; c+ 1)

(3a+ b ; 6a+ 3b ; 0)

! if 3 divides b:

(a ; b ; c)

(
(4c+ 3)a− 2b

3
; (6c+ 5)a− b ; 0

)

((6c+ 5)a− b ; 6(c+ 1)a− b ; 0)

(
2(c+ 1)a− b

3
; a ; 0

)

(a ; 3a+ b ; c+ 1)

(
a+

b

3
; 2a+ b ; 0

)

The five children of the vertex N = (a ; b ; c) are called from left to right the first,
second, third, fourth and fifth child of N , respectively.

For every n ∈ N∗, we denote by Nn = (an ; bn ; cn) the vertex of index n of the
tree A5 read from the top and, at each level, from left to right. Thus, N1 = (1 ; 3 ; 0),
N2 = (1 ; 2 ; 0), N3 = (2 ; 3 ; 0), N4 = (1 ; 1 ; 0), N5 = (1 ; 6 ; 1), and so on.

By definition, for every n ∈ N∗, the i-th child of Nn is N5(n−1)+i+1.

It is easy to check, as in Lemmas 1 and 2, that for every n ∈ N∗, we have cn =
v5(n), an ∈ N∗, bn ∈ N∗ (with, this time, 3an " bn − 6ancn) and gcd(an, bn) = 1.
Hence, by putting sn = an

bn
for every n ∈ N∗, we define a sequence (sn)n∈N∗ of

positive reduced rationals, whose first few terms are:
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1
3

1
2

5
9

3
4

4
3

1
5

5
12

2
3

4
7

7
9

3
2

2
9

3
7

1

7
12

4
5

5
3

1
4

4
9

1
6

3
5

5
6 2 1

9
3
8

2
5

8
15

5
7

7
6

2
11

11
27

We remark that for every k ∈ N∗, whether or not 3 divides bk, we have

s5k−3 =
3(4ck + 3)ak − 2bk
3(6ck + 5)ak − 3bk

=
3(4ck + 3)− 2

sk

3(6ck + 5)− 3
sk

, (12)

s5k−2 =
(6ck + 5)ak − bk
6(ck + 1)ak − bk

=
6ck + 5− 1

sk

6(ck + 1)− 1
sk

, (13)

s5k−1 =
6(ck + 1)ak − bk

3ak
= 2(ck + 1)− 1

3sk
, (14)

s5k =
ak

3ak + bk
=

1

3 + 1
sk

, (15)

s5k+1 =
3ak + bk
6ak + 3bk

=
3sk + 1

6sk + 3
=

3 + 1
sk

6 + 3
sk

. (16)

We extend this sequence to N by putting s0 = 0. We will now show, as we did
for (tn)n∈N, that (sn)n∈N enumerates the elements of Q+.

3.2. Recurrence Relations

Proposition 3. For every n ∈ N∗, sn =
1

3(1 + 2v5(n)− sn−1)
.

Proof. For n = 1 and n = 2, the statement is true since

1

3(1 + 2v5(1)− s0)
=

1

3
= s1 and

1

3(1 + v5(2)− s1)
=

1

2
= s2.

Assume that, for a given n " 2, the property is true for every positive integer
j # n− 1. Denote by Nk (k ∈ N∗) the parent of Nn .

1st case. — If Nn is the first child of Nk then n = 5k − 3 and Nn−1 is the fifth
child of Nk−1. By the induction hypothesis,

sk =
1

3(1 + 2v5(k)− sk−1)
=

1

3 (1 + 2ck − sk−1)
.
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Hence, by using (12),

sn =
3(4ck + 3)− 2

sk

3(6ck + 5)− 3
sk

=
3(4ck + 3)− 6(2ck + 1− sk−1)

3(6ck + 5)− 9(2ck + 1− sk−1)
=

1 + 2sk−1

2 + 3sk−1
. (17)

As v5(n) = 0, (16) yields

1

3(2v5(n) + 1− sn−1)
=

1

3(1− s5(k−1)+1)
=

1

3
(
1− 3sk−1+1

6sk−1+3

) =
2sk−1 + 3

3sk−1 + 2
= sn.

2nd case. — If Nn is the second child of Nk then n = 5k − 2 and Nn−1 is the
first child of Nk. As v5(n) = 0, (12) and (13) yield

1

3(2v5(n) + 1− sn−1)
=

1

3(1− s5k−3)
=

1

3
(
1− 3(4ck+3)ak−2bk

3(6k+5)ak−3bk

)

=
(6ck + 5)ak − bk
6(ck + 1)ak − bk

= s5k−2 = sn.

3rd case. — If Nn is the third child of Nk then n = 5k − 1 and Nn−1 is the
second child of Nk. As v5(n) = 0, (13) and (14) yield

1

3(2v5(n) + 1− sn−1)
=

1

3(1− s5k−2)
=

1

3
(
1− (6ck+5)ak−bk

6(ck+1)ak−bk

)

=
6(ck + 1)ak − bk

3ak
= s5k−1 = sn.

4th case. — If Nn is the fourth child of Nk then n = 5k and Nn−1 is the third
child of Nk. As v5(5k) = v5(k) + 1 = ck + 1, (14) and (15) yield

1

3(2v5(n) + 1− sn−1)
=

1

3
(
2(ck + 1) + 1−

(
2(ck + 1)− 1

3sk

)) =
1

3 + 1
sk

= sn.

5th case. — If Nn is the fifth child of Nk then n = 5k+1 and Nn−1 is the fourth
child of Nk. As v5(n) = 0, (15) and (16) yield

1

3(2v5(n) + 1− sn−1)
=

1

3
(
1− ak

3ak+bk

) =
3ak + bk
6ak + 3bk

= sn.

This completes the proof by induction.

Corollary 4. For every k ∈ N∗, s5k−1 = 1 + sk−1.

Proof. Let k be a positive integer. By definition, s5k−1 = 2(ck + 1)− 1
3sk

and, by

Proposition 3, sk = 1
3(2ck+1−sk−1)

. Therefore s5k−1 = 2(ck+1)− (2ck+1− sk−1) =
1 + sk−1.
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As in Corollary 2, we deduce from Proposition 3 that the rationals sn belong to
one of the five intervals [ 12 ,

2
3 ), [

2
3 , 1), [1,+∞), [0, 1

3 ) or [ 13 ,
1
2 ) depending on their

rank in the tree A5 as a first, second, third, fourth or fifth child:

Corollary 5. For every k ∈ N∗, s5k ∈ (0, 1
3 ), s5k+1 ∈ (13 ,

1
2 ), s5k+2 ∈ (12 ,

2
3 ),

s5k+3 ∈ (23 , 1) and s5k+4 ∈ (1,+∞).

Proof. Let k ∈ N∗. As sk > 0, (15) and (16) imply that s5k ∈ (0, 1
3 ) and s5k+1 ∈

(13 ,
1
2 ). Now (17) yields s5k+2 = 1+2sk

2+3sk
whence s5k+2 ∈ (12 ,

2
3 ). However, from

Proposition 3, s5k+3 = 1
3(1−s5k+2)

. As 1
2 < s5k+2 < 2

3 , 1 < 3(1 − s5k+2) <
3
2 , this

yields s5k+3 ∈ (23 , 1). Finally, s5k+4 > 1 since s5k+4 = 1 + sk by Corollary 4.

Remark 3. As s0 = 0, s1 = 1
3 , s2 = 1, s3 = 2

3 and s4 = 1, we see that for every k ∈
N, s5k ∈ [0, 13 ), s5k+1 ∈ [ 13 ,

1
2 ), s5k+2 ∈ [ 12 ,

2
3 ), s5k+3 ∈ [ 23 , 1) and s5k+4 ∈ [1,+∞).

Now we prove that the sequence (sn) satisfies relations similar to (2) and (3).

Proposition 4. For every n ∈ N∗, ⌊sn−1⌋ = v5(n).

Proof. For n = 1, ⌊s0⌋ = ⌊0⌋ = 0 = v5(1). Now assume that, for a given integer
n " 2 and every integer j # n− 1, ⌊sj−1⌋ = v5(j). Denote Nk (k ∈ N∗) the parent
of Nn .

If Nn is not the fourth child of Nk then 5 does not divide n. Therefore v5(n) = 0
and n− 1 ̸≡ 4 (mod 5) and, by Corollary 5, ⌊sn−1⌋ = 0.

If N is the fourth child of Nk then n = 5k, whence n − 1 = 5k − 1. Now
Corollary 4 yields sn−1 = 1 + sk−1, which implies ⌊sn−1⌋ = 1 + ⌊sk−1⌋. However,
by the induction hypothesis, ⌊sk−1⌋ = v5(k), whence ⌊sn−1⌋ = 1 + v5(k) = v5(5k),
i.e., ⌊sn−1⌋ = v5(n). This completes the proof by induction.

The following statement is a direct consequence of Propositions 3 and 4.

Corollary 6. Let f be defined as in (4). Then the sequence (sn)n∈N satisfies s0 = 0
and, for every n ∈ N∗,

sn =
1

3(1 + 2 ⌊sn−1⌋ − sn−1)
=

f(sn−1)

3
.

3.3. The Sequence (sn) Enumerates Q+

Theorem 2. The mapping n %→ sn is a bijection from N to Q+.

Proof. As in the proof of Theorem 1, we have to prove that, for every pair of coprime
positive integers (α,β), there exists one and only one n " 1 such that an = α and
bn = β.

The proof is again by induction on m = α+ β.
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If m = 2, then α = β = 1 and Corollary 5 shows that n = 4 is the only integer
such that an = bn = 1.

Assume that, for a given integer m " 2, the property is true for every k ∈
{2, . . . ,m}. Let (α,β) be a pair of coprime positive integers such that α+β = m+1.

As in the proof of Theorem 1, we deduce from Corollary 5 and Remark 2 that
n = 1 (resp. n = 2, n = 3 and n = 4) if β = 3α (resp. β = 2α, 2β = 3α and β = α).

Now we distinguish five cases.

1st case: β > 3α. Then, by Corollary 5, if n exists, n = 5k with k ∈ N∗. Hence,
by (15), sk = α

β−3α . However, α + (β − 3α) = β − 2α # m and α and β − 3α are
coprime, which yields the conclusion by using the induction hypothesis.

2nd case: 2β < 6α < 3β. Then, by Corollary 5, if n exists, n = 5k + 1 with
k ∈ N∗. Hence, by (15),

sk =
3α− β

3β − 6α
if 3 ! β and sk =

α− β
3

β − 2α
if 3 | β

which yields the conclusion as in the first case.

3rd case: 3β < 6α < 4β. Then, by Corollary 5, if n exists, n = 5k − 3 with
k ∈ N∗. Hence, by (15), sk−1 = 2α−β

2β−3α which yields the conclusion as in the first
case.

4th case: 2β < 3α < 3β. By Corollary 5, if n exists, n = 5k−2 with k ∈ N∗. Then,
by Proposition 3, s5k−1 = 1

3(1−s5k−2)
and therefore s5k−2 = 1− 1

3s5k−1
= 1− 1

3(1+sk−1)

by Corollary 4. Hence,

sk−1 =
3α− 2β

3β − 3α
if 3 ! β and sk−1 =

α− 2β
3

β − α
if 3 | β

which yields the conclusion as in the first case.

5th case: α > β. By Corollary 5, if n exists, n = 5k−1 with k ∈ N, k " 2. Then,
by Corollary 4, sn = 1 + sk−1 and therefore sk−1 = α−β

β and the conclusion holds
as in the first case. This completes the proof by induction.

4. The Relation (5) with k " 4

Newman’s result (2) and Propositions 2 and 4 show that the Calkin-Wilf sequence
and sequences (tn) and (sn) are all defined by a first term u0 = 0 and by a recurrence
relation of the form

un :=
f(un−1)

k
(n = 1, 2, 3, . . .)

where k ∈ {1, 2, 3} and f is defined by (4). It is natural to ask if such a relation
defines an enumeration of Q+ for every k " 1. We prove now that this is not the
case.
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Let k " 4 be an integer. Put fk = 1
kf and consider the sequence (un) defined

by u0 = 0 and, for every n ∈ N∗, un = fk(un−1). It is easy to check that the only
solutions of fk(x) = x are

γk =
1

2
− 1

2

√
1− 4

k
and δk =

1

2
+

1

2

√
1− 4

k
,

and that 0 < γk # δk < 1. Hence, as fk is increasing on [0, 1) and fk(0) =
1
k > 0,

fk ([0, γk]) ⊂ [0, γk]. Moreover, u1 = fk(0) =
1
k > u0. Therefore (un) is increasing

since fk is increasing, which proves that (un) is convergent. As fk is continuous on
[0, γk], limun = γk. Hence γk is the only accumulation point of (un), which proves
that (un) cannot enumerate Q+, nor even the rationals of a given interval.

Acknowledgement. The author wants to thank the anonymous referee for valu-
able comments (twice!) and Michel Marcus for pointing out the sequence (Rn)
introduced by S. Northshield in [16]. He also wishes to express his deep gratitude
to Daniel Duverney for translating an earlier french version of this paper and to
Jean-Paul Allouche for his excellent support and goodwill.

References

[1] M. Aigner and G. M. Ziegler, Proofs From The Book, fourth ed., Springer-Verlag, Berlin,
2010.

[2] B. Bates, M. Bunder, and K. Tognetti, Linking the Calkin-Wilf and Stern-Brocot trees,
European J. Combin. 31 (2010), no. 7, 1637–1661.

[3] B. Bates and T. Mansour, The q-Calkin-Wilf tree, J. Combin. Theory Ser. A, 118 (2011),
no. 3, 1143–1151.

[4] D. M. Bradley, Counting the positive rationals: a brief survey, https://arxiv.org/abs/
math/0509025v1, 2005.

[5] A. Brocot, Calcul des rouages par approximation, nouvelle méthode, Revue Chronométrique
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