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Abstract

In the theory of continued fractions, Zaremba’s conjecture states that there is a
positive integer M such that each integer is the denominator of a convergent of
an ordinary continued fraction with partial quotients bounded by M . In this pa-
per, with each such M we associate a regular sequence—in the sense of Allouche
and Shallit—and establish various properties and results concerning the generating
function of the regular sequence. In particular, we determine the minimal algebraic
relation linking the generating function and its Mahler iterates.

– For Je↵rey Outlaw Shallit as he turns 60

1. Introduction

For all x 2 (0, 1) we write the ordinary continued fraction expansion of x as

x = [a1, a2, a3, . . .] =
1

a1 +
1

a2 +
1

a3 +
1
.. .

,

where the positive integers a1, a2, a3, . . . , are the partial quotients of x. The conver-
gents of the number x are the rationals pn/qn := [a1, . . . , an] and can be computed
using the definition or by the well-known relationship

✓
an 1
1 0

◆
· · ·
✓

a2 1
1 0

◆✓
a1 1
1 0

◆
=
✓

qn pn

qn�1 pn�1

◆
.
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INTEGERS: 18A (2018) 2

See the monograph Neverending Fractions by Borwein, van der Poorten, Shallit and
Zudilin [4] for details and properties regarding continued fractions.

Denote by Bk the set of real numbers x 2 (0, 1) all of whose partial quotients
are bounded above by k. In the early 1970s, Zaremba [13] conjectured that there
is a positive integer k such that the set of denominators of the convergents of the
elements of Bk is N.

While in generality, Zaremba’s conjecture remains open, there has been a lot of
progress recently. Bourgain and Kontorovich [5] proved that the set of denominators
of B50 has full density in N; this was improved by Huang [10], who proved the
analogous result for B5. It is not the purpose of this paper to improve upon the
results of Bougain and Kontorvich and Huang, but to view the denominators of the
convergents in a new way using the framework of regular sequences introduced by
Allouche and Shallit [1].

An integer-valued sequence {f(n)}n>0 is k-regular provided there exist a positive
integer d, a finite set of matrices {A0, . . . ,Ak�1} ✓ Zd⇥d, and vectors v,w 2 Zd

such that
f(n) = wT Ai0 · · ·Aisv,

where (n)k = is · · · i0 is the base-k expansion of n; see Allouche and Shallit [1,
Lemma 4.1]. The notion of k-regularity is a direct generalisation of automaticity;
in fact, a k-regular sequence that takes finitely many values can be output by a de-
terministic finite automaton. We call the generating function F (z) =

P
n>0 f(n)zn

of a k-regular sequence {f(n)}n>0, a k-regular function (or just regular, when the
k is understood).

We associate the denominators of elements in Bk to the k-regular sequence
{(n)}n>0 defined by

(n) := wT Awv, (1)

where w = v = [1 0]T and for i = 0, 1, . . . , k � 1

Ai :=
✓

i + 1 1
1 0

◆
.

Here w 2 1{0, 1}⇤ corresponds to the reversal of the base-k expansion of n; that is,
w = i0i1 · · · is, when (n)k = is · · · i1i0. The set of values of {(n)}n>0 is exactly the
set of denominators of elements of Bk.

Like all generating functions of regular sequences (see Becker [2]), the generating
function K(z) :=

P
>0 (n)zn satisfies a Mahler-type functional equation. Our

main results focus on the function K(z). In particular, we start by obtaining the
exact functional equation.

Theorem 1. Let K(z) be as defined above. Then

K(z)�
 

k�1X
a=0

(a + 1)za

!
K(zk)�

0
@k2�1X

a=0

za

1
AK(zk2

) = �
k�1X
n=0

zn. (2)
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In order to study the sequence {(n)}n>0, we determine the asymptotics of the
series K(z) as z radially approaches special points on the unit disk.

Proposition 1. Let m > 0 be an integer. As z ! 1�, we have

K(zkm

) =
1

↵m
k

· C(z)
(1� z)logk ↵k

· (1 + o(1)),

where C(z) is a real-analytic nonzero oscillatory term dependent on k, which on the
interval (0, 1) is bounded away from 0 and 1, C(z) = C(zk), and

↵k :=
k(k + 1) + k

p
(k + 1)2 + 16

4
.

The asymptotics of Proposition 1 can be used to give results on both the coef-
ficients (n) and the algebraic character of the function K(z) and its iterates as
z 7! zk.

Corollary 1. Let k > 2 be an integer, {(n)}n>0 be the k-regular sequence defined
in 1, and ↵k be as given in Proposition 1. Then there are positive constants c1 =
c1(k) and c2 = c2(k) such that as N !1,

c1 6
1

nlogk ↵k

X
n6N

(n) 6 c2.

In fact, one can be much more specific concerning the behaviour of the sums in
Corollary 1—we will explore these details in a later section.

The asymptotics of Proposition 1 can be used to show that the function K(z) is
unbounded as z radially approaches each km-th root of unity (m > 0); see Propo-
sition 3. Combining this with a recent result of Coons and Tachiya [8] gives the
following proposition concerning the algebraic character of the function K(z).

Proposition 2. Let G(z) be any meromorphic complex-valued function. For each
integer k > 2, the functions K(z) and G(z) are algebraically independent over C(z).
In particular, the function K(z) is transcendental over C(z).

Indeed, Proposition 1 can be used to give additional information about the func-
tion K(z) and its iterates under the map z 7! zk. We use Proposition 1 to prove
the following statement.

Theorem 2. For each integer k > 2, the functions K(z) and K(zk) are algebraically
independent over C(z).

In some sense, Theorem 2 can be interpreted to say that the Mahler functional
equation given in Theorem 1 is essentially the minimal algebraic relation between
the function K(z) and its Mahler iterates, that is, the set {K(z),K(zk),K(zk2

), . . .}.
Note that the combination of Theorem 2 with the celebrated result of Nishioka

[12, Corollary 2] gives the following result on the algebraic independence of certain
special values of K(z) and K(zk).
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Corollary 2. Let k > 2 be an integer and ↵ be a nonzero algebraic number in the
open unit disc. Then K(↵) and K(↵k) are algebraically independent over Q.

This paper is outlined as follows. In Section 2 we prove Theorem 1. Section 3
contains the results leading to the radial asymptotics described in Proposition 1,
which are then used in Section 4 to prove Theorem 2. The final section contains
a brief discussion of Corollary 1 and then a question about a possible connection
between the function (n) (specialised at k = 2) and the Takagi function.

2. A Mahler-type Functional Equation for K(z)

In this section, we provide the proof of Theorem 1. This theorem follows from
recurrences satisfied by the sequence of values of , which we record in the following
lemma.

Lemma 1. If n > 1 and a, b 2 {0, . . . , k � 1}, then

(k2n + kb + a) = (a + 1)(kn + b) + (n).

Proof. For any i 2 {0, . . . , k � 1} we have both

[0 1]Ai = [1 0] and [1 0]Ai = (i + 1)[1 0] + [0 1].

If n > 1 and a, b 2 {0, . . . , k � 1}, then writing w as the reversal of (n)k we have

(k2n + kb + a) = [1 0]AaAbAw[1 0]T

= ((a + 1)[1 0] + [0 1])AbAw[1 0]T

= (a + 1)[1 0]AbAw[1 0]T + [0 1]AbAw[1 0]T

= (a + 1)(kn + b) + [1 0]Aw[1 0]T

= (a + 1)(kn + b) + (n).

Proof of Theorem 1. We use the relationship in Lemma 1 to give

K(z) =
X
n>1

k�1X
i=0

k�1X
j=0

(k2n + ki + j)zk2n+ki+j +
k2�1X
n=0

(n)zn

=
X
n>1

k�1X
i=0

k�1X
j=0

[(j + 1)(kn + i) + (n)] zk2n+ki+j +
k2�1X
n=0

(n)zn

=
k�1X
j=0

(j + 1)zj
X
n>1

k�1X
i=0

(kn + i)(zk)kn+i

+
k�1X
j=0

zj
k�1X
i=0

zki
X
n>1

(n)zk2n +
k2�1X
n=0

(n)zn,
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so that

K(z) =
k�1X
j=0

(j + 1)zj

 
K(zk)�

k�1X
n=0

(n)zkn

!

+

0
@k2�1X

j=0

zj

1
A⇣K(zk2

)� (0)
⌘

+
k2�1X
n=0

(n)zn.

Rearranging this, we have

K(z)�

0
@k�1X

j=0

(j + 1)zj

1
AK(zk)�

0
@k2�1X

j=0

zj

1
AK(zk2

)

=
k2�1X
n=0

(n)zn � (0)

0
@k2�1X

j=0

zj

1
A�

0
@k�1X

j=0

(j + 1)zj

1
A
 

k�1X
n=0

(n)zkn

!
. (3)

Using the matrix representation we have (n) = n + 1 for n = 0, . . . , k � 1, and for
n = ak+b with a = 1, . . . , k�1 and b = 0, . . . , k�1 we have (n) = (a+1)(b+1)+1.
Thus, continuing equality 3, we have

K(z)�

0
@k�1X

j=0

(j + 1)zj

1
AK(zk)�

0
@k2�1X

j=0

zj

1
AK(zk2

)

=
k2�1X
n=k

(n)zn +
k�1X
n=0

(n)zn �

0
@k2�1X

j=0

zj

1
A�

0
@k�1X

j=0

(j + 1)zj

1
A
 

k�1X
n=0

(n + 1)zkn

!

=
k�1X
a=1

k�1X
b=0

(a + 1)(b + 1)zak+b +
k2�1X
n=k

zn +
k�1X
n=0

(n + 1)zn �

0
@k2�1X

j=0

zj

1
A

�
k�1X
j=0

(j + 1)zj �
k�1X
j=0

k�1X
n=1

(j + 1)(n + 1)zkn+j ,

which, after cancelling terms, proves the theorem.

3. Radial Asymptotics of K(z)

We prove Theorem 1 in this section by appealing to a recent result of Bell and
Coons [3], which provides the radial asymptotics of a Mahler function F (z) based
on the existence of the Mahler eigenvalue associated to the function F (z).
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Proof of Proposition 1. We start with the functional equation 2 established in The-
orem 1 and send z to zk to get

K(zk)�
 

k�1X
a=0

(a + 1)zka

!
K(zk2

)�

0
@k2�1X

a=0

zka

1
AK(zk3

) = q(zk),

where we have set

q(z) = qk(z) := �
k�1X
n=0

zn.

We now multiply the original functional equation 2 by q(zk) and the new func-
tional equation by q(z) and subtract the resulting functional equations to get the
homogeneous equation

q(zk)K(z)�
"
q(zk)

 
k�1X
a=0

(a + 1)za

!
+ q(z)

#
K(zk)

�

2
4q(zk)

0
@k2�1X

a=0

za

1
A� q(z)

 
k�1X
a=0

(a + 1)zka

!3
5K(zk2

)

+ q(z)

0
@k2�1X

a=0

zka

1
AK(zk3

) = 0.

Following the method of Bell and Coons [3] (see also Brent, Coons, and Zudilin
[6]) we use the homogeneous functional equation to form the characteristic polyno-
mial

�K(�) = q(1)

2
4�3 �

 
k�1X
a=0

(a + 1) + 1

!
�2 �

0
@k2�1X

a=0

1�
k�1X
a=0

(a + 1)

1
A� +

k2�1X
a=0

1

3
5

= �k(�� 1)

�2 � k(k + 1)

2
�� k2

�
,

where we have used the value of q(1) = �k. Since �K(�) has three distinct roots
for each positive integer k > 2, and the sequence {(n)}n>0 grows super-linearly,
Theorem 1 of Bell and Coons [3] applies to give that as z ! 1�

K(z) =
C(z)

(1� z)logk ↵k
(1 + o(1)),

where logk denotes the principal value of the base-k logarithm, C(z) is a real-
analytic nonzero oscillatory term dependent on k, which on the interval (0, 1) is
bounded away from 0 and 1, and satisfies C(z) = C(zk) and

↵k =
k(k + 1) + k

p
(k + 1)2 + 16

4
.
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It remains to show that these asymptotics hold for z replaced by zkm
for any

positive integer m. This follows exactly from the fact that C(zkm
) = C(z) and the

identity (1� zkm
)logk ↵k = (1� z)logk ↵k↵m

k (1 + o(1)) as z ! 1�.

Using Proposition 1 we can determine the asymptotics of K(z) as z radially
approaches any kn-th root of unity.

Proposition 3. Let C(z) and ↵k be as defined in Theorem 1, m > 0 be an integer,
and ⇠ be a km-th root of unity. As z ! 1�, we have

K(⇠z) = ⌦(⇠) · C(z)
(1� z)logk ↵k

· (1 + o(1)),

where the function ⌦(z) satisfies ⌦(1) = 1 and

(z � 1)⌦(z) =

 
(k + 2)zk +

k�1X
a=0

za

!
↵�1

k ⌦(zk) +
⇣
zk2 � 1

⌘
↵�2

k ⌦(zk2
).

Proof. It is clear from Proposition 1 that ⌦(1) = 1. Using the functional equation
2 and Proposition 1, for any k-th root of unity ⇠1, we have as z ! 1�

K(⇠1z) =

 
k�1X
a=0

(a + 1)(⇠1z)a

!
K(zk) +

0
@k2�1X

a=0

(⇠1z)a

1
AK(zk2

) + q(⇠1z)

=

 
k�1X
a=0

(a + 1)⇠a
1

!
1
↵k

· C(z)
(1� z)logk ↵k

· (1 + o(1))

+

0
@k2�1X

a=0

⇠a
1

1
A 1

↵2
k

· C(z)
(1� z)logk ↵k

· (1 + o(1)) + q(⇠1)(1 + o(1))

=

2
4
 

k�1X
a=0

(a + 1)⇠a
1

!
1
↵k

+

0
@k2�1X

a=0

⇠a
1

1
A 1

↵2
k

3
5 C(z)

(1� z)logk ↵k
· (1 + o(1))

= ⌦(⇠1) ·
C(z)

(1� z)logk ↵k
· (1 + o(1)).

Now if ⇠2 is any k2-th root of unity such that ⇠k
2 = ⇠1, then

K(⇠2z) =

 
k�1X
a=0

(a + 1)⇠a
2

!
⌦(⇠1)
↵k

· C(z)
(1� z)logk ↵k

· (1 + o(1))

+

0
@k2�1X

a=0

⇠a
2

1
A 1

↵2
k

· C(z)
(1� z)logk ↵k

· (1 + o(1)) + q(⇠2)(1 + o(1)),
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so that

K(⇠2z) =

2
4
 

k�1X
a=0

(a + 1)⇠a
2

!
⌦(⇠1)
↵k

+

0
@k2�1X

a=0

⇠a
2

1
A 1

↵2
k

3
5 C(z)

(1� z)logk ↵k
· (1 + o(1))

= ⌦(⇠2) ·
C(z)

(1� z)logk ↵k
· (1 + o(1)),

where

⌦(⇠2) =

 
k�1X
a=0

(a + 1)⇠a
2

!
⌦(⇠1)
↵k

+

0
@k2�1X

a=0

⇠a
2

1
A 1

↵2
k

.

Continuing in this manner defines a function ⌦(⇠) on the kn-th roots of unity for
any n > 0 such that

⌦(⇠) =

 
k�1X
a=0

(a + 1)⇠a

!
⌦(⇠k)

↵k
+

0
@k2�1X

a=0

⇠a

1
A ⌦(⇠k2

)
↵2

k

.

Combining this with the identities

k�1X
a=0

(a + 1)za =
1

z � 1

 
(k + 2)zk +

k�1X
a=0

za

!
and

k2�1X
a=0

za =
zk2 � 1
z � 1

provides the result.

Note that the function ⌦(z) depends on k and is defined only on the set of km-th
roots of unity for integers m > 0.

4. Algebraic Independence of K(z) and K(zk)

In this section, we prove Theorem 2. It follows from the following general result and
two lemmas; see Brent, Coons and Zudilin [6, Theorem 4] for a similar argument.

Proposition 4. Let k > 2 be a positive integer and suppose that there is a rational
function �(z) and polynomials p0(z), · · · , pM (z) 2 C[z] such that

�(z)
MX

m=0

pm(z)ym =
MX

m=0

pM�m(zk)
�
(z � 1)(zk � 1)y + s(z)

�m
, (4)

where

s(z) := �(k + 2)zk �
k�1X
a=0

za.

Then pj(z) = 0 for each j = 0, . . . ,M .
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Proof. Assume to the contrary, that a nontrivial collection of polynomials p0(z),
p1(z), . . . , pM (z) satisfying 4 exists. If the greatest common divisor of the polyno-
mials is p(z) then dividing them all by p(z) we arrive at the relation 4 for the newer
normalised polynomials, but with �(z) replaced by �(z)p(z)/p(zk). Therefore, we
can assume without loss of generality that the polynomials pi(z) in 4 are relatively
prime.

Assuming �(z) is nonzero, write �(z) = a(z)/b(z), where gcd(a(z), b(z)) = 1, so
that 4 becomes

a(z)
MX

m=0

pm(z)ym = b(z)
MX

m=0

pM�m(zk)
�
(z � 1)(zk � 1)y + s(z)

�m
. (5)

It follows immediately that any polynomial pm(z) on the left-hand side of 5 is
divisible by b(z), hence b := b(z) is a constant. By substituting x = (z � 1)(zk �
1)y + s(z), we write 5 as

a(z)
MX

m=0

pm(z)
⇥
(z � 1)(zk � 1)

⇤M�m
(x� s(z))m

= b
⇥
(z � 1)(zk � 1)

⇤M MX
m=0

pM�m(zk)xm,

from which we conclude that each pm(zk) is divisible by a(z)/
⇥
(z � 1)(zk � 1)

⇤N
where N is the highest power of

⇥
(z � 1)(zk � 1)

⇤
dividing a(z). Since gcd(p0(zk),

. . . , pM (zk)) = 1, we have that a := a(z)/
⇥
(z � 1)(zk � 1)

⇤N is a constant. In
summary,

�(z) = �
⇥
(z � 1)(zk � 1)

⇤N
for some � 2 C and N 2 Z>0; that is,

�
⇥
(z � 1)(zk � 1)

⇤N MX
m=0

pm(z)ym

=
MX

m=0

pM�m(zk)
�
(z � 1)(zk � 1)y + s(z)

�m
. (6)

Note that the constant � must be nonzero since otherwise, by substituting z = 0
into 6, and noting that s(0) = �1 for any choice of k, each of the pm(zk) would
have the common divisor z.
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If we iterate the righthand side of 6 one more time we arrive at the identity

�
h
(z � 1)(zk � 1)2(zk2 � 1)

iN MX
m=0

pm(z)ym

=
MX

m=0

pm(zk2
)
⇣
(z � 1)(zk � 1)2(zk2 � 1)y

+ (zk � 1)(zk2 � 1)s(z) + s(zk)
⌘m

. (7)

The coe�cients of yM on each side of 7 are equal. That is,

�
h
(z � 1)(zk � 1)2(zk2 � 1)

iN
pM (z)

= pM (zk2
)
h
(z � 1)(zk � 1)2(zk2 � 1)

iM
. (8)

The power of the factor z � 1 is the same in both polynomials pM (z) and pM (zk2
),

so that comparing the powers of the factor z � 1 on both sides of 8 we deduce that
N = M . Further, comparing degrees in 8, we have that pM (z) is a constant and
then, necessarily, � = 1. Without loss of generality, we may assume that pM (z) = 1
(we just shift the constant to the other polynomials by dividing if needed).

With this information, we continue by equating the coe�cients of yM�1 on each
side of 7 to give

h
(z � 1)(zk � 1)2(zk2 � 1)

iM
pM�1(z)

= pM (zk2
)
h
(z � 1)(zk � 1)2(zk2 � 1)

iM�1 ⇣
(zk � 1)(zk2 � 1)s(z) + s(zk)

⌘

+ pM�1(zk2
)
h
(z � 1)(zk � 1)2(zk2 � 1)

iM�1
,

which reduces to

(z � 1)(zk � 1)2(zk2 � 1)pM�1(z)

=
⇣
(zk � 1)(zk2 � 1)s(z) + s(zk)

⌘
+ pM�1(zk2

). (9)

Finally, evaluating 9 at z = 0 gives that s(0) = 0, contradicting the fact that
s(0) = �1. This completes the proof of the theorem.

Lemma 2. The function

!(z) :=
↵k⌦(z)
⌦(zk)

is transcendental over C(z).
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Proof. Using the functional equation for ⌦(z) from Theorem 3 we have

(z � 1)!(z) = (k + 2)zk +
k�1X
a=0

za +
zk2 � 1
!(zk)

.

Assume to the contrary that !(z) is algebraic, so that !(z)/(zk � 1) is also alge-
braic. Then there is a nontrivial relation, over the set of kn-th roots of unity for
nonnegative integers n,

MX
m=0

pm(z)
✓

!(z)
zk � 1

◆m

=
MX

m=0

pm(z)ym

�����
y=!(z)/(zk�1)

= 0, (10)

where here we take M to be the smallest such positive integer. Multiplying the
relation by ((zk � 1)/!(z))M we have

MX
m=0

pM�m(z)
✓

zk � 1
!(z)

◆m

=
MX

m=0

pM�m(z)(y�1)m

�����
y=!(z)/(zk�1)

= 0,

whereby sending z 7! zk and using the functional equation for !(z), we have

MX
m=0

pM�m(zk) ((z � 1)!(z)� s(z))m

=
MX

m=0

pM�m(zk)
⇥
(z � 1)(zk � 1)y � s(z)

�m�����
y=!(z)/(zk�1)

= 0. (11)

If the two algebraic relations in 10 and 11 are not proportional, then a suitable
linear combination of the two will eliminate the term yM and result in a nontrivial
algebraic relation for !(z) of degree smaller than M , resulting in a contradiction.
On the other hand, the proportionality is not possible in view of proposition 4. This
proves the lemma.

Lemma 3. Let k > 2 be a positive integer and suppose that there are polynomials
p0(z), . . . , pM (z) 2 C[z] such that

MX
m=0

pm(⇠)⌦(⇠)m⌦(⇠k)M�m = 0,

for any kn-th root of unity for a nonnegative integer n. Then pm(z) = 0 for each
m = 0, . . . ,M .
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Proof. If a relationship as stated in the lemma exists, then it implies, using the
function !(z), that there is a relationship

MX
m=0

pm(z)↵�m
k !(z)m = 0

on the set of kn-th roots of unity for nonnegative integers n. But this is not possible
because of the transcendence of !(z) established by Lemma 2.

Proof of Theorem 2. For the sake of a contradiction, assume that the theorem is
false and that we have an algebraic relationX

(m0,m1)2M

pm0,m1(z)K(z)m0K(zk)m1 = 0, (12)

where the set M of multi-indices (m0,m1) 2 Z2
>0 is finite and none of the poly-

nomials pm0,m1(z) in the sum is identically zero. Without loss of generality, we
can assume that the polynomial

P
(m0,m1)2M pm0,m1(z)ym0

0 ym1
1 of three variables is

irreducible.
Note that as z ! 1� along a sequence of numbers z�kn

0 , we have

K(z)m0K(zk)m1 = Cm0,m1 ·
⌦(⇠)m0⌦(⇠k)m1

(1� z)(logk ↵k)(m0+m1)
(1 + o(1))

where
Cm0,m1 := Cm0+m1↵m1

k ,

and C = C(e�z0/k) does not depend on ⇠ or z, the latter chosen along the sequence
of numbers z�kn

0 .
Denote by M0 the subset of all multi-indices of M for which the quantity

� := (logk ↵k)(m0 + m1)

is maximal; in particular, (m0 + m1) is the same for all (m0,m1) 2M0.
Multiplying all the terms in the sum 12 by (1 � z)� and letting z ! 1�, we

deduce that X
(m0,m1)2M0

Cm0,m1 · pm0,m1(⇠) · ⌦(⇠)m0⌦(⇠4)m1 = 0. (13)

for any root of unity ⇠ under consideration. But since m0 + m1 = M is constant
for each (m0,m1) 2M0, Equation 13 becomesX

(m0,M�m0)2M0

Cm0,M�m0 · pm0,M�m0(⇠) · ⌦(⇠)m0⌦(⇠4)M�m0 = 0

for any kn-th roots of unity ⇠. By Lemma 3, this is only possible when we have
pm0,M�m0(z) = 0 identically, a contradiction to our choice of M.
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5. Variations and Musings on Corollary 1

Corollary 1 follows directly from a very recent result of ours; see the proof of Theo-
rem 2 in [7] and note therein that in this case m = 0 since the associated eigenvalues
are all nonzero and distinct.

For the remainder of this section, we focus on the case k = 2 of (n). To highlight
this, we will use the slightly modified notation 2(n). Using the matrix definition
of 2(n) one can quickly see that both

max
a2[2n�1,2n)

2(a) = 2(2n � 1)

and

lim sup
n!1

2(n)
nlog2(1+

p
2)

=
2 +

p
2

4
,

where as before log2 indicates the base-2 logarithm.
The graph of the function 2(n) is not so enlightening, but the graph of the

partial sums is an entirely di↵erent matter. Recall that Corollay 1 gives that the
partial sums

P
n6N 2(n) are bounded above and below by constant multiples of

N2. It is also quite clear, using the theory of regular sequences (e.g., see Dumas [9]),
that the values of N�2

P
n6N 2(n) are periodic between powers of 2—see Figure

1 for a graph of the period in the interval [215, 216).
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Figure 1 elicits—at least for this author—an immediate feeling of déjà vu. Indeed,
scouring back through the literature, one comes across the Takagi function, defined
on the unit interval [0, 1] by

⌧(x) :=
X

n>0

1

2n
k2nxk,
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Figure 1 elicits—at least for this author—an immediate feeling of déjà vu. Indeed,
scouring back through the literature, one comes across the Takagi function, defined
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on the unit interval [0, 1] by

⌧(x) :=
X
n>0

1
2n
k2nxk,

where kyk denotes the distance from y to the nearest integer. For a detailed survey
of the Takagi function see the paper of Lagarias [11]. The Takagi function is plotted
in Figure 2.
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Figure 2: The Takagi function ⌧(x).

An explicit connection between these two pictures (and functions) is not immedi-
ately evident. We leave the reader with the very vague question of determining if
there is a describable relationship between these functions. We find the similarities
too compelling to not warrant further study.
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