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Abstract
We begin by surveying recent and less recent results about the (non-)intersectivity
of curves generated by generalized Weyl sums associated with real sequences, in
particular when these sequences are morphic or automatic. Then we turn to the
case of paperfolding dragon curves, pointing in particular to the unpublished works
of Spiros Michaelis and of Reimund Albers.

– To Je↵ Shallit on the occasion of his 60th birthday

1. Introduction

Having recently read a paper by Tabachnikov entitled “The dragon curves revisited”
[48] the authors remembered numerous discussions on this subject, which convinced
them to revisit dragon curves, aka paperfolding curves. One of the open questions
in Tabachnikov’s paper is the (non-)interesectivity of dragon curves obtained by
unfolding a regularly folded strip of paper at an angle di↵erent from 90 degrees.
Recall that for 90 degrees the curve does not cross itself: see the papers of Davis
and Knuth [10, 11]; also see Figure 1 below. Tabachnikov’s paper cites in particular
an observation of Knuth [23] who noted in 1969 that unfolding at 95 degrees would
“lead to paths that cross themselves.” The question is then: for which unfolding
angles does the curve intersect itself?

More generally, what kind of curves are “non-intersective”? Non-intersective
curves, also called “self-avoiding curves,” or “simple curves,” are curves – usually

1Michel Mendès France passed away on January 20, 2018.
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Figure 1: Dragon curve for an unfolding angle of 90 degrees

two-dimensional – that do not intersect themselves. Of course there are trivial
examples of such curves: think of a straight line. Thus non-intersecting plane
curves are interesting if they are somehow “complicated”. In particular one can
think of curves that fill the plane or a plane region of positive Lebesgue measure
– such curves are called “plane-filling curves” – and/or of curves having a fractal
dimension larger than 1.

Another class of curves, which are actually broken lines, consists of curves as-
sociated with a sequence taking its value in a finite set. For example, with a ±1
sequence one can associate the broken line composed of segments of length 1, that
starts from the origin and is such that, at the n-th step, the next segment is con-
catenated to the previous after a 90-degree right or left turn according to the sign
of the ±1 sequence. (A more precise definition can be found in [35] or [48]; also see
below.) A natural generalization consists of replacing 90 degrees with other values:
it can be expected that the non-intersectivity is true if the angle is large, say near
180 degrees, and false if the angle is very small. But what happens in between?

The present paper surveys the (non-)intersectivity of curves associated with se-
quences taking their values in a finite set, in particular in the case of morphic or
automatic sequences. The last part of the paper will start from a remark/question
of the second named author which appears to be not true, and survey the unpub-
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lished works of Spiros Michaelis (whose “Diplomarbeit” was supervised by the third
named author) and of Reimund Albers (whose doctoral thesis was based upon a
question of the third named author).

2. A Quick View on Automatic and Morphic Sequences

A way of generating sequences that are somehow regular without necessarily being
“too simple” is to use morphisms of the free monoid and their iterations. We give
precise definitions below. For more on the subject, the readers can look, e.g., at the
books [3, 18, 19].

Definition 1.

• Given an alphabet (i.e., a finite set) A, the free monoid generated by A is de-
noted by A⇤: this is the set of all words (i.e., finite sequences) on A, including
the empty word, equipped with the concatenation of words. In particular the
empty word is the unit of this monoid. The elements of A are called letters.
The length of a word is the number of its letters.

• If A and B are two alphabets, a morphism from A⇤ to B⇤ is a homomorphism
for the concatenation. Note that a morphism from A⇤ to B⇤ is well-defined
as soon as it is defined on A.

• A morphism on A⇤ is called uniform if the images of all letters in A have the
same length. If this length is `, the morphism is called a (uniform) morphism
of length ` or an `-morphism.

Definition 2. The set of all sequences (finite and infinite) on an alphabet A,
i.e., the set A⇤ [ AN, is equipped with the product topology (meaning that we
consider pointwise convergence, or equivalently that two sequences are “close” if
they have a long common prefix). Let ' be a morphism from A⇤ to itself. A
sequence U = (uk)k�0 on A is called an iterative fixed point of ' if there exists a
letter a 2 A such that the sequence of words ('k(a))k�0 converges to U. This is
sometimes written as U = '1(a).

• A sequence S onA⇤ is called morphic if there exists an alphabet B, a morphism
' on B⇤, an iterative fixed point U of ', and a map (i.e., a 1-morphism) g
from B to A such that g(U) = S.

• If furthermore the morphism ' is `-uniform, the sequence S is said to be
`-automatic.

Examples 1. We give three examples of 2-automatic sequences and an example of
a morphic sequence (see, e.g., [3] for these and other examples).
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• The iterative fixed point of the morphism defined on {0, 1}⇤ by 0! 01, 1! 10
is the celebrated Prouhet-Thue-Morse sequence (see, e.g., [2]). It begins

0 1 1 0 1 0 0 1 . . .

This sequence is 2-automatic.

• The Golay-Shapiro-Rudin sequence is the 2-automatic sequence V defined
as follows. Let � be the 2-morphism defined on the alphabet {a, b, c, d} by
a ! ab, b ! ac, c ! db, d ! dc. The iterative fixed point of � beginning
with a is the sequence �1(a) = a b a c a b d b . . .. We then define ' to be
the map a! +1, b! +1, c! �1, d! �1. Then

V = '((�1(a)) = +1 + 1 + 1 � 1 + 1 + 1 � 1 + 1 . . .

• The (regular) paperfolding sequence is the 2-automatic sequence  (µ1(a)),
where µ is the 2-morphism defined on the alphabet {a, b, c, d} by a ! ab,
b! cb, c! ad, d! cd, and  is the map a! +1, b! +1, c! �1, d! �1.
Thus the (regular) paperfolding sequence begins

+1 + 1 � 1 + 1 + 1 � 1 � 1 . . .

• The Fibonacci binary sequence is the iterative fixed point of the (non-uniform)
morphism 0! 01, 1! 0. This is thus a morphic sequence, which begins

0 1 0 0 1 0 1 0 . . .

3. A General Framework

Two papers that appeared the same year, one by Dekking and Mendès France [15],
the other by Loxton [29], revisited a general idea that consists of associating with
each sequence (an)n�0 of real numbers the polygonal line whose vertices are the
points (zn)n�0 of the complex plane given by zn =

P
kn e2i⇡ak . The “complexity”

of the pictures that are obtained is related to the behavior of the sequence they come
from. Of course similar ideas can be found earlier in the literature: we do not resist
citing the nice papers of Lehmer and Lehmer [27, 28]. Several other papers exploited
the same idea in order to visualize either sums zn =

P
kn e2i⇡ak as above (including

complete or incomplete Gauss sums where ak = ↵k2 and higher-order Gauss sums
also called Weyl sums where ak = P (k) for some polynomial P ), or variations, e.g.,
for (an)n a ±1 sequence, the sum that is considered is zn =

P
kn e2i⇡

P
jk aj . One

can call generalized Weyl sums these sums and their variations, when (an)n�0 is
any real sequence.
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It appears that the literature on similar questions is vast. We have selected be-
low, in chronological order, papers addressing questions related to fractal curves,
plane-filling curves, self-a�ne curves, or tilings, and showing spectacular pictures
of curves obtained by drawing sums of exponentials as above: the question of non-
intersectivity of such curves is either explicitly addressed or conjectured, or natu-
rally questionable in view of these figures or of some unexpectedly large parts of
them. More references, devoted to paperfolding and analogous curves, are given in
Section 4.

• In 1976 Lehmer [26] studied incomplete Gauss sums, i.e., sums of the type
GN (m) =

P
0⌫m�1 e2i⇡⌫2/N (the complete Gauss sum is obtained for m =

N). The paper shows in particular for some values of N the directed graphs
with vertices G0(N), G1(N), . . . GN (N) and with edges the segments of length
1 directed from GN (m) to GN (m + 1), and a relation with the Cornu spiral
(also known as clothoid or Euler spiral) for m = O(N1/2).

• In 1979 and 1980 Lehmer and Lehmer published their papers [27] and [28]
where they studied respectively the sums

P
0nm e2i⇡(bk(n)+nj)/k and the

sums
P

0nm e2i⇡(ek(n)+nj)/k where bk(n) is the sum of the digits of n in
base k and ek(n) =

P
n`n`+1 if the base-k expansion of n is n =

P
n`k`.

Note that for k = 2 and j = 0 these sums are respectively the summatory
function of the ±1 Prouhet-Thue-Morse sequence and the summatory function
of the ±1 Golay–Shapiro–Rudin sequence.

• In 1981, Dekking and Mendès France studied in [15] sums
P

0kn�1 e2i⇡quk

with q an integer, in relation with the distribution modulo 1 of the sequence of
real numbers (uk)k. They obtained, in particular, surprising pictures, e.g., for
uk =

p
17k, uk =

p
2k2, uk = ek2, uk = ⇡k2, uk = s(k)/4 and uk =

p
3s(k)

(where s(k) = b2(k) is the sum of the binary digits of the integer k), uk = k2/5,
and uk = (k + 1) log(k + 1).

• In 1981 Loxton [29] looked at sums
P

1nN e2i⇡un for sequences with un =
logk n. Also see Loxton’s 1983 paper [30], where there is a detailed study of
the sums

P
0nN e2i⇡tn1/2

.

• In 1983, Coquet [8] studied the sums
P

(�1)s(3n), where (s(n))n�0 is the
Prouhet-Thue-Morse sequence. He found a link between these sums and the
von Koch curve (also see [31] and [4]).

• A paper by Siromoney and Subramanian in 1983 [47] studies constructions
of the Peano and Hilbert space-filling curves: one of these constructions uses
morphic sequences.
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• In a paper which appeared in 1985 [17] Deshouillers made a fine study of sumsP
e2i⇡uk , with uk = ↵k3/2 for some values of ↵, where the starting idea is to

replace this sum by
P

(e2i⇡uk +e2i⇡uk�1)/2 and to use the Poisson summation
formula.

• In 1988, Berry and Goldberg [5] worked on the patterns obtained from the
sums

P
1nL ei⇡⌧n2

: they used the word curlicues for these patterns, recall-
ing the definition of the Oxford English Dictionary (curlicue: a fantastic curl
or twist).

• In 2008 Sinăı [46] revisited the curlicues associated with the sums
P

ei⇡an2

and the link with the continued fraction expansion of a.

• A paper posted on the server HAL in 2009 by Monnerot-Dumaine [36] contains
several interesting pictures linked to the Fibonacci fractal. The curves are
obtained through morphic (or through Sturmian) sequences, in particular the
fixed point beginning with 1 of the Fibonacci related morphism: 0 ! 10221,
1 ! 1022, 2 ! 1021 (also see [37, Sequence A143667]), with various drawing
angles, and there is an open problem about non-intersectivity.

• In 2012 Dekking published a nice paper on paperfolding morphisms, plane-
filling curves and fractal tiles [14] where he gave in particular criteria for both
the plane-filling and the non-intersecting properties of curves associated with
paperfolding sequences.

• A paper of Ramı́rez and Rubiano in 2012 [40] contains many pictures of curves
associated with the binary Fibonnaci sequence or with some other morphic
sequences, but it does not systematically study the non-intersectivity of all the
curves described there. [Also see the 2013 paper of Ramı́rez and Ribiano [41],
the 2014 paper [43] by Ramı́rez, Rubiano and De Castro where the authors
describe in particular the Fibonacci snowflake, and the 2015 paper [42] by
Ramı́rez and Rubiano.]

• Optical illusions appear for curves associated with the sums
P

1nN e2i⇡↵n1/2

(where ↵ is a fixed positive real): this is described and studied in a 2015 paper
[7] by Chamizo and Raboso.

4. Paper Folding and Unfolding

Start from a strip of paper and iteratively fold it in half lengthwise, all the folds
being in the same direction. Then unfold this folded piece of paper at a same given
angle. This provides a nice “dragon” curve also called the Heighway curve. Two
values of the unfolding angle were particularly studied, namely 90 and 60 degrees.
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A nice, somehow unexpected, result for the 90-degree angle is that the curve does
not cross itself except maybe at angles. In other words edges are never visited twice
[10, 11]. We call intersective a dragon curve that crosses itself at points that are not
angles. Thus a non-intersective dragon curve does not cross itself, except possibly at
angles. So that the result of Davis and Knuth [10, 11] can be formulated as follows.

Theorem 1. The 90-degree dragon curve is non-intersective.

5. Changing the Angle of Unfolding

5.1. A Plausible But Incorrect Intuition

The paperfolding curve with angle ✓ degrees is clearly intersective2 for ✓ strictly
less than 90 degrees and clearly non-intersective for ✓ equal to 180 degrees. Since
it is non-intersective for ✓ equal to 90 degrees, the following question is natural [33,
p. 200–201]:

Question. Is it true that the dragon curve with unfolding angle ✓ is non-intersecting
if and only if ✓ is larger than 90 degrees?

The authors were not aware of Knuth’s observation3 (intersectivity for 95 degrees)
at that time, while the third named author tried – unsuccessfully – to prove that
the answer to the question was yes. Note that Tabachnikov’s paper [48, Figure 8]
contains two pictures which show intersectivity for ✓ equal to 94 degrees and (visual)
non-intersectivity for ✓ for an angle ✓ of about 100 degrees. So that the question
above could be reformulated as:

Modified Question. Are there two intervals [90, ✓0) [ (✓1, 180], with 90 < ✓0 <
✓1 < 180, for which the corresponding paperfolding curves are non-intersecting?

5.2. The Unpublished Work of Spiros Michaelis

Finally doubting that the answer to the second question was a�rmative, the second
named author proposed to Spiros Michaelis, a student preparing a “Diplomarbeit”
at Bremen University, to make computer experiments. Indeed Michaelis found
intersections, which were really calculated afterwards. It is not clear whether it is
still possible to find a copy of this Diplomarbeit.

2If the unfolded strip is coded by R(ight) and L(eft) when passing from an edge to the next
one, the sequence of R’s and L’s obtained after unfolding a strip folded N times contains LLL
and RRR for N large enough. For an unfolding angle strictly less than 90 degrees, both LLL and
RRR provide an intersection, as noted for example in [1].

3As indicated in [48] the observation of Knuth is a previously unpublished addendum in [23].
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5.3. The Unpublished Doctoral Thesis of Reimund Albers

Gencho Skordev asked then some colleagues about the more general question:

General Question. Find intervals for ✓ for which the corresponding paperfolding
curves are (non-)intersective.

This question inspired both H.-O. Peitgen –who made some computations (1995)
showing intersectivity for some value > 90 degrees of the unfolding angle (as indi-
cated in [1, p. 131])– and Reimund Albers who proved nice results that were not
published, but can be found in his doctoral thesis [1, Chapter 9]. In particular he
gave a partial answer to the general question above.

Theorem 2 (Albers). The paperfolding curve is intersective if the unfolding angle
✓ satisfies 90 < ✓ < 95.126.

Remark 1. Albers writes “94.126 degrees” on Page 142 of [1] and “95.126 degrees”
on Page 143. The computations in the Table of Page 143 show that the “true” value
is 95.126.

Proof. (Sketch) Very roughly speaking the proof is a careful geometrical study
of the polygon Q10(✓) obtained when unfolding at angle ✓ a strip of paper that
has been folded 10 times. (Interestingly enough the self-intersection already occurs
after ten folds.) The author proves that a self-intersection occurs if the inequality
f(�) < 0 holds, where � = ⇡�↵

2 and f is defined by

f(x) = 64 cos5 x(cosx + cos(3x))� sinx

2 cosx sin(4x)� sin(5x)
� 1.

The computations then show that f(�) < 0 for � = 95.126, but that f(�) > 0 for
� = 95.127. Note that the condition on � is only a su�cient condition, so that this
says nothing about � � 95.127.

6. Conclusion

There are quite a few papers about (non-)intersectivity of dragon curves corre-
sponding to unfolding at an angle ✓, or of (non-)intersectivity of curves obtained by
iterating some kind of algorithm (finite automata, L-systems, etc.). To mention just
a few of them, let us cite the papers of Dekking [12, 13, 14], the paper of Dekking,
Mendès France and van der Poorten [16], and the references therein. Other works
deal with similar “machine generated” curves. We will cite for example self-a�ne
maps with the papers of Kôno and of Kamae [24, 20], and sequential machines
with the papers of Rodenhausen [44], and Peitgen, Rodenhausen, and Skordev [38]
(also see the references given in [38] and the extra references cited in the review
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MR1460970 on that paper), and self-similar functions and cellular automata with
the paper of Peitgen, Rodenhausen, and Skordev [39]. Several books mention curves
that are constructed algorithmically but have quite unusual properties (plane-filling,
tiling, self-similar, non-intersective, etc.). We only mention here three of them: first
the book of Mandelbrot [32] of course; then the book of Darst, Palagallo and Price
[9] that studies “curious curves” in a self-contained way that can be accessible to a
large audience; then, for the programming point of view, Chapter 11 (Programming
Examples of Space-Filling Curves), by Szilard, of the book [25]. Of course several
websites show all kinds of plane-filling and/or non-intersective curves, sometimes
from an artistic point of view; among them we only cite two possibly less known
sites, namely http://www.fractalcurves.com and http://robertfathauer.com.

Examples of two-dimensional foldings (handkerchief folding) and three-dimensional
foldings (wire-bending) can be found respectively in a paper of Salon [45, Sections
III and IV] and in a paper of Mendès France and Shallit [34]. Note that, curiously
enough, the wire-bending curves studied in [34] are all bounded, thus far from being
non-intersective

Actually the question of (non-)intersectivity of a dragon curve holds for general
paperfolding: fold a strip of paper where, at each step the fold is arbitrarily either in
the positive or in the negative direction; unfolding at 90 degrees yields a “general”
dragon curve which is known to be non-intersecting (this can be deduced from
[10, 11] as indicated, e.g., in [35]). What happens if the unfolding angle is larger
than 90 degrees? Another related question is the study of the (non-)intersectivity
of modified classical curves, where the modification changes an angle that plays the
role of an unfolding angle: for example Keleti [21], Keleti and Paquette [22], and
Cantrell and Palagallo [6] studied the (non-)intersectivity of generalized von Koch
curves.

Coming back to the general question of the (non-)intersectivity of generalized
Weyl sums associated with morphic or automatic sequences, no complete study has
been done yet. It would be nice to have a purely combinatorial condition on morphic
or automatic sequences that is equivalent to non-intersectivity.
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