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Abstract
In this paper we give a purely combinatorial proof of an ordered-partition expansion
of determinants inspired by multivariate finite operator calculus. This argument also
includes a combinatorial proof of an interesting identity about Stirling numbers of
the second kind. Also, we give a topological proof of Ryser’s formula for permanents.

1. Introduction

In [1], Erik Insko, Katie Johnson and Shaun Sullivan proved a Ryser-type formula
for determinants. They called it “An ordered-partition expansion of determinants.”
This expansion evolved from a conjecture about a transfer formula in multivariate
finite operator calculus. Before stating their theorem, let us define some notation
and terminology. We will denote the set {1, 2, 3, . . . , n} by [n]. Let S be a finite
set, then an ordered set partition (in short, an ordered partition) of S is an ordered
tuple (�1,�2, . . . ,�r) of pairwise disjoint subsets, whose union is S. For example,
({1, 3}, {2}), ({2}, {1, 3}) are two (there are many others) ordered partitions of [3].
Now let us state the theorem.

Theorem 1. For a square matrix A = (aij)n⇥n,

|A| =
X

B`[n]

(�1)n�|B|
Y

�k2B

Y

i2�k

X

j2�́k

aij ,
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where the outer summation runs over all ordered partitions B = (�1,�2, . . . ,�r) of
[n], and the inner summation runs over all integers j in the union of �́k =

Sk
l=1 �l

of first k parts of the partition B.

For a function f : [n] ! [n], define af :=
Qn

i=1 aif(i). Note that af is defined
to be

Qn
i=1 af(i)i in [1]. But this presents no additional problem in the present

situation, as the determinant of a matrix and its transpose are equal, and the same
is true for permanents also. Now, the determinantal expression in Theorem 1.1 can
be restated as |A| =

P
B`[n](�1)n�|B|(

P
f af ); where the inner summation runs

over all functions f : [n] ! [n] satisfying the following property: if i 2 �k, then
f(i) 2

Sk
j=1 �j , where B = (�1,�2, . . . ,�r). After expansion, this will take the formP

f cfaf , f running through all the functions f : [n] ! [n]. In [1], Erik Insko,
Katie Johnson and Shaun Sullivan proved that if f is bijective cf = sign(f), and
for nonbijective f they showed cf to be zero by an elegant topological argument
analyzing the Euler characteristics of subsets of a suitably chosen permutahedron.
Since this proof is highly topological and their expansion also resembles Ryser’s
formula for permanents, stating that for a square matrix A = (aij)n⇥n, perm(A) =P

S✓[n](�1)n�|S| Qn
i=1

P
j2S aij , the authors asked two questions at the end of their

paper [1] :

1. Is there any combinatorial proof of Theorem 1 in [1]?

2. Is it possible to prove Ryser’s formula topologically in the spirit of their ar-
gument in Theorem 1 in [1]?

In this paper, we answer these two questions, i.e., we give a simple combinatorial
argument to prove the “ordered-partition expansion” and also we give a topological
proof of Ryser’s formula at the end. From now on we will use IJS to abbreviate the
names of the authors of [1].

2. Combinatorial Proof of the Expansion

Before proceeding, we recall a definition from [1]. For a function f : [n] ! [n],
define Sf := {B ` [n] : i 2 �k ) f(i) 2

Sk
i=1 �j 8k}, where B = (�1,�2, . . . ,�r).

Let us give a short description of the structure of the poset of ordered partitions.
Let Pn denote the poset of ordered partitions of the set [n]. At the top of the poset
Pn, we have n! ordered partitions consisting of singletons. IJS call them ‘singleton
partitions.’ Directly below a given ordered partition B = (�1,�2, . . . ,�r) in Pn are
the ordered partitions Bi = (�1,�2, . . . ,�i [ �i+1, . . . ,�r), where 1  i  r� 1, i.e.,
directly below a given ordered partition B in Pn are the ordered partitions formed
by taking the union of two consecutive parts in B. We label in Pn as follows:
“1st label ” consists of all the singleton partitions, “2nd label” consists of all the
partitions lying just below the “1st label” partitions, and so on.
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Now to prove the theorem combinatorially, we just need to prove that if f is
bijective then cf = sign(f), and if f is not bijective, then cf = 0. Now, for the case
when f is not bijective, it su�ces to prove combinatorially that cf = 0 whenever f is
acyclic(i.e., fk(i) = i implies k = 1 for all i 2 [n]). IJS [1] showed how to reduce the
problem of calculating coe�cients cf , when f is not bijective, to that of calculating
the coe�cients cf corresponding to acyclic functions f : [n] ! [n] (see Lemma 2,
in [1]). Hence, to address Question 1 we need only to prove combinatorially the
following result.

Proposition 1. Let f : [n] ! [n] be a function. Then

1. cf =
P

B2Sf
(�1)n�|B| = 0 if f is an acyclic non-identity function.

2. cf = sign(f), if f is bijective.

Proof. 1. Since f is acyclic, f can be very naturally viewed as a rooted forest as
described in [1], where the fixed points of f are the roots and each component tree
contains a single root. We also call the rooted forest associated to f as f . Now
since f is nonidentity, f has a component having more than one element. Without
loss of generality let 1 be the root of this component.

Let Śf = {B 2 Sf : �1, the first part of B, contains 1}. If a singleton partition
belongs to Śf , then every partition below it must belong to Śf . Conversely, let
B 2 Śf and B = (�1,�2, . . . ,�r), where 1 2 �1. We prove that there exists a
singleton partition B́ 2 Śf such that B́ � B in Pn. To do this, first place the
1 at the beginning. Now look at the remaining elements of �1. Let �1 \ {1} =
A1

S
A2

S
· · ·

S
Ak, where for any particular i, each element of Ai belongs to the

same component of f and Ai
T

Aj = ; for i 6= j. In other words, A0is are the
branches of the tree rooted at 1. Now order each element of A1 by their distance
from the root of their mother component (elements having the same distance from
the root can be put in any order). Do this for A2, A3 and so on. Continue the
same method for �2,�3 and so on and we get our desired B́. So Śf consists of all
the singleton partitions in Sf with 1 at the beginning and all the partitions below
them.

Now we pair up all the partitions of Śf in an interesting way. Let 1, x2, x3, . . . , xn

be a typical 1st label partition in Śf . This is an abuse of notation. By 1, x2, x3, . . . , xn

we mean the ordered tuple (1, x2, x3, . . . , xn). We pair this element with a 2nd label
partition {1, x2}, x3, x4, . . . , xn. Do this for all 1st label partitions in Śf .

Now, which 2nd label partitions in Śf are still unpaired? A typical partition
of this type is of the form 1, y2, y3, . . . , {yi, yi+1} . . . , yn. We pair these partitions
with the 3rd label partitions as follows: 1, y2, y3, . . . , {yi, yi+1} . . . , yn is paired with
{1, y2}, y3, y4, . . . , {yi, yi+1}, . . . , yn.

Now we ask the same question, i.e., which 3rd label partitions are still unpaired?
The answer is the partitions with singleton one as their first part, i.e., of the form
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1,↵1,↵2, . . . ,↵k and we pair these partitions with the 4th label partitions as fol-
lows: 1,↵1,↵2, . . . ,↵k is paired with {1}

S
↵1,↵2, . . . ,↵k. We proceed this way

until there would be no unpaired partitions. The way we paired up the parti-
tions in Śf immediately tells us that the contribution of them in cf is zero, i.e.,P

B2Śf
(�1)n�|B| = 0.

Now let k � 1 and � = �1,�2, . . . ,�k,�k+1,�k+2, . . . ,�r be a partition in Sf ,
where 1 2 �k+1. We fix this partition. Let S�

f = {� 2 Sf : � = �1,�2, . . . ,�k, �1, �2,

. . . , �s and 1 2 �1}. Note that � 2 S�
f . Let M = [n] \ (�1

S
�2

S
· · ·

S
�k). Since

1 is a root of f , |M | > 1. Let us denote P1(M) to be the set of all ordered
partitions of the set M , with 1 belonging to the first part. So S�

f = {� 2 Sf :
� = �1,�2, . . . ,�k, �1, �2, . . . , �s, where �1, �2, . . . , �s 2 P1(M)}. So each partition
of S�

f is of the form (�1,�2, . . . ,�k) followed by an element of P1(M). Now since
|M | > 1, we can apply our previous argument to pair up each element of S�

f just
forgetting the part (�1,�2, . . . ,�k) of each element, so that their contribution in cf

is zero, i.e.,
P

B2S�
f
(�1)n�|B| = 0. Since � is arbitrary, we conclude that cf = 0.

2. Assume that f is bijective. In this case, Corollary 1 of [1] proved that
cf = sgn(f) by a direct consequence of the identity

Pn
k=0(�1)n�kk!S(n, k) = 1,

where S(n, k) is the Stirling number of 2nd kind. Here we give a combinatorial
proof of this identity almost identical to that of the acyclic case. Actually we
have

Pn
k=0(�1)n�kk!S(n, k) =

P
B2Pn

(�1)n�|B|. Note that SI = Pn, where I
is the identity mapping from [n] ! [n]. Let us consider the set of all parti-
tions in Pn with singleton {n} as the last part and call this set Ṕn. Since the
elements of Pn \ Ṕn can be paired up exactly the same way as the previous ar-
gument(replacing 1 by n), we have

P
B2Pn

(�1)n�|B| =
P

B2Ṕn
(�1)n�|B|. But

elements of Ṕn are just the elements of Pn�1 followed by a singleton {n}. Hence we
have

P
B2Ṕn

(�1)n�|B| = �
P

B2Pn�1
(�1)n�|B| =

P
B2Pn�1

(�1)(n�1)�|B| = 1(by
induction, since initially (�1)1�11!S(1, 1) = 1 ), where we assume B = B́[{n}.

3. Topological Proof of Ryser’s Formula

Recall that Ryser’s formula for the permanent of a square matrix A = (aij)n⇥n is
perm(A) =

P
S✓[n](�1)n�|S| Qn

i=1

P
j2S aij , which can be restated as perm(A) =

P
S✓[n](�1)n�|S|(

P
f :[n]!S af ). In the following result we give a topological proof

of Ryser’s formula for permanents of a square matrix.

Proposition 2. If A = (aij)n⇥n is square matrix, then

perm(A) =
P

S✓[n](�1)n�|S|(
P

f :[n]!S af ).

Proof. Consider the expression
P

S✓[n](�1)n�|S|(
P

f :[n]!S af ). Upon expansion
this would be of the form

P
f :[n]![n] dfaf . If f is surjective then it is immediate
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that df = 1. So to prove Ryser’s formula, it su�ces to prove that df = 0, if f is
not surjective. Suppose that range(f) = S ⇢ [n]. Then df =

P
Ś◆S(�1)n�|Ś|. Now

P
Ś✓[n](�1)n�|Ś| =

P
Ś◆S(�1)n�|Ś| +

P
Ś(�1)n�|Ś|, where the 2nd summation on

the R.H.S of the above equation runs through all subsets of [n] not containing S.
Now

P
Ś✓[n](�1)n�|Ś| = (�1)n

P
Ś✓[n](�1)|Ś| = (�1)n�(�n�1) = (�1)n, where

�n�1 is the standard simplex and �(�n�1) is its Euler characteristic, which is
equal to 1. Now, the subsets of [n], not containing S form the faces of an abstract
simplicial complex � with vertex set [n]. But how does � look like? In fact,
� = x1 ⇤x2 ⇤ · · · ⇤xn�|S| ⇤ (@�|S|�1), where �|S|�1 is the simplex with vertex set S
and @�|S|�1 is its boundary sphere, 0⇤0 is the usual simplicial join operation(see [2],
page 12) and [n]\S = {x1, x2, . . . xn�|S|}. Since � is an iterated cone, its geometric
realization |�| (see [2], page 16) is contractible and so �(|�|) = 1. Hence df =P

Ś◆S(�1)n�|Ś| = (�1)n � (�1)n = 0.
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