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Abstract
We aim to solve the equation �2(n) = `n2 + An + B, where `, A, and B are given
integers. We find that this equation has infinitely many solutions only if ` = 1. Then
we characterize the solutions to the equation �2(n) = n2 + An + B. We prove that,
except for finitely many computable solutions, all the solutions to this equation with
(A,B) = (L2m, F 2

2m� 1) are n = F2k+1F2k+2m+1, where both F2k+1 and F2k+2m+1

are Fibonacci primes. Meanwhile, we show that the twin prime conjecture holds if
and only if the equation �2(n)� n2 = 2n + 5 has infinitely many solutions.

1. Introduction and Main Results

A positive integer is called a perfect number if it is equal to the sum of its proper
divisors. In other words, a positive integer n is a perfect number if and only if

X

d|n
0<d<n

d = n. (1)
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Let �k(n) :=
P

d|n
dk. When k = 1, we usually write �1(n) as �(n). The perfect

numbers are exactly those integers n which satisfy

�(n) = 2n. (2)

Euler [4] proved that all even perfect numbers have the form n = 2p�1(2p � 1),
where both p and 2p � 1 are primes. Note that a prime of the form 2p � 1 is called
a Mersenne prime. As of December 2018 [8], only 51 Mersenne primes have been
found and thus only finitely many even perfect numbers are known. It is unknown
whether there are any odd perfect numbers.

Some variants and generalizations of perfect numbers have been studied by many
mathematicians including Fermat, Descartes, Mersenne and Euler; see [1, 3, 5] for
example.

Recall that the Fibonacci numbers {Fn}n�0 are defined by the recurrence relation

Fn = Fn�1 + Fn�2

with seed values F0 = 0, F1 = 1. The Lucas numbers {Ln}n�0 satisfy the same
recurrence relation

Ln = Ln�1 + Ln�2

but with di↵erent seed values L0 = 2, L1 = 1. A Fibonacci (resp. Lucas) number
Fn (resp. Ln) is called a Fibonacci (resp. Lucas) prime if Fn (resp. Ln) is a prime.
In 2015, Cai, Chen and Zhang [1] considered the following arithmetic equation:

X

d|n
d<n

d2 = 3n. (3)

Surprisingly, they found that the structure of its solutions is similar to the structure
of perfect numbers. Namely, each solution must be a product of two primes.

Theorem 1. All the solutions of (3) are n = F2k�1F2k+1, where both F2k�1 and
F2k+1 are Fibonacci primes.

Due to the connection with Mersenne primes and Fibonacci primes, the first
author called the original perfect numbers M -perfect numbers and the solutions of
(3) F -perfect numbers. In the 2013 China-Japan Number Theory Conference, which
was held in Fukuoka, Professor Kohji Matsumoto suggested to name the M -perfect
numbers (resp. F -perfect numbers) as male (resp. female) perfect numbers.

There are so far only a few Fibonacci primes known and thus only five F -perfect
numbers were known and given in [1]. The authors [1] also showed that for any pair
of positive integers (a, b) 6= (2, 3) and a � 2, the equation

X

d|n
d<n

da = bn (4)
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has only finitely many solutions.
In this paper, we extend the work of [1] by considering a more general equation:

�2(n) = `n2 + An + B, (5)

where `, A, and B are integers. Our main goal is to find the values of (`, A,B) such
that (5) may have infinitely many solutions and give a way to characterize these
solutions.

Theorem 2. If ` 6= 1, then the equation (5) has only finitely many solutions.

This theorem tells us that we only need to discuss the case when ` = 1, and in
this case (5) can be rewritten as

�2(n)� n2 = An + B. (6)

Now we characterize the solutions of (6).

Theorem 3. (i) If A = 0 and B = 1, then all the solutions of (6) are n = p, where
p is a prime.
(ii) If A = 1 and B = 1, then all the solutions of (6) are n = p2, where p is a prime.
(iii) If (A,B) 6= (0, 1) and (A,B) 6= (1, 1), then, except for finitely many computable
solutions in the range n  (|A| + |B|)3, all the solutions of (6) are n = pq, where
p < q are primes which satisfy the following equation:

p2 + q2 + (1�B) = Apq. (7)

For some special pairs (A,B), the equation (7) has solutions which have inter-
esting structures.

Theorem 4. Let m be a positive integer. Except for finitely many computable
solutions in the range n  (L2m + F 2

2m � 1)3, all the solutions of

�2(n)� n2 = L2mn� (F 2
2m � 1) (8)

are
(i) n = F2k+1F2k+2m+1(k � 0), where both F2k+1 and F2k+2m+1 are Fibonacci
primes;
(ii) n = F2k+1F2m�2k�1(0  k < m, k 6= m�1

2 ), where both F2k+1 and F2m�2k�1

are Fibonacci primes.

We call those solutions of (8) which are not in the form of (i) or (ii) exceptional
solutions. For 1  m  5, by using Mathematica, we find that there are no
exceptional solutions. In particular, if m = 1, (8) becomes (3), and Theorem 4
reduces to Theorem 1. For 1  m  3, according to the list of known Fibonacci
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m L2mn� (F 2
2m � 1) n

1 3n F3F5, F5F7, F11F13, F431F433, F569F571

2 7n� 8 F3F7, F7F11, F13F17, F43F47

3 18n� 63 F5F11, F7F13, F11F17,
F17F23, F23F29, F131F137

Table 1: Solutions of (8) for 1  m  3.

primes [7], we present the known solutions in Table 1. The two solutions F431F433

and F569F571 in Table 1 have 180 and 238 digits, respectively.
The exceptional solutions may exist for larger m. For example, if m = 6, (8)

becomes
�2(n)� n2 = 322n� 20735.

For this equation, there is exactly one exceptional solution given by n = 1755 =
33 · 5 · 13. For other m, exceptional solutions may exist as well. It would be di�cult
to find all the possible values of m and n such that (8) has no exceptional solutions.

Meanwhile, we have a companion result concerning the Lucas sequence.

Theorem 5. Except for finitely many computable solutions in the range n 
(L2m + L2

2m � 3)3, all the solutions of

�2(n)� n2 = L2mn + (L2
2m � 3) (9)

are n = L2k�1L2k+2m�1, where both L2k�1 and L2k+2m�1 are Lucas primes.

Theorem 6. Except for finitely many computable solutions in the range n 
(L2m + L2

2m � 5)3, all the solutions of

�2(n)� n2 = L2mn� (L2
2m � 5) (10)

are
(i) n = L2kL2k+2m(k � 0), where both L2k and L2k+2m are Lucas primes.
(ii) n = L2kL2m�2k(0  k  m,k 6= m

2 ), where both L2k and L2m�2k are Lucas
primes.

Similarly, we call those solutions of (9) or (10) which are not a product of two
Lucas primes exceptional solutions. From these two theorems and by using Math-
ematica, we find that the equations (9) and (10) have no exceptional solutions for
1  m  5. We present the known solutions of (9) with 1  m  5 in Table 2. The
two solutions n = L613L617 and L4787L4793 in Table 2 have 258 and 2003 digits,
respectively.

Since we do not know whether there exist infinitely many Fibonacci primes or
Lucas primes, it is not clear whether there are infinitely many solutions described
in Theorems 4–6.
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m L2mn + (L2
2m � 3) n

1 3n + 6 L5L7, L11L13, L17L19

2 7n + 46 L7L11, L13L17, L37L41, L613L617

3 18n + 321 L5L11, L7L13, L11L17, L13L19, L31L37,
L41L47, L47L53, L4787L4793

Table 2: Solutions of (9) for 1  m  3.

Finally, we consider the following equation:

�2(n)� n2 = An + (k2 + 1). (11)

Theorem 7. Let A be a positive integer and k an integer.
(i) If A 6= 2 or k is odd, then (11) has only finitely many solutions;
(ii) If A = 2 and k is even, then except for finitely many computable solutions in
the range n < (|A| + k2 + 1)3, all the solutions of (11) are n = p(p + k), where both
p and p + k are primes.

This theorem leads to an interesting equivalent statement of the Polignac’s con-
jecture.

Corollary 1. For any even integer k, there are infinitely many prime pairs (p, p+k)
if and only if the equation

�2(n)� n2 = 2n + (k2 + 1)

has infinitely many solutions.

In particular, the twin prime conjecture holds if and only if the equation

�2(n)� n2 = 2n + 5

has infinitely many solutions.

2. Proofs of the Theorems

Proof of Theorem 2. Suppose that for some `, (5) has infinitely many solutions ni

with n1 < n2 < · · · < nm < · · · . Then we have lim
m!1

nm =1. Thus

lim
m!1

�2(nm)
n2

m

= lim
m!1

✓
` +

A

nm
+

B

n2
m

◆
= `. (12)

However, for any positive integer n, we have

1 <
�2(n)

n2
=

X

d|n

1
d2

<
1X

d=1

1
d2

=
⇡2

6
. (13)

Combining (12) with (13), we conclude that ` = 1.
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In order to prove other theorems, we need the following two lemmas.

Lemma 1 ([6]). Let m, n be nonnegative integers and n � m. We have
(i) 5F 2

n + 4(�1)n = L2
n,

(ii) LmLn + 5FmFn = 2Lm+n,
(iii) FnLm = Fn+m + (�1)mFn�m,
(iv) LnFm = Fn+m � (�1)mFn�m,
(v) 5FmFn = Lm+n � (�1)mLn�m.

Lemma 2 ([2, Corollary 7). ] All nonnegative integer solutions of the equations
x2 � 5y2 = �4 and x2 � 5y2 = 4 are given by (x, y) = (L2n+1, F2n+1) and (x, y) =
(L2n, F2n) with n � 0, respectively.

Proof of Theorem 3. (i) Since �2(n) = n2 + 1 if and only if n is a prime, the state-
ment is clearly true.

(ii) Let n have at least two distinct prime factors. Then we can write n = p↵c,
where p is a prime number, c > 1, p - c and ↵ � 1. Thus

n2 + n + 1 = �2(n) � n2 + 1 + c2 + (p↵)2,

which implies that p↵c = n � c2 +(p↵)2. This shows that (p↵)2�p↵c+c2  0. But
this is impossible. Therefore, we get n = p↵ for some prime p and integer ↵ � 1.
The case ↵ = 1 is impossible and therefore ↵ � 2. Assume that ↵ � 3. Then
n = p · p↵�1 and so

n2 + n + 1 = �2(n) � n2 + 1 + p2 + p2↵�2.

This implies that

p↵ = n � p2 + p2↵�2 = p2 + p↵p↵�2 > p↵,

which is impossible. Hence all the solutions of (6) are n = p2, where p is a prime.
(iii) We assume that (A,B) 6= (0, 1) and (A,B) 6= (1, 1). Suppose n > (|A| + |B|)3

is a solution of (6).
If n = abc where 1 < a < b < c are positive integers. By the arithmetic-geometric

mean inequality, we have

�2(n)� n2 � a2b2 + b2c2 + c2a2 � 3(a4b4c4)1/3 = 3n
4
3 .

Thus

An + B = �2(n)� n2 � 3n4/3 > n · n1/3 > n(|A| + |B|) � An + B.

This is a contradiction. Hence n cannot be a product of three distinct positive
integers which are greater than 1.
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Let !(n) denote the number of distinct prime factors of n. Then we have !(n) 
2, since otherwise we can write n = abc where 1 < a < b < c, which leads to a
contradiction.

Case 1: If !(n) = 1, we write n = p↵ where p is a prime. Since n = p · p2 · p↵�3,
we must have ↵  5.

If ↵ = 1 then, from (6) we get Ap + B = 1. Note that A 6= 0 since otherwise
B = 1, contradicting the assumption (A,B) 6= (0, 1). Now we have n = p =
(1�B)/A  1 + |B| < (|A| + |B|)3, which is a contradiction.

If ↵ = 2, from (6) we deduce that p2(1 � A) = B � 1. Note that A 6= 1 since
otherwise (A,B) = (1, 1), contradicting our assumption. Therefore, |B| � p2 � 1 �
3. We see that (6) has at most one solution n = p2 = (B � 1)/(1 � A). But then
n  |B| + 1  (|A| + |B|)3, which is a contradiction.

If 3  ↵  5, from (6) we deduce that

p(p + p3 + · · · + p2↵�3 �Ap↵�1) = B � 1. (14)

Note that
p + p3 + · · · + p2↵�3 �Ap↵�1 ⌘ p (mod p2).

Hence p+p3 + · · ·+p2↵�3�Ap↵�1 6= 0, p2|B�1 and B 6= 1. If A 6= 0, we have n =
p↵  p5  (1 + |B|)5/2  (|A| + |B|)3, which is a contradiction. If A = 0, then (14)
implies B � p2 + 1 � 5. We still have n = p↵  p5  (1 + |B|)5/2  (|A| + |B|)3,
which is again a contradiction.

Case 2: If !(n) = 2, we write n = p↵q� . If ↵ � 3, then n = p · p↵�1 · q� , which is
a contradiction. Therefore ↵  2 and similarly �  2.

If (↵,�) = (2, 2), we can write n = p · q · pq, which is a contradiction.
If (↵,�) = (1, 2), then

�2(n)� n2 = 1 + p2 + p2q2 + q2 + q4 = Apq2 + B  (|A| + |B|)pq2.

This implies p2q2 < (|A| + |B|)pq2 and q4 < (|A| + |B|)pq2. Therefore, we have
p < |A| + |B| and q2 < (|A| + |B|)p. Hence

n = pq2 < (|A| + |B|)2p < (|A| + |B|)3,

which is a contradiction.
Similarly if (↵,�) = (2, 1), we have n < (|A| + |B|)3.
Finally, if (↵,�) = (1, 1), from (6) we see that p and q must satisfy (7), and this

proves (iii).

To prove Theorems 4-6, we first observe that they correspond to di↵erent assign-
ments of (A,B) in (6). By Theorem 3 we know that, except for those computable
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solutions n  (|A| + |B|)3, all the solutions are of the form n = pq, where p, q are
distinct primes satisfying (7). Note that (7) is equivalent to

(2p�Aq)2 � (A2 � 4)q2 = 4(B � 1). (15)

Proof of Theorem 4. Let (A,B) = (L2m,�F 2
2m + 1). Then (15) becomes

(2p� L2mq)2 � (L2
2m � 4)q2 = �4F 2

2m.

By Lemma 1 (i), the above equation becomes (2p� L2mq)2 � 5F 2
2mq2 = �4F 2

2m.
This implies F2m|2p � L2mq. Writing 2p � L2mq = uF2m, where u is an integer,
we deduce that u2 � 5q2 = �4. By Lemma 2, we have (u, q) = (±L2k+1, F2k+1) for
some nonnegative integer k.

Case 1: Let (u, q) = (L2k+1, F2k+1). Then p = 1
2 (L2mF2k+1 + L2k+1F2m). By (iii)

and (iv) of Lemma 1, we have p = F2k+1+2m. Hence n = F2k+1F2k+2m+1, where
both F2k+1 and F2k+2m+1 are primes.

Case 2: Let (u, q) = (�L2k+1, F2k+1). Then p = 1
2 (L2mF2k+1 � L2k+1F2m).

If 2k + 1 > 2m, by (iii) and (iv) of Lemma 1, we have p = F2k+1�2m. Hence
n = F2k+1F2k+1�2m.

If 2k + 1 < 2m, by (iii) and (iv) of Lemma 1, we have p = F2m�2k�1. Hence
n = F2k+1F2m�2k�1.

Proof of Theorem 5. Let (A,B) = (L2m, L2
2m � 3). Then (15) becomes

(2p� L2mq)2 � (L2
2m � 4)q2 = 4(L2

2m � 4). (16)

By Lemma 1 (i), we have L2
2m� 4 = 5F 2

2m. From (16) we deduce that 2p�L2mq =
5F2mu for some integer u. Now (16) becomes q2 � 5u2 = �4. By Lemma 2, we
have (q, u) = (L2k+1,±F2k+1) for some integer k � 0.

Case 1: Let (q, u) = (L2k+1, F2k+1). Then by Lemma 1 (ii), we have p = 1
2 (L2mL2k+1+

5F2mF2k+1) = L2m+2k+1. Hence, n = L2k+1L2k+2m+1.

Case 2: Let (q, u) = (L2k+1,�F2k+1). Then

p =
1
2
(L2mL2k+1 � 5F2mF2k+1) =

1
2
(L2mL2k+1 + 5F2mF2k+1)� 5F2mF2k+1.

If 2m > 2k+1 then, by (ii) and (v) of Lemma 1, we have p = �L2m�2k�1, which
is impossible.

If 2m < 2k + 1 then, by (ii) and (v) of Lemma 1, we have p = L2k+1�2m. Thus
we have n = L2k+1L2k+1�2m, which is the same as Case 1.

Proof of Theorem 6. Let (A,B) = (L2m, 5� L2
2m). Then (15) becomes

(2p� L2mq)2 � (L2
2m � 4)q2 = 4(4� L2

2m).
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By Lemma 1 (ii), we have L2
2m�4 = 5F 2

2m. Thus we can write 2p�L2mq = 5F2mu
for some integer u. The above equation becomes q2 � 5u2 = 4. By Lemma 2, we
deduce that (q, u) = (L2k,±F2k) for some integer k � 0.

Case 1: (q, u) = (L2k, F2k). By Lemma 1, we have p = 1
2 (L2mL2k + 5F2mF2k) =

L2m+2k. Hence n = L2kL2k+2m.

Case 2: (q, u) = (L2k,�F2k). We have

p =
1
2
(L2mL2k � 5F2mF2k) =

1
2
(L2mL2k + 5F2mF2k)� 5F2mF2k.

If m > k then, by Lemma 1 we have p = F2m�2k, and hence n = F2m�2kF2k.
Since p and q are distinct primes, we have k 6= m

2 .
If m  k then, by Lemma 1 we have p = F2k�2m. Hence n = F2k�2mF2k.

Proof of Theorem 7. Without loss of generality, we assume that k � 0. Let n be a
solution of (11) such that n > (|A| + k2 + 1)3. It follows from Theorem 3 (iii) that
n = pq, where p and q are distinct primes satisfying p2 + q2� k2 = Apq. Let p < q.
Note that q|(p� k)(p + k).

If p = k, then we have q = Ak and n = Ak2 < (|A| + k2 + 1)3, which is a
contradiction.

If p < k, then p + k < 2k. Since q|p � k or q|p + k, we have q < 2k and hence
n < 2k2 < (|A| + k2 + 1)3, which is a contradiction.

If p > k, then q|p + k. Note that 2q > 2p > p + k. We must have q = p + k.
Thus A = (p2 + q2 � k2)/pq = 2 and n = p(p + k). For p � 3, k must be even.

Conversely, if A = 2, k is even and both p and p + k are primes, then it is easy
to see that n = p(p + k) is a solution of (11).
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