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Abstract
We study the Legendre family of elliptic curves Et : y2 = x(x � 1)(x � �t),
parametrized by triangular numbers �t = t(t + 1)/2. We prove that the rank
of Et over the function field Q(t) is 1, while the rank is 0 over Q(t). We also pro-
duce some infinite subfamilies whose Mordell-Weil rank is positive, and find high
rank curves from within these families.

1. Introduction and Main Result

The study of polygonal numbers is an ancient problem and has been widely studied.
Among polygonal numbers, triangular numbers occupy a central place and they have
drawn considerable attention from many researchers. For example, Legendre proved
that a triangular number can never be a cube or a fourth power of an integer. As a
second example, Gauss famously noted in his diary that every natural number can
be expressed as a sum of at most three triangular numbers, and Euler proved that
there are infinitely many squares among the triangular numbers and found all such
numbers [1].

This brief paper is an attempt to establish some interesting connections between
triangular numbers and elliptic curves. The specific curves belong to the Legendre
family (see definition below), and are parameterized by triangular numbers. In this
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context, we first begin with a brief review. Let �t be the tth triangular number,
which is defined as the sum of the first t natural numbers:

�t = 1 + 2 + 3 + · · · + t =
t(t + 1)

2
.

For any field k with char(k) 6= 2, an elliptic curve in Legendre form is one given by
the equation

y2 = x(x� 1)(x� �),

for some � 2 k, with � 6= 0, 1. A Legendre curve always has three rational points
of order two, namely the points (0, 0), (1, 0), and (�, 0). Conversely, any elliptic
curve E/k which has three rational points of order two can be given by an elliptic
curve of the form y2 = x(x � ↵)(x � �) with ↵,� 2 k⇤. Investigating the possible
transformations ([19, III, Sect. 1]) yields that E is isomorphic to a curve in Legendre
form if and only if at least one of ±↵,±�,±(↵� �) is a square in k⇤.

Over the years, several authors have given considerable e↵ort to study the ranks
of certain families of Legendre curves with connections to other interesting areas. In
[8], the authors showed that there exist infinitely many Pythagorean triples (a, b, c)
for which the rank of the family

Ea,b : y2 = x(x� a2)(x� b2)

is positive. Naskre◆cki, Izadi, and Nabardi continued in this line and showed con-
structions of families with rank at least two [7, 12]. Other researchers have looked
at congruent number curves [4, 14, 15], or families of Legendre curves associated
to Heron and Brahmagupta quadrilaterals [5, 6]. It is conjectured that there exist
elliptic curves with arbitrarily high rank, although the highest known rank is 28. On
the other hand, it has also been conjectured that the rank is absolutely bounded,
with only finitely many elliptic curves of rank greater than 21 [13]. Restricting to
Legendre curves, the record is 15 for an individual curve and 8 for an infinite family
(all these records are due to Elkies [2, 3]).

We will set � = �t, and define the main object of study as the family of elliptic
curves

Et : y2 = x(x� 1)(x� t(t + 1)/2),

parametrized by the triangular numbers. We extend the definition of �t to allow for
rational values of t. As far as we can tell, this is the first time triangular numbers
have been used to define a family of elliptic curves. Other papers relating trian-
gular numbers and elliptic curves have tended to prove properties about triangular
numbers using elliptic curve techniques [1].

The main result of this paper is the following. Our approach is similar to [21].
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Theorem 1. Let Et be an elliptic curve over Q(t) given by the equation

Et : y2 = x(x� 1)(x� t(t + 1)/2).

Then

(i) The associated elliptic surface (denoted E) is rational.

(ii) The rank of Et(Q(t)) is 1, with (x, y) = (�t/2, t(t + 2)/(2
p
�2)) being a

generator of the free part of the group Et(Q(t)).

(iii) The rank of Et(Q(t)) = 0.

(iv) The torsion subgroup of Et(Q(t)) is isomorphic to Z2 ⇥ Z2.

In Section 2, we will introduce the notion of elliptic surfaces and certain results
necessary for the proof of Theorem 1. We then give the detailed proof of Theorem
1 in Section 3, and construct infinite families of the curves Et with positive rank in
Section 4. We conclude in Section 5 by giving some examples of specific curves Et

with high rank, and end with directions for further study.

2. Elliptic Surfaces

Definition. Let C be a smooth, irreducible projective curve over an algebraically
closed field k. An elliptic surface over C is a pair (S, f), where S is a smooth,
irreducible, projective surface over k, and f : S �! C is a relatively minimal elliptic
fibration having a singular fiber and a zero section. We often write f : S �! C to
denote the elliptic surface (S, f) over C.

Let k(C) denote the function field of the curve C. Given an elliptic curve E over
k(C), one can associate an elliptic surface f : E �! C with generic fiber E, the
existence and uniqueness of which is guaranteed by the work of Kodaira and Néron.
This elliptic surface is known as the Kodaira-Néron model of the elliptic curve E
over k(C).

Given that all the relevant results needed to prove our main theorem are well
known, we just give their statements and omit their proofs.

Theorem 2 (Corollary 2.2, [17]). Let (S, f) be an elliptic surface over C. The
Néron-Severi group, denoted NS(S), is finitely generated and torsion-free.

Recall the classical Shioda-Tate formula.
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Theorem 3 (Corollary 5.3, [17]). Let (S, f) be an elliptic surface over C. For
each point v of C having singular fiber, let mv denote the number of components
of the singular fiber above v. Let E denote the generic fiber of S. The rank of the
Néron-Severi group of S, denoted ⇢(S), can be obtained from the equality

⇢(S) = rank E(k(C)) + 2 +
X

v

(mv � 1),

where the summation ranges over the the points of C under singular fibers.

We also need the following lemma.

Lemma 1 (Theorem IV.8.2, [20] and Corollary 7.5, [18]). Let E be an elliptic
curve over Q(t). Let ⌃ ⇢ P1(Q(t)) be the set of points of bad reduction of E. Let
G(Fv) denote the group generated by simple components of the fiber Fv at v 2 ⌃.
There exists an injective homomorphism

� : E(Q(t))tors �!
Y

v2⌃

G(Fv).

If Fv is of multiplicative type In in Kodaira notation, the corresponding group is
Z/nZ. If Fv is of additive type I⇤2n, the group is (Z/2Z)2.

3. Proof of Main Theorem

In this section, we give the proof of Theorem 1.

Proof. The elliptic curve Et over Q(t) can be written in short Weierstrass form as

y2 = x3 + A(t)x + B(t),

where
A(t) = �4

3
(t4 + 2t3 � t2 � 2t + 4),

B(t) = �16
27

(t6 + 3t5 � 5t3 � 9t2 � 6t + 8).

The discriminant of Et is given by

�(t) = �256t2(t� 1)2(t + 1)2(t + 2)2.

We now prove each of the parts of the theorem.
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(i) Given an elliptic curve

y2 + a1(t)xy + a3(t)y = x3 + a2(t)x2 + a4(t)x + a6(t)

over Q(t) in long Weierstrass form, we know from [17, Equation 10.14] that
if deg(ai(t))  i for each i, then the associated elliptic surface E is rational.
In our case, since deg(A(t)) = 4 and deg(B(t)) = 6, therefore the underlying
elliptic surface is rational.

(ii) From the expression of the discriminant of Et, we see that Et has singular
fibers at the values t = 0,�2,±1, and 1. We determine the numbers mv,
of irreducible components of the fiber over v, from Kodaira types of singular
fibers [10, section 4]:

v coe�cients
ordt=v(A) ordt=v(B) ordt=v(�) Kodaira type mv � 1

0 0 0 2 I2 1
�2 0 0 2 I2 1
�1 0 0 2 I2 1
1 0 0 2 I2 1
1 0 0 4 I4 3

Since E is a rational surface, we have ⇢(E) = 10. Thus by Theorem (3) we get,

10 = rank Et(Q(t)) + 2 + 1 + 1 + 1 + 1 + 3,

and hence rank Et(Q(t)) = 1.

The group Et(Q(t)) is generated with the points of the form (a2T 2 + a1T +
a0, b3T 3 + b2T 2 + b1T + b0), ai, bi 2 Q (see [17, Equation 10.14]). A straight-
forward calculation shows that the point P = (�t/2, t(t + 2)/(2

p
�2)) is a

generator of Et(Q(t)).

(iii) This part’s proof follows the idea in Corollary 6.3 of [12]. Since rank Et(Q(t))=
1, then necessarily rank Et(Q(t))  1. We claim that rank Et(Q(t)) = 0. On
the contrary, assume that rank Et(Q(t)) = 1. Then H = Et(Q(t)) is a finite
indexed subgroup of G = Et(Q(t)), and GQ = HQ, where GQ = G ⌦Z Q and
HQ = H ⌦Z Q are one dimensional vector spaces over Q.

We have a canonical Galois representation

⇢ : Gal(Q/Q) �! G⇥
Q = Aut(GQ)
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which is defined as follows. For any � 2 Gal(Q/Q) and g 2 G, we define
�(g⌦1) = �(g)⌦1, where �(g) is obtained by the action of � on the coe�cients
of rational functions in the coordinates of g. Let � 2 Gal(Q/Q) be the element
such that �(

p
�1) = �

p
�1 and �(

p
2) =

p
2. Then we get �(P ⌦ 1) =

�(P ⌦ 1). Therefore ⇢ is a non-trivial character of Gal(Q/Q). Clearly ⇢ acts
trivially on HQ which is a contradiction as GQ = HQ.

(iv) By Lemma 1 and the table in the proof of (ii) above, we see that the torsion
subgroup of Et(Q(t)) is embedded in Z2 ⇥ Z2 ⇥ Z2 ⇥ Z2 ⇥ Z4. From the
well-known specialization theorem [20], the specialization homomorphism is
injective on the torsion. Specializing at t = 3, the curve is E3 : y2 = x3 �
7x2 + 6x. The torsion group of E3 is easily computed to be Z2⇥Z2. We have
exactly three 2-torsion points, namely (0, 0), (1, 0) and (t(t + 1)/2, 0), on the
elliptic curve Et. Since these 2-torsion points are also the points of Et(Q(t)),
it implies that Et(Q(t))tors = Z2 ⇥ Z2.

4. Infinite Families With Positive Rank

4.1. Rank 1 Families

In this section we construct infinite families of the curve Et which have positive
rank. We first construct a couple of subfamilies of rank (at least) 1, followed by a
family with rank (at least) 2.

In order to construct a subfamily of rank one, we consider the right hand side of
the curve y2 = x(x � 1)(x � t(t + 1)/2) as a polynomial in t. The coe�cient of t2

is �x(x� 1)/2. Putting
�x(x� 1)/2 = m2,

we can rewrite the equation Et as (y �mt)(y + mt) = m2t � 2m2x. Now writing
y�mt = p, we get p(y+mt) = m2t�2m2x. These two equations may be considered
as two linear equations in y and t, and solving we find

t =
p2 + 2m2x

m(m� 2pm)
, y =

�p2 + 2m2x + pm

m� 2p
.

We divide both the numerator and denominators by m2, and setting p/m = g, x =
2/(h2 + 2), and m = h/(h2 + 2), we obtain

t(g, h) = �(h2g2 + 2g2 + 4)
(h2 + 2)(2g � 1)

,
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for which the point

(x, y) =
✓

2
h2 + 2

,
h(h2g2 � gh2 + 2g2 � 2g � 4)

(h2 + 2)2(2g � 1)

◆

always lies on the elliptic curve

y2 = x(x� 1)(x� t(g, h))(x� (t(g, h) + 1)/2).

Specialization at (g, h) = (1, 1) yields the curve Et(1,1) : y2 = x3 � 23
9 x2 + 14

9 x,
which has rank 1 over Q, with the point (2/3,�4/9) of infinite order. Since the
specialization map [20, Theorem 11.4] is a homomorphism, this implies that the
rank of the curve is at least 1 over Q(g, h).

It is not hard to find other families with rank at least one. For example, if we set
t = 4/(m2 + 2), then the point with x-coordinate t + 1 is rational and has infinite
order. Similarly, if we set t = (m2 +1152)/(8m2 +1024), or t = (6�3m2)/(m2 +2)
yields curves with a point of infinite order given by the x-coordinate x = t � 1/8,
x = t + 3 respectively. For a more general construction, setting

t =
(2c� 1)m2 + 2c

m2 + 2c2

then the point with x-coordinate x = ct will be rational and have infinite order.

4.2. A Subfamily of Rank Two

To construct a family with rank (at least) two, we begin by forcing the point with
x-coordinate x = �2t � 2 to be rational. This requires that the expression �(t +
4)(2t + 3) be square. We can parameterize

t = �4m2 + 3
m2 + 2

,

to ensure the expression is square. It can be checked that this point has infinite
order via specialization. We then try to increase the rank by forcing the point with
x-coordinate x = (t+4)/5 to be rational. Some simple algebra shows this condition
is equivalent to requiring that (12m2 � 1)/2 is square. We therefore set

m = �k2 + 8k + 24
2k2 � 48

.

Substituting back in, we find that

t = �16
k4 + 4k3 � 8k2 + 96k + 576

(9k2 + 88k + 216)(k2 � 8k + 24)
,

with the two points having x-coordinates x1(t) = �2t� 2 and x2(t) = (t + 4)/5.
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It is easy to show via specialization that these points are independent and
have infinite order. Indeed, for k = 4 then t = �336/89, with points P1 =
(494/89, 22230/7921) and P2 = (4/89, 3740/7921). As verified by SAGE [16], both
P1 and P2 have infinite order (which is easy to see since the torsion group is Z2⇥Z2).
The determinant of the height pairing matrix for P1 and P2 is 6.94053525377041 6= 0,
which implies the points are independent. In fact, the curve Et has rank 2, and P1

and P2 can be shown to be generators. We thus have constructed an infinite family
with rank (at least) two.

It is possible to construct other families with rank (at least) 2 by using the above
technique, with di↵erent x-coordinates. We note that we attempted to find a rank
3 subfamily, but were unsuccessful.

5. Examples of Elliptic Curves of High Rank

We searched for curves with high rank, and were able to find some elliptic curves of
rank 6 in the family Et. We use the sieving method based on Mestre-Nagao sums
([9], [11]). Let E/Q be an elliptic curve, and p be a prime. Set ap = ap(E) =
p + 1� |E(Fp)|. Given a fixed integer N , the Mestre-Nagao sum is defined by

S(N,E) =
X

primes pN

✓
1� p� 1

|E(Fp)|

◆
log(p) =

X

primes pN

�ap + 2
p + 1� ap

log(p).

It has been conjectured that in general, larger values of S(N,E) tend to cor-
respond to curves with high rank. Provided N is not too large, S(N,E) can be
calculated using SAGE [16].

Searching through the curves Et with t = t1/t2 with �10000  t1  10000, 1 
t2  10000, we found that for the curves with S(523, E) > 20, the rank was fre-
quently 3 or 4. In the above range, we found only one curve with rank 6, which
occurred for t = 2961/3116. Concretely, the elliptic curve

y2 = x3 � 74825818x2 + 1397695377085056x,

which has generators:

P1 = (39037824, 4879728000),

P2 = (86307147531/2209, 549837626486445/103823),

P3 = (139324262094/3481, 2843260991496900/205379),

P4 = (1023658496/25, 2586273190144/125),
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P5 = (1364049981504/32041, 185551816648665600/5735339),

P6 = (45163475, 51198909265).
There were several values of t = t1/t2 which correspond to curves Et which have

rank 5. See Table 1 below.

rank t = t1/t2

5

324/965, 1572/1390, 1602/935, 1696/801, 1984/619,
1142/2192, 1360/2043, 1558/1771, 1817/3029, 2135/2614,
2143/3034, 2408/3005, 2578/2761, 2631/2255, 2697/2910,
2817/2712, 3048/2345, 5057/5215, 5156/5522, 5232/5597,
5394/5820, 5634/5424, 5635/5289, 5178/6806, 5331/6499,
2512/1513, 5081/3497, 10177/6255.

Table 1: Rank 5 curves

We similarly searched the other families given in Section 4. For the rank 1
family, we did not find any additional rank 5 or 6 curves. For the family described
in Section 4.2, we found curves of rank 5 for k = �23/12,�15/7 (corresponding
to t = �115438864/71696361 and -1345744/838881), and rank 6 for k = 20, 7/3
(corresponding to t = �47824/23001 and = �1084624/410601 respectively).

6. Conclusion

One can easily prove that a similar result is true for any polygonal number. If s is
the number of sides in a polygon, the formula for the nth s-gonal number P (s, n) is

P (s, n) = (s� 2)
n(n� 1)

2
+ n.

The case s = 2 corresponds to Legendre curves, while the case s = 3 are the
triangular number curves treated in this paper. When s = 4, then P (4, n) = n2,
with the related curve family y2 = x(x � 1)(x � n2) closely related to the works
mentioned earlier involving Pythagorean triples [7], [8], [12]. It would be interesting
to further examine the elliptic curves that arise from other polygonal numbers.
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