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Abstract
Let ✓ be a given element in F2(X). In this article, we give a su�cient condition for
the sequence (✓n)n�0 to have a distribution modulo 1.

1. Introduction

Many number theoretic problems have natural counterparts in the domain of func-
tion fields. We are concerned here with the question of the distribution modulo
1 of the powers of an element ✓ 2 Fq(X), the counterpart of the question of the
distribution modulo 1 of (3/2)n. The reader will notice that the method and result
of this note can easily be extended to the case of an algebraic element over Fq(X);
since our result is only partial, we see no interest in stating it in a more general
form, as long as generalisation does not bring a better understanding.

Let us start by giving some definition. We denote Fq((X)) by the set of all the
Laurent expansions

⌘ =
X

k��k0

"k(⌘)Xk, k0 2 N and "k(⌘) 2 Fq.

It is a field which contains Fq(X).
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Definition 1 (Densities). Let ✓ 2 Fq((X)). We say that the sequence (✓n)n�0

has a distribution modulo 1 if for any L � 1 and for any bL 2 FL
q , the sequence

N (✓, bL) = {n 2 N : ("1(✓n), . . . , "L(✓n)) = bL} (1)

has an asymptotic density, i.e., if the following limit

lim
x!1

1
x

Card {n  x : n 2 N (✓, bL)} (2)

exists.
Similarly, we say that the sequence (✓n)n�0 has a logarithmic distribution modulo

1 if for any L � 1 and for any bL 2 FL
q , the sequence N (✓, bL) has a logarithmic

density, i.e., if the following limit

lim
x!1

1
log x

X
n2N (✓,bL),nx

1
n

(3)

exists.

Houndonougbo proved in [5] the existence of the distribution modulo 1 of the
sequence (✓n)n�0, where ✓ = P (X)µ + 1/P (X)⌫ for positive integers µ and ⌫ and
P a non-constant polynomial in Fq[X]: he indeed showed more, namely that the
sequence N (✓, (0, 0, . . . , 0)) has density 1. Deshouillers proved in [4] that the se-
quence (✓n)n�0 also has a distribution modulo 1 when ✓ = P (X)/X⌫ , i.e., when
the Laurent expansion of ✓ is finite: he showed that for any bL the sequenceN (✓, bL)
is q-automatic and that it has a density. Allouche and Deshouillers proved in [1]
that for any ✓ algebraic over Fq(X), the sequence N (✓, bL) is q-automatic; by a gen-
eral result of Cobham [3], this implies that the sequence (✓n)n�0 has a logarithmic
distribution modulo 1, but the existence of a distribution modulo 1 is still an open
question.

Our aim is to provide a criterion which is su�cient to prove the existence of the
distribution modulo 1 of (✓n)n�0. We made some ten hand numerical experiments
on ✓ with an infinite Laurent expansion; in the cases we considered, this criterion
turned out to be satisfied and indeed led to a limit distribution which is the Dirac
measure at 0.

From now on, we assume that q = 2 and that ✓ 2 F2(X). In order to describe the
2-automata which generate the sequences N (✓, bL) we follow [1] and first introduce
some definition.

For n � 0, we consider the Laurent expansions

✓n =
X

k��k0(n)

"k(✓n)Xk.

Since ✓ is rational, its expansion is ultimately periodic and the following definition
makes sense.
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Definition 2 (Parameter). The parameter of an element ✓ in F2(X) is the small-
est even positive integer T satisfying

"�h(✓) = 0 if h � T

and
"h+T (✓) = "h(✓) if h � T.

From now on we denote T as the parameter of ✓. For n � 0 and K,L � 0, we
define

B(n,K,L) = ("�K(✓n), "�K+1(✓n), . . . , "L�1(✓n), "L(✓n)) 2 FL+1+T
2 , (4)

B(n,L) = B(n, T, L) (5)

and
M(n) = (m(n, 0), . . . ,m(n, T � 1)) 2 FT

2 , (6)

where, for t 2 Z : m(n, t) =
1X

h=0

"�t�hT (✓n) 2 F2,

which is well-defined since this sum contains only a finite number of non-zero ele-
ments.

The key ingredient in [1] is the fact that, for L � T , the two (2T + L + 1)-tuples
(M(2n),B(2n,L)) and (M(2n + 1),B(2n + 1, L)) only depend on (M(n),B(n,L)).
Since [1] is not easily available, we give here a proof of this fact.

Proposition 1. Let L � T ; there exist two maps ⇢ and ⌧ from F2T+L+1
2 into itself

such that for every n � 0 one has,

(M(2n),B(2n,L)) = ⇢ ((M(n),B(n,L))) , (7)
(M(2n + 1),B(2n + 1, L)) = ⌧ ((M(n),B(n,L))) . (8)

Proof. We first observe that

8k 2 Z : "2k(✓2n) = "k(✓n), (9)
8k 2 Z : "2k+1(✓2n) = 0, (10)
For t even in [0, T ) : m(2n, t) = m(n, t/2) + m(n, t/2 + T/2), (11)
For t odd in [0, T ) : m(2n, t) = 0. (12)

This implies that as soon as one knows B(n,L), all the coe�cients of ✓2n with
indices beween �2T � 1 and 2L + 1 are known: so are B(2n, 2T + 1, 2L + 1) and a
fortiori B(2n,L). Similarly, the knowledge of M(n) implies that of M(2n). This
implies (7).



INTEGERS: 18A (2018) 4

We noticed that the knowledge of B(n,L) gives us that of B(2n, 2T + 1, 2L + 1).
Let us show that the knowledge of B(n,L) and of M(n) gives us the knowledge of

m(2n, t) =
1X

h=0

"�t�hT (✓2n) for t 2 [�2L� T � 1, 3T + 1]. (13)

Indeed, if t 2 [0, T �1], then m(2n, t) is an element of M(2n); Otherwise m(2n, t) is
an element of M(2n) which is modified by a few terms which belong to B(2n, 2T +
1, 2L + T + 1), e.g. m(2n,�2) = "2(✓2n) + m(2n, T � 2), m(2n, T ) = �"0(✓2n) +
m(2n, 0).

For any k we have

"k(✓2n+1) =
+1X

r=�1
"�T+r(✓)"k+T�r(✓2n) =

+1X
r=0

"�T+r(✓)"k+T�r(✓2n)

=
2T�1X
r=0

"�T+r(✓)"k+T�r(✓2n) +
1X

r=2T

"�T+r(✓)"k+T�r(✓2n)

=
2T�1X
r=0

"�T+r(✓)"k+T�r(✓2n) +
T�1X
⌫=0

"T+⌫(✓)
X

r�2T
r⌘⌫ mod T

"k+T�r(✓2n)

=
2T�1X
r=0

"�T+r(✓)"k+T�r(✓2n) +
T�1X
⌫=0

"T+⌫(✓)m(2n, T + ⌫ � k).

The last relation shows that as soon as one knows B(n,L) and M(n,L) (and the
digits of ✓ with indices between �T and 2T which are our inititial data), we have
enough information to determine B(2n + 1, L) (cf. (13) and the fact that for k 2
[�T,L] we have T + ⌫ � k 2 [T � L, 3T � 1] ⇢ [�2L� T � 1, 3T + 1]).

We finally study M(2n + 1). Let t 2 [0, T � 1). Reasoning as above, we have.

m(2n + 1, t) =
1X

h=0

2T�1X
r=0

"�T+r(✓)"�t�r�(h�1)T (✓2n)

+
1X

h=0

1X
r=2T

"�T+r(✓)"�t�r�(h�1)T (✓2n)

= S1 + S2, say.

By interchanging the sums in the first term on the right-hand side, we see that it
is equal to

S1 =
2T�1X
r=0

"�T+r(✓)m(2n, t + r � T ). (14)

Since r 2 [0, 2T � 1] and t 2 [0, T � 1], we have �T  t + r � T  2T � 2 and thus
the term in (14) is known as soon as M(n) is known. Let us look at the second
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term. We have

S2 =
1X

h=0

1X
r=2T

"�T+r(✓)"�t�r�(h�1)T (✓2n)

=
1X

h=0

1X
s=T

"s(✓)"�t�s�hT (✓2n)

=
1X

h=0

T�1X
⌫=0

X
r�T

s⌘⌫ mod T

"s(✓)"�t�s�hT (✓2n).

We use the periodicity of the digits of ✓ and write s = ⌫ + T + kT . We have

S2 =
T�1X
⌫=0

"T+⌫(✓)
1X

h=0

1X
k=0

"�t�⌫�T�(h+k)T (✓2n)

=
T�1X
⌫=0

"T+⌫(✓)
1X

`=0

0
BB@

X
h�0,k�0
h+k=`

1

1
CCA "�t�⌫�T�`T (✓2n).

It is enough to consider each inside sum over `. We notice that if t + ⌫ is odd, then
all the terms "�t�⌫�T�`T (✓2n) are zero and so is the sum of those terms over `. We
also notice that the sum

P
h�0,k�0
h+k=`

1 is equal to 1 when ` is even and to 0 when ` is

odd. Combining those two remarks and writing ` = 2�, we have, when t+ ⌫ is even

1X
`=0

0
BB@

X
h�0,k�0
h+k=`

1

1
CCA "�t�⌫�T�`T (✓2n) =

1X
�=0

"�(⌫+t+T )/2��T (✓n)

= m(n, (⌫ + t + T )/2);

when ⌫ + t + T  2T , then m(n, (⌫ + t + T )/2) is an element in M(n); otherwise,
we write m(n, (⌫ + t + T )/2) = m(n, (⌫ + t � T )/2) � "(T�⌫�t)/2(✓n), which the
di↵erence of an element of M(n) and an element of B(n,L).

Thus S2 is also known as soon as B(n,L) and M(n) are known. This ends the
proof of Proposition 1.

This permits us to build a directed graph �L with edges indexed by 0 or 1 as
follows. We first consider the set of vertices

RL = {(M(n),B(n,L)) : n � 0}. (15)

We then build two edges starting from rL 2 RL depending on " = 0 or " = 1 in
the following way: since rL = (M(n),B(n,L)) for some integer n � 0, for each
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" 2 {0, 1}, we define the state

�L(rL, ") := (M(2n + "),B(2n + ", L)) (16)

and the edge (rL, �L(rL, ")), which are well-defined. The above-mentioned obser-
vation of [1] implies that our definition is indeed independent of the choice of n
such that rL = (M(n),B(n,L)). The reader who needs to refresh her/his knowl-
edge on Automatic Sequences is strongly recommended to visit [2]1, especially
subsections 4.1 and 5.1. The refreshment being performed, it is not di�cult to
see that the sequence N (✓, bL) is 2-automatic: it is recognized by the automaton
A(bL) = {RL, {0, 1}, �L, r0,L, F (bL)}, where RL and �L have already been defined,

r0,L = (M(0),B(0, L))

and

F (bL) is the set of those r 2 RL, the last L components of which are bL.

It will be convenient to extend the function �L to a new function still called �L,
defined over the words w on {0, 1}, satisfying

8r 2 RL,8" 2 {0, 1},8w 2 {0, 1}⇤ : �L(r, ;) = r, �L(r, "w) = �L(�L(r, w), ").

Let us recall a criterion on the graph �L which insures that the sequence N (✓, bL)
has a density.

In the directed graph �L, we say that two vertices r and s are equivalent if there
is a directed path leading from r to s and a directed path leading from s to r; this
permits to consider equivalent classes, which form a tree, which leads to the notion
of final class; we finally say that an equivalent class is regular if there exists an
integer ` such that for any pair (r, s), there is a directed path of length ` leading
from r to s. We have the following criterion.

Proposition 2. Let L � T be a given integer and bL 2 FL
2 be a given vector. If the

graph �L of the automaton A(bL) has a single final class and if this class is regular,
then, the sequence N (✓, bL) has an asymptotic density.

Theorem 8.4.7, p. 272 of [2] deals with the special case where all the states
constitute a single final regular equivalence class. Proposition 2 is a mere extension
of this result where the key tool is Perron-Frobenius theorem.

Back to our question, we notice that if u  v, then N (✓, bu) is a finite union of
sequences N (✓, bv), and it is thus enough for our purpose to consider the sequences
N (✓, bL) for all su�ciently large values of L.

We wish to prove here that if the criterion applies to an automaton A(bL), it
also applies to the automaton A(bL+1), which leads to the following theorem.

1Thanks, Je↵, for this invaluable monography... and for the rest!
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Theorem 1. Let ✓ be an element in F2(X) and let T be its parameter. If the graph
�T has a single final class and if this final class is regular, then the sequence (✓n)n�0

has a distribution modulo 1.

We remark that in the statement of Theorem 1, the automatonA(bT ) only occurs
through its graph �T , which itself depends on {RT , �T , r0,T } but not on F (bT ).

Corollary 1. Let ✓ be an element in F2(X) and let T be its parameter. If the
graph �T has a single equivalence class, then the sequence (✓n)n�0 has a distribution
modulo 1.

2. Connection Between the Automata A(bL) and A(bL+1)

Our key tool to understand the connection between the automata A(bL+1) and
A(bL) is a natural map fromRL+1 ontoRL; we define it and give its main properties
in the following proposition.

Proposition 3. Let ✓ and T be as in Theorem 1 and let L � T . The map �L from
RL+1 to F2T+L+1

2 , defined by suppressing the last component of an element, has the
following properties

�L (RL+1) = RL, (17)
8r 2 RL, at most two elements s 2 RL+1 such that �L(s) = r, (18)
�L(r0,L+1) = r0,L, (19)
8r 2 RL+1, and " 2 {0, 1}, we have : �L (�L+1(r, ")) = �L(�L(r), "). (20)

Proof. By definition, cf. (15), for a state rL+1 in RL+1, there exists an integer n
such that rL+1 is the (2T +L+2)-tuple (M(n),B(n,L + 1)). If we suppress its last
component we get the (2T +L+1)-tuple (M(n),B(n,L)), which is an element ofRL.
In the other direction, if we start with an element rL in RL, there exits an n such
that rL = (M(n),B(n,L)), and for this n we have rL = �L((M(n),B(n,L + 1)).
Thus, the suppression of the last component defines the map �L which satisfies the
Property (17). Property (18) comes from the fact that the last component of an el-
ement of RL+1 belongs to {0, 1}. We have �L(r0,L+1) = �L ((M(0),B(0, L + 1)) =
(M(0),B(0, L)) = r0,L, which proves Property (19). Finally, let r 2 RL+1, there
exists an integer n such that r = (M(n),B(n,L + 1)); for " 2 {0, 1}, we have,
cf. (16), �L+1(r, ") := (M(2n + "),B(2n + ", L + 1)) and so �L (�L+1(r, ")) =
�L ((M(2n + "),B(2n + ", L + 1))) = (M(2n + "),B(2n + ", L)) = �L(�L(r), "),
which proves (20).

We say that rL+1 2 RL+1 is sitting above rL for some rL 2 RL, if �(rL+1) = rL.
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Claim 1. Assume that CL is the unique final class in �L and let CL+1 be one of
the final classes of �L+1. Then any element of CL+1 is sitting above some element
of CL.

Proof. Let rL+1 2 CL+1 be a given element. Then we have, �L(rL+1) 2 RL. If
�L(rL+1) 2 CL, then we are done. If not, then there exists a word w 2 {0, 1}⇤ such
that �L(�L(rL+1), w) 2 CL. Since rL+1 belongs to CL+1 which is a final class, the
state �L+1(rL+1, w) belongs to CL+1. Therefore, there exists a word w0 2 {0, 1}⇤
such that �L+1(rL+1, ww0) = rL+1. Thus, by the definition of CL, we see that
�L(�L(rL+1), ww0) 2 CL. Since rL+1 is sitting above �L(rL+1), by (20) we conclude
that rL+1 = �L+1(rL+1, ww0) is sitting above �L(�L(rL+1), ww0) 2 CL.

Now, we look at a converse of Claim 1.

Claim 2. Assume that CL is the unique final class in �L and let CL+1 be one of the
final classes of �L+1. For any element r 2 CL, there is an element s 2 CL+1 which
is sitting above r.

Proof. Let r be an element in CL and t an element in CL+1. There exists a word
w 2 {0, 1}⇤ such that �L(�L(t), w) 2 CL. Since r 2 CL, there exists a word w0

such that �L(�L(t), ww0) = r. Now, we look at �L+1(t, ww0). Since t 2 CL+1, we
conclude that �L+1(t, ww0) 2 CL+1. Since t is sitting above �L(t), by (20), we have
�L+1(t, ww0) 2 CL+1 is sitting above r.

Claim 3. Assume that CL is the unique final class in �L. If CL+1 is a final class
in �L+1, then |CL+1| � |CL|.

Proof. If r 6= s are two di↵erent elements in CL, then, by Claim 2, there exist two
elements r0, s0 of CL+1 such that r0 is sitting above r and s0 is sitting above s. Since
r 6= s, by the definition, we see that r0 6= s0. Hence the claim.

Claim 4. Assume that CL is the unique final class in �L. Then there can be at
most two distinct final classes in �L+1.

Proof. We first remark that two classes are distinct if and only if they are disjoint;
now, the claim simply follows from Claim 3 and (18): each final class has at least
|CL| elements and for any element r in CL we can have at most two elements of
RL+1 sitting above r.

Claim 5. Assume that CL is the unique final class in �L. Suppose that C(1)
L+1 and

C(2)
L+1 are two distinct final classes in �L+1 sitting above CL. They are disjoint and

for every element r 2 CL, there is exactly one element r1 2 C(1)
L+1 and one element
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r2 2 C(2)
L+1 which are sitting above r. Moreover, for any (r1, r2) 2 C(1)

L+1 ⇥ C
(2)
L+1 and

for any word w 2 {0, 1}⇤, we have

�L+1(r1, w) 6= �L+1(r2, w). (21)

Proof. Since the two classes C(1)
L+1 and C(2)

L+1 are distinct, they are disjoint. By Claim
2, above each element r 2 CL, there exist r1 2 C(1)

L+1 and r2 2 C(2)
L+1 sitting above r ;

since the two classes are disjoint, we have r1 6= r2. By (18), this implies that above
r, there can be only one element from each of the C(i)

L+1. The last assertion follows
the fact that for any word w, the element �L+1(ri, w) is in C(i)

L+1.

3. Proof of Theorem 1

By Proposition 2, it is enough to prove that for any L � T and any bL, the graph
�L of the automaton A(bL) has a single final class, and this class is regular. Let us
recall that �L is independent of bL. We shall prove our assertion by induction on
L.

The assumption of Theorem 1 is simply the case L = T : the graph �T has a
single final class and this class is regular.

Let us assume that for some L � T , the graph �L has a single final class and
this class is regular; let CL be this class.

We first prove that the graph �L+1 has a single final class. By Claim 1, any
single final class of �L+1 is sitting above CL; thus by Claim 4, there are at most
two final classes in �L+1. If we have indeed two distinct final classes, then we can
apply Claim 5: let r be an element in CL: there exist two elements r1 and r2 which
are sitting above r and which belong to the two di↵erent classes above CL. Choose
an integer h such that 2h > L + 1 and consider a word w consisting of h zeroes.
By (20), the elements �L+1(ri, w) are sitting above �L(r, w) for i = 1 and 2. This
means that they di↵er at most by their last digit. Let n1 and n2 be two integers
such that

ri = (M(ni),B(ni, L + 1)) for i = 1, 2.

Then, we have

�L+1(ri, w) =
�
M

�
ni2h

�
,B

�
ni2h, L + 1

��
=

⇣
M

�
ni2h

�
,B

�
ni2h, L

�
� "L+1(✓ni2

h

)
⌘

for i = 1, 2, where the symbol � represents the concatenation. Since 2h > L + 1, we
have

"L+1(✓n12
h

) = "L+1(✓n22
h

) = 0,
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which implies
�L+1(r1, w) = �L+1(r2, w),

a contradiction to Claim 5. Hence, there is only one final class in the graph �T+1.

Let CL+1 be the unique final class in �L+1. It remains to show that this class is
regular.

If |CL+1| = |CL|, then, by Claim 2, for every rL 2 CL, there is exactly only one
rL+1 2 CL+1 such that rL+1 is sitting above rL and conversely. Therefore, by (20),
�L+1(rL+1, w) is sitting above �L(rL, w) for every word w. Since CL is regular, this
implies that CL+1 is also regular.

Suppose that |CL+1| > |CL|. Then, there exists r in CL such that the two elements
r � 0 and r � 1 are in CL+1. Choose an integer h such that 2h > L + 1 and let w be
the word consisting of h zeroes. By the above argument, we have

�L+1(r � 0, w) = �L+1(r � 1, w),

and we denote this element by s. Since CL is regular, there exists an integer K such
that for any k � K, there is a word wk of length k satisfying

�L(�L(s), wk) = r;

thus �L+1(s,wk) is either r�0 or r�1. But in either case, we have �L+1(s,wkw) = s,
so that for any ` � K + h there is a path of length ` which connects s to s. Since
CL+1 is an equivalent class, any element u can be connected to any element v by a
path of length exactly 2|CL+1|+K+h, which implies that CL+1 is regular. Theorem
1 is proved. 2

Proof of Corollary 1. Since the graph of A(bT ) has unique class, say, CT , it is the
final class. Choose an integer h such that 2h > T . Let w be a word consisting only
h zeroes. Then �T (r0,T , w) =

�
M(2h),B(2h, T )

�
= rh, say. Therefore there exists a

word w0 such that �T (rh, w0) = r0,T . Thus, we have

�T (r0,T , ww0) = r0,T with |ww0| = K, say.

Since it is an equivalent class, any element u can be connected to any other element
v by a path of length K + 2|CT |. Hence it is regular. Therefore, by Theorem 1, we
get the corollary.
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the MuDeRa programme, supported by the Austrian FWF and the French ANR.



INTEGERS: 18A (2018) 11

The second author is thankful to IMB, Université de Bordeaux, hosting institute,
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