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IRMA, UMR 7501, Université de Strasbourg et CNRS, Strasbourg, France

bugeaud@math.unistra.fr

Tomislav Pejković
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Abstract
Let p be a prime number and µ > 2 a real number. We establish that the irrational-
ity exponent of the p-adic number

P+1
i=0 pbµ

ic is equal to µ. This provides us with
explicit examples of p-adic numbers with any prescribed irrationality exponent.

– To Je↵ Shallit on his sixtieth birthday

1. Introduction

The irrationality exponent µ(⇠) of an irrational real number ⇠ is the supremum of
the real numbers µ such that ����⇠ � a

b

���� <
1
bµ

has infinitely many solutions in rational numbers a/b. It follows from the theory of
continued fractions that µ(⇠) is at least 2. Furthermore, for any given real number
µ > 2, it is easy to construct explicitly continued fraction expansions of real numbers
⇠µ with irrationality exponent µ. However, if one requires additional properties, like
for example ⇠µ being in the middle third Cantor set, this is less straightforward.
This question was solved recently in [5], also by means of the theory of continued
fractions.

The main goal of this paper is to consider the analogous problem for p-adic
numbers (here, and throughout the paper, p denotes a prime number), that is, to
construct explicit examples of p-adic numbers with prescribed irrationality exponent
and only digits 0 and 1 in their Hensel expansion.
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A natural idea is to translate the argument of [5] to the p-adic setting. Unfor-
tunately, this does not seem to work, since there is no full analogue of the theory
of continued fractions in p-adic fields. Admittedly, it is possible to express a p-adic
number ⇠ as a continued fraction, but, unlike in the real case, one cannot read
o↵ from this expansion all the best rational approximations to ⇠. Recall that to
determine the exact value of the irrationality exponent of ⇠ requires, on the one
hand, to bound it from below, that is, to find an infinite sequence of very good
rational approximations to ⇠ (this is often an easy step) and, on the other hand, to
establish that only finitely many very good rational approximations to ⇠ are outside
this sequence (this is usually much more delicate). In most of the cases in the real
setting, this delicate step requires a precise description of the continued fraction
expansion of ⇠.

For a reduced rational number a/b, let H(a/b) = max{|a|, |b|} denote its height.
The irrationality exponent µ(⇠) of an irrational p-adic number ⇠ is the supremum
of the real numbers µ such that

���⇠ � a

b

���
p

< H(a/b)�µ

has infinitely many solutions in rational numbers a/b.
If a reduced rational number a/b is such that |⇠�a/b|p is smaller than |⇠|p, then

the ultrametric inequality implies |a/b|p = |⇠|p and thus quantities like max{|a|p, |b|p}
and min{|a|p, |b|p} would be constant which renders them useless for our work. This
is why H(a/b) as defined above is used as a measure of size for a rational approxi-
mation a/b to ⇠, also in the p-adic setting.

As in the real setting, we have µ(⇠) > 2; see for example Section 9.3 of [4]. Our
main result is the following theorem.

Theorem 1. Let p be a prime number. Let c := (ci)i>0 be a sequence of positive
integers such that ci+1 > 2ci for i large enough. Then the irrationality exponent of
the p-adic number

⇠c :=
+1X
i=0

pci

is equal to
c := lim sup

i!+1

ci+1

ci
.

In particular, for any real number µ > 2, we have

µ
⇣+1X

i=0

pbµ
ic

⌘
= µ.

Theorem 1 is the p-adic analogue of a result stated in the Introduction of [6].
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It follows from Theorems 1B and 6 of [1], whose proofs rest on a p-adic version
of Schmidt Subspace Theorem, that all the p-adic numbers ⇠c defined in Theorem
1 are transcendental, since their Hensel expansions have small block complexity.

For every real number µ > 2, the Hausdor↵ dimension of the set of p-adic numbers
with irrationality exponent µ is equal to 2/µ; see Theorem 6.19 of [2]. This implies
the existence of p-adic numbers with any prescribed irrationality exponent. As far
as we are aware, explicit examples of p-adic numbers with irrationality exponent
equal to µ were not known for µ < (3+

p
5)/2 (for larger values of µ, we can use the

argument described in [8] in the real setting). Of course, it is clear that
P+1

i=0 pbµ
ic

is a good candidate for having irrationality exponent µ, but this was proved only
for µ > (3 +

p
5)/2.

Our strategy is the following. We work in the field of power series and consider
the continued fraction expansion of

P+1
i=0 X�ci and its convergents. Replacing X

by p�1 we deduce good and very good rational approximations to the p-adic number
⇠c. We are then in a position to apply Lemma 2 below to complete the proof of
Theorem 1.

Note that we do not employ as technical terms the attributes “very good” and
“good” for approximations. They are used for sequences of rational approximations
which give either the best possible lower bound on the irrationality exponent or a
lower bound greater than two. We believe that this usage helps with the intuitive
understanding of the exposition.

In the following section, we establish an auxiliary lemma that will be useful for
bounding from above the irrationality exponent of a (p-adic) number. In the last
section we introduce continued fractions in the field of rational power series and
use them to prove Theorem 1. We keep the notation of Theorem 1 throughout this
paper.

2. Bounding the Irrationality Exponent From Above

Using the infinite family of rational approximations

kX
i=0

pci , k > 0,

to ⇠c, we easily get that µ(⇠c) > c. Let us give a detailed proof.
Since lim supi!+1 ci+1/ci = c and limi!+1 ci = +1, we have

lim sup
i!+1

ci+1

ci + 1
= c.
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Let ✏ > 0 and choose a subsequence (cij )j>0 such that i0 > 1,

ci0 > 2ci0�1, and
cij+1

cij + 1
> c� ✏, for j > 0.

Then we have

H
⇣ ijX

`=0

pc`

⌘
=

ijX
`=0

pc` < pcij +1, for j > 0.

Therefore,

���⇠c �
ijX

`=0

pc`

���
p

= p�cij+1 < H
⇣ ijX

`=0

pc`

⌘� cij+1
cij

+1
< H

⇣ ijX
`=0

pc`

⌘�c+✏
.

It follows that µ(⇠c) > c � ✏ and since ✏ > 0 was arbitrary, we conclude that
µ(⇠c) > c.

This proves Theorem 1 when c is infinite. From now on, we assume that c is
finite. Establishing that µ(⇠c) 6 c is more delicate.

The basic idea is the existence of many very good rational approximations to ⇠c,
which impedes the existence of even better rational approximations. As auxiliary
tools, we need the following two elementary lemmas, whose proofs rest on triangle
inequalities.

Lemma 1. Let ⇠ be in Qp. Let #, ⌧ 2 (1,+1) be real numbers and P , Q, m, n
integers such that Q and n are nonzero, m/n and P/Q are reduced and distinct. If

|⇠ � P/Q|p 6 H(P/Q)�# and |⇠ �m/n|p 6 H(m/n)�⌧ ,

then
H(m/n) 6 2

1
⌧�1 H(P/Q)

1
⌧�1 or H(m/n) >

1
2

H(P/Q)#�1. (1)

Proof. Using the fact that |Pn�Qm| 6 2H(P/Q)H(m/n) and the non-Archimedean
nature of the p-adic absolute value, we get

1
2H(P/Q)H(m/n)

6
���Pn�Qm

Qn

���
p

=
���P
Q
� m

n

���
p

6 max {|⇠ � P/Q|p, |⇠ �m/n|p}
6 max{H(P/Q)�#,H(m/n)�⌧},

thus
1/2 6 max{H(P/Q)1�# H(m/n),H(P/Q)H(m/n)1�⌧}

If we have

H(P/Q)1�# H(m/n) 6 H(P/Q)H(m/n)1�⌧ , i.e., H(m/n) 6 H(P/Q)#/⌧ ,
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then
H(m/n) 6 2

1
⌧�1 H(P/Q)

1
⌧�1 .

If, on the other hand, we have

H(P/Q)1�# H(m/n) > H(P/Q)H(m/n)1�⌧ , i.e., H(m/n) > H(P/Q)#/⌧ ,

then
H(m/n) >

1
2

H(P/Q)#�1.

Therefore, (1) always holds.

Lemma 2. For ⇠ 2 Qp, let (#k)k>0 be a sequence of real numbers such that
lim infk!+1 #k > 1 and let (Pk/Qk)k>0 be a sequence of distinct rational num-
bers such that ���⇠ � Pk

Qk

���
p

= H(Pk/Qk)�#k

holds for k > 0. Let ⌧ be a real number with

⌧ > 1 + lim sup
k!+1

log H(Pk+1/Qk+1)
(#k � 1) log H(Pk/Qk)

. (2)

Then there exist only finitely many rational numbers m/n outside the sequence
(Pk/Qk)k>0 which satisfy ���⇠ � m

n

���
p

6 H(m/n)�⌧ . (3)

In particular, we have

µ(⇠) 6 max
n
lim sup
k!+1

#k, 1 + lim sup
k!+1

log H(Pk+1/Qk+1)
(#k � 1) log H(Pk/Qk)

o
. (4)

Proof. Excluding, if necessary, at most finitely many elements from the sequence
(Pk/Qk)k>0, we can assume without loss of generality that for some ✏ > 0 and all
k > 0, we have #k > 1 + ✏. Suppose that (2) is fulfilled and that there are infinitely
many rational numbers m/n not in (Pk/Qk)k>0 such that (3) holds. For such a
rational number m/n with H(m/n) large enough, let k0 be the largest positive
integer such that

2
1

⌧�1 H(Pk0/Qk0)
1

⌧�1 < H(m/n).

Then Lemma 1 implies that

1
2

H(Pk0/Qk0)
#k0�1 6 H(m/n) 6 2

1
⌧�1 H(Pk0+1/Qk0+1)

1
⌧�1 ,

which gives

⌧ � 1 6
⌧ log 2 + log H(Pk0+1/Qk0+1)

(#k0 � 1) log H(Pk0/Qk0)
.
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From our assumption and the fact that (H(Pk/Qk))k>0 is unbounded, the last
inequality would have to hold for infinitely many positive integers k0. This is in
contradiction with (2).

We stress that exact analogues of Lemmas 1 and 2 hold in the real setting.

Example 1. Let c > 2 be a real number. Lemma 2 can be applied to ⇠c :=P+1
i=0 pbc

ic and the p-adic numbers �k =
Pk

i=0 pbc
ic, k > 2, to show that µ(⇠c) 6 c

when

c > 1 + lim sup
k!+1

ck+1

(c� 1)ck
= 1 +

c

c� 1
.

This implies that µ(⇠c) = c when c2 � 3c + 1 > 0, that is, for c > (3 +
p

5)/2 =
2.618 . . .

However, besides (�k)k>0, we can also take into consideration the following very
good rational approximations to ⇠c defined for k > 2 by

�k =
k�1X
i=0

pbc
ic + pbc

kc�1 + pbc
k+1c�bckc + p2(bck+1c�bckc) + · · ·

�

=
k�1X
i=0

pbc
ic +

pbc
kc

1� pbck+1c�bckc .

It is not di�cult to show that

H(�k) = �k ⇣ pck

, H(�k) ⇣ pck+1�ck+ck�1
,

|⇠c � �k|p ⇣ p�ck+1 ⇣ H(�k)�c,

|⇠c � �k|p ⇣ p�2ck+1+ck ⇣ H(�k)�(2c2�c)/(c2�c+1),

H(�k) < H(�k) < H(�k+1) for k large enough.

Here, all the constants implicit in ⇣ can be made explicit and depend only on p
and c. If we now apply Lemma 2 with the union of the two sequences (�k)k>2 and
(�k)k>2, we get after some calculation that µ(⇠c) 6 c for c > 2.325.

Nevertheless, in order to prove that µ(⇠c) = c for all c > 2, we require many
more good rational approximations to ⇠c. To find them, looking for repetitions and
completing by periodicity is not su�cient. We need an additional idea.

3. Proof of Theorem 1

In order to construct very good rational approximations to our p-adic number, we
first need to work with continued fractions in the field of power series. The field
of rational power series Q((X�1)) is the completion of Q(X) with respect to the
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non-Archimedean absolute value k · k defined on Q(X) by kXk = e. Instead of e,
we can fix any real number greater than 1. If ⇠̂ 2 Q((X�1)) and ⇠̂ 6= 0, then we can
write ⇠̂ =

P+1
k=k0

akX�k, where k0 2 Z, ak 2 Q and ak0 6= 0. More information on
this subject can be found in [11] and [7].

An element of Q(X) can be expressed as a finite continued fraction

[S0, S1, . . . , Sn] := S0 +
1

S1 +
1

.. . +
1
Sn

,

where each partial quotient Si is a rational polynomial. This expression is unique
if we require that the degree deg Si is positive for i > 0. Beside some basic facts
from the theory of continued fractions (see e.g. [4]), our main tool is the so-called
Folding Lemma; see [9, 12, 13, 10] and Chapter 6 of [3].

Throughout this paper, for a word �!w = a1, a2, . . . , ah, we denote by �w the word
ah, ah�1, . . . , a1 and by � �w the word �ah,�ah�1, . . . ,�a1.

Lemma 3 (Folding Lemma). Let r, s, t be in Q[X] with t non-constant. Write
r/s = [a0, a1, . . . , ah], where ai 2 Q[X] for 0 6 i 6 h and denote by �!w the word
a1, . . . , ah. Then, we have

r

s
+

(�1)h

ts2
= [a0,

�!w , t,� �w ] = [a0,
�!w , t� 1, 1,�1, 0, �w ].

When using the Folding Lemma, we will usually immediately make the substitu-
tion [. . . , a, 0, b, . . .] = [. . . , a + b, . . .], which can be easily checked.

The irrationality exponent of an irrational number does not change when mul-
tiplying it or adding to it any nonzero rational number. Thus if necessary, we can
omit finitely many terms in ⇠c and multiply this number with p�1, so that ci+1 > 2ci

holds for all i > 0. This results in no loss of generality and will be assumed during
the proof of Theorem 1.

Starting from X�c0 = [0,Xc0 � 1, 1] and successively applying Lemma 3 first
with t = Xc1�2c0 and then with t = Xc2�2c1 , we obtain

X�c0 + X�c1 = X�c0 + (�1)2(Xc1�2c0X2c0)�1

= [0,Xc0 � 1, 1,Xc1�2c0 � 1,Xc0 ]

and

X�c0 + X�c1 + X�c2 = X�c0 + X�c1 + (�1)4(Xc2�2c1X2c1)�1

= [0,Xc0 � 1, 1,Xc1�2c0 � 1,Xc0 ,Xc2�2c1 � 1,
1,Xc0 � 1,Xc1�2c0 � 1, 1,Xc0 � 1].
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Continuing this process indefinitely with t = Xck+1�2ck for k > 1, we arrive at the
continued fraction expansion

⇠̂c =
+1X
i=0

X�ci

= [a0, a1, a2, . . .]
= [0,Xc0 � 1, 1,Xc1�2c0 � 1,Xc0 ,Xc2�2c1 � 1, 1,Xc0 � 1,

Xc1�2c0 � 1, 1,Xc0 � 1,Xc3�2c2 � 1, 1,Xc0 � 2, . . .] 2 Q((X�1)).

(5)

We need to justify the convergence of the continued fraction expansion in (5) since
there are partial quotients of degree 0, namely those which are equal to 1. The
following facts are established by an easy induction and, therefore, we give only an
outline of their proofs.

Proposition 1. Let ⇠̂c 2 Q((X�1)) be the sum of the infinite series in (5). Then
the following statements hold.

(i) No two consecutive elements in the sequence (ai)i>0 are equal to 1.

(ii) For i > 0, if ai 6= 1, then ai is a monic integer polynomial and deg ai > 1.

(iii) If i ⌘ 3 or 8 (mod 12), then

ai = Xc1�2c0 � 1.

If i ⌘ 3 · 2k�1 � 1 or 9 · 2k�1 (mod 3 · 2k+1) for some k > 2, then

ai = Xck�2ck�1 � 1.

If i does not satisfy any of these congruences, then

ai 2 {1,Xc0 ,Xc0 � 1,Xc0 � 2}.

(iv) Set Pn/Qn = [a0, a1, . . . , an], where Pn, Qn 2 Z[X] for n > 0. Then, for any
n > 1,

either deg Qn�1 < deg Qn or deg Qn�1 = deg Qn < deg Qn+1.

The polynomials Pn (for n > 1) and Qn are monic, thus Qn(1/p) 6= 0.

(v)

deg Pn =
nX

i=2

deg ai for n > 2,

deg Qn =
nX

i=1

deg ai for n > 1,

deg Qn � deg Pn = c0 > 0.
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(vi)
P3·2k�2

Q3·2k�2
=

kX
i=0

X�ci , Q3·2k�2 = Xck , for k > 1. (6)

(vii) The sequence (Pn/Qn)n>0 converges to ⇠̂c in Q((X�1)).

Sketch of the proof. Statements (i) and (ii) are easy and (iii) requires only careful
attention to the indices when observing the repeated application of the Folding
Lemma.

The claim in (iv) follows from (i) and (ii) using the recurrence relation satisfied
by Pn and Qn, namely

P0 = 0, P1 = 1, Pn = anPn�1 + Pn�2,

Q0 = 1, Q1 = Xc0 � 1, Qn = anQn�1 + Qn�2,
for n > 2 (7)

The same identities are used to prove (v), while (vi) follows immediately from
the Folding Lemma.

The well-known identity

Pn+1Qn � PnQn+1 = (�1)n, n > 0, (8)

follows inductively from (7). Applying (8) for n consecutive indices gives

Pn+1

Qn+1
=

1
Q0Q1

� 1
Q1Q2

+ · · · + (�1)n 1
QnQn+1

. (9)

From (iv), we have kQi�1Qik < kQiQi+1k, so the infinite series

+1X
i=0

(�1)i(QiQi+1)�1

converges in Q((X�1)) and the partial sums of this series are convergents of the
continued fraction in (5). But (vi) now shows that limn!+1 Pn/Qn = ⇠̂c so that
(vii) is proved as well. Note that we have also proved (cf. (v)) that

���⇠c �
Pn

Qn

��� = kQnQn+1k�1 = e�2
Pn

i=1 deg ai�deg an+1 . (10)

We prove an auxiliary result on the growth of denominators of partial quotients.
Recall that

c = lim sup
i!+1

ci+1

ci
.
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Proposition 2. The polynomials Qn defined in Proposition 1 satisfy

lim
n!+1

log n

deg Qn
= 0, (11)

lim inf
n!+1

deg Qn+1

deg Qn
= 1, lim sup

n!+1

deg Qn+1

deg Qn
= c� 1. (12)

Proof. From (iv) in Proposition 1, we deduce that deg Qn > deg Qn�2+1 for n > 2.
Iterating this gives deg Qn > bn/2c for n > 1 and (11) holds.

The first equality in (12) is obvious if we take into account (v) from Proposition
1 and the fact that deg ai 2 {0, 1} for infinitely many i.

If n = 3 · 2k � 2 for some k > 1, then

deg Qn+1

deg Qn
=

ck+1 � ck

ck
=

ck+1

ck
� 1. (13)

For an integer n > 5 not of this form, let k be the positive integer such that

3 · 2k � 1 6 n < 3 · 2k+1 � 2.

Then, by (vi), (v) and (iii) of Proposition 1, we get

deg Qn > deg Q3·2k�1 = ck+1 � ck > ck and deg Qn+1 6 deg Qn + d,

where
d 6 max{ci � 2ci�1 : 0 6 i 6 k}, (c�1 := 0).

Hence,

deg Qn+1

deg Qn
6 1 +

d

ck
6 1 +

ci/ci�1 � 2
ck/ci�1

6 1 +
ci/ci�1 � 2

2
6

ci

2ci�1
, (14)

for some i 2 {1, . . . , k}. Since c > 2, we get c/2 6 c � 1 and the combination of
(13) and (14) implies the second equality in (12).

The following proposition uses the symmetric structure of the continued fraction
expansion of ⇠̂c (obtained by means of repeated applications of the Folding Lemma)
in order to express the convergents of this continued fraction expansion in terms of
certain convergents with smaller indices.

Proposition 3. Let n and k be positive integers such that

3 · 2k 6 n < 3 · 2k+1 � 2.

Set m = 3 · 2k � 2 and l = 3 · 2k+1 � 3� n. Then,

Pn

Qn
=

Xck+1�2ckPm(PmQl �QmPl)� Pl

Xck+1�2ckQm(PmQl �QmPl)�Ql
. (15)
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Proof. Since 0 6 l 6 3 · 2k � 3, we can write for l < 3 · 2k � 3,

Pm

Qm
=

(Ul/Vl)Pl+1 + Pl

(Ul/Vl)Ql+1 + Ql
,

where
Ul

Vl
= [wl], wl = al+2, . . . , am.

This gives
Ul

Vl
=

QlPm � PlQm

�Ql+1Pm + Pl+1Qm
. (16)

Setting
Sl

Tl
= [0, wl,X

ck+1�2ck ,� �wl],

we deduce from the Folding Lemma that

Sl

Tl
=

Vl

Ul
+ (�1)l�1 1

Xck+1�2ckU2
l

=
Xck+1�2ckUlVl + (�1)l�1

Xck+1�2ckU2
l

. (17)

We also have
Pn

Qn
=

(Tl/Sl)Pl+1 + Pl

(Tl/Sl)Ql+1 + Ql
. (18)

Note that the fractions that appear in (16) and (17) are reduced.
Now we substitute (16) into (17) and (17) in (18) and use the fact that Pl+1Ql�

PlQl+1 = (�1)l. Simplifying the expression, we obtain (15). Again, the fractions
in (15) are reduced.

If l = 3 · 2k � 3 = m � 1, then Sl/Tl = [0,Xck+1�2ck ] and (18) gives (15)
directly.

Now we make the formal substitution X 7! 1/p and define the quantities

⇠c =
+1X
i=0

pci 2 Qp,

An = pdeg QnPn(1/p), Bn = pdeg QnQn(1/p), n > 0.

The next proposition summarizes properties of ⇠c and the sequences (An)n>0 and
(Bn)n>0.

Proposition 4. For the p-adic number ⇠c and the sequences (An)n>0 and (Bn)n>0

defined above, the following hold:

(i) The numbers An and Bn are integers satisfying

pc0 | An, pc0+1 - An, Bn ⌘ 1 (mod p).
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(ii) For every n > 0, the integers An and Bn are relatively prime. The sequence
(An/Bn)n>0 converges in Qp to ⇠c and

���⇠c � An

Bn

���
p

= p� deg(QnQn+1) = p�2
Pn

i=1 deg ai�deg an+1 . (19)

(iii) The height of An/Bn satisfies

1
2n2

pdeg Qn 6 H(An/Bn) 6 n2pdeg Qn , n > 1.

Proof. (i) This follows directly from (iv) and (v) of Proposition 1.

(ii) From (8), we get for n > 0 that

An+1Bn �AnBn+1 = (�1)npdeg Qn+deg Qn+1 , (20)

which implies that the sequence (An/Bn)n>0 is a Cauchy sequence and thus
converges in Qp. From

⇠c �
A3·2k�2

B3·2k�2
=

+1X
i=k+1

pci ,

we deduce that limn!+1An/Bn = ⇠c. Now (19) follows from

An+1

Bn+1
=

pdeg(Q0Q1)

B0B1
� pdeg(Q1Q2)

B1B2
+ · · · + (�1)n pdeg(QnQn+1)

BnBn+1
,

similarly as (10) was obtained from (9).

The identity (20) also shows that An and Bn are always relatively prime since
any common divisor would be a power of p and (i) asserts that Bn is never
divisible by p.

Note that (19) implies that no two elements of the sequence (An/Bn)n>0 are
identical, in view of (iv) of Proposition 1.

(iii) We have seen that An and Bn are always relatively prime. From the definition
of these numbers, it is clearly su�cient to prove that max{|Pn(1/p)|, |Qn(1/p)|}
belongs to the interval [1/(2n2), n2].

We first show that |Pn(1/p)| 6 n2. More precisely, we prove by induction on
k > 0 that for 3 · 2k � 2 6 n < 3 · 2k+1 � 2 the inequality |Pn(1/p)| 6 22k

holds.

This can be easily checked for k = 0. Suppose the statement holds for all
k < K, where K > 1, and let n with

3 · 2K � 2 6 n < 3 · 2K+1 � 2.
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If n = 3 · 2K � 2, we obtain a much stronger result directly from (6)

|Pn(1/p)| <
p

p� 1
6 2, |Qn(1/p)| = 1/pcK 6 1/2.

For n = 3 · 2K � 1, we have an(1/p) = p2cK�cK+1 � 1, so

|Pn(1/p)| 6 |an(1/p)Pn�1(1/p)| + |Pn�2(1/p)| 6 2 + 22K�2 6 22K .

Finally, if 3 · 2K 6 n < 3 · 2K+1 � 2, we use Proposition 3 which gives

|Pn(1/p)| < p2cK�cK+12
⇣
2 · 22K�2 +

1
2
22K�2

⌘
+ 22K�2 < 22K .

Analogously, we prove that |Qn(1/p)| 6 n2.

Furthermore, (8) shows that

max{|Pn(1/p)Qn�1(1/p)|, |Pn�1(1/p)Qn(1/p)|} > 1/2,

thus

max{|Pn(1/p)|, |Qn(1/p)|} >
1

2max{|Pn�1(1/p)|, |Qn�1(1/p)|} >
1

2n2
.

We are now armed to complete the proof of Theorem 1. Since

log |⇠c �An/Bn|�1
p

log H(An/Bn)
6

(deg Qn + deg Qn+1) log p

�3 log n + deg Qn log p
=

1 + deg Qn+1
deg Qn

� log n
deg Qn

· 3
log p + 1

,

and

log |⇠c �An/Bn|�1
p

log H(An/Bn)
>

(deg Qn + deg Qn+1) log p

2 log n + deg Qn log p
=

1 + deg Qn+1
deg Qn

log n
deg Qn

· 2
log p + 1

,

Proposition 2 gives

lim sup
n!+1

log |⇠c �An/Bn|�1
p

log H(An/Bn)
= c and lim inf

n!+1

log |⇠c �An/Bn|�1
p

log H(An/Bn)
= 2.

In order to apply Lemma 2 to ⇠c and (An/Bn)n>0, we need to evaluate the
right-hand side of (2). Using the results of Proposition 4, we get

lim sup
n!+1

log H(An+1/Bn+1)
log |⇠c �An/Bn|�1

p � log H(An/Bn)

6 lim sup
n!+1

2 log(n + 1) + deg Qn+1 log p

(deg Qn + deg Qn+1) log p� 2 log n� deg Qn log p

6 lim sup
n!+1

2 log(n+1)
deg Qn+1

+ log p

�2 log n
deg Qn+1

+ log p
= 1,
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where we used (11) in the last step.
Bound (4) from Lemma 2 finally implies that µ(⇠c) 6 c and thus µ(⇠c) = c. This

finishes the proof of Theorem 1.
As a final remark, we show that not only the best approximations to ⇠c, but

also the second best ones, can be written explicitly as series. The best approx-
imations P3·2k�2/Q3·2k�2 to the associated power series ⇠̂c are obtained by cut-
ting o↵ its continued fraction expansion before the first appearance of large partial
quotients, or alternatively, by deleting the terms that follow X�ck = X�bckc inP+1

i=0 X�ci . These approximations of ⇠̂c in Q((X�1)) correspond to the approxi-
mations �k of ⇠c 2 Qp defined in Example 1. The next best sequence of approxi-
mations is (P9·2k�1�1/Q9·2k�1�1)k>2 and, as the following lemma shows, it actually
corresponds to the sequence (�k)k>2 of p-adic numbers introduced in Example 1.

Proposition 5. For k > 2, we have

P9·2k�1�1

Q9·2k�1�1
=

k�1X
i=0

X�ci +
X�ck

1�Xck�ck+1
. (21)

Proof. This is an immediate consequence of Proposition 3 where n = 9 · 2k�1 � 1,
so that m = 3 · 2k � 2 and l = 3 · 2k�1� 2. Since Pm, Qm, Pl, Ql are now explicitly
given by (6), inserting their values into (15) gives (21).
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